Sushil Singla
Contact Info
Research Interests
Functional Analysis, Linear and Multilinear Algebra
Current Courses
MATH 213 Vector Calculus
Recent Publications
1. Bhattacharyya T.; Singla S. Sequences of operator algebras converging to odd spheres in the quantum Gromov–Hausdorff distance, Indian J Pure Appl Math (2024), in a special issue dedicated to the memory of K. R. Parthasarathy. https://doi.org/10.1007/s13226-024-00635-y
2. Guterman A.; Kuzma B.; Singla S.; Zhilina S. Birkhoff–James classification of norm’s properties, Adv. Oper. Theory 9:3 (2024), Paper No. 43, in a special issue dedicated to Professor Chi-Kwong Li on the occasion of his 65th birthday. https://doi.org/10.1007/s43036-024-00321-0
3. Kuzma B.; Li C-K; Poon E.; Singla S., Linear maps preserving parallel matrix pairs with respect to the Ky-Fan k-norm, Linear Algebra Appl. 687 (2024), 68–90. https://doi.org/10.1016/j.laa.2024.01.018
4. Grover P.; Singla S. Subdifferential set of the joint numerical radius of a tuple of matrices, Linear and Multilinear Algebra, 71:17 (2023), 2709– 2718. https://doi.org/10.1080/03081087.2022.2119194
5. Grover P.; Singla S. A distance formula for tuples of operators, Linear Algebra Appl. 650 (2022), 267–285. https://doi.org/10.1016/j.laa.2022.06.002
6. Khovanskii A.; Singla S.; Tronsgard A. Interpolation Polynomials and Linear Algebra, C. R. Math. Rep. Acad. Sci. Canada, 44:2 (2022), 33–49. https://mr.math.ca/article/interpolation-polynomials-and-linear-algebra/
7. Singla S. Gateaux derivative of C∗ norm, Linear Algebra Appl. 629 (2021), 208–218. https://doi.org/10.1016/j.laa.2021.07.019
8. Grover P.; Singla S. Best approximations, distance formulas, and orthogonality in C∗-algebras, J. Ramanujan Math. Soc. 36:1 (2021), 85–91. http://mathjournals.org/jrms/2021-036-001/2021-036-001-009.html
9. Bukoski J.; Singla S.. Operator algebras associated with graphs and categories of paths: a Survey, In: Choi, Y., Daws, M., Blower, G. (eds) Operators, Semigroups, Algebras and Function Theory. IWOTA 2021. Operator Theory: Advances and Applications, vol 292. Birkhäuser, Cham. 2023, pp. 91–114. https://link.springer.com/chapter/10.1007/978-3-031-38020-4_5