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Abstract—As compensation to power generation dispatch, de-
mand response (DR) enables demand controllability by changing
the consumers’ electricity usage patterns, which can be used to
reduce electricity cost, integrate renewable energy, and provide
ancillary services. To reveal the benefits from residential DR,
this study develops two approaches: 1) optimal load aggregation
under augmented time-of-use (TOU) pricing; and 2) active DR
participation in unit commitment (UC) under rewards. We have
shown that plain TOU pricing is not a promising DR policy if res-
idential customers are equipped with home energy management
systems (EMS). We, therefore, propose an augmented TOU by
radial basis functions (RBF). With a 60% participation level, the
proposed optimal load aggregation model under the augmented
TOU can reduce the power generation cost by 24% and decrease
the standard deviation of the load profile by 42%. However,
these results can be affected by the customer’s participation
level, which is also quantitatively studied. Specifically, when
the participation level exceeds 80% this method becomes less
efficient. The second proposed approach, a two-stage stochastic
UC model with DR flexibility, reduces the power generation cost
by 20% and decreases the standard deviation of the load profile
by 77%. In addition, the inconvenience of DR participation
is quantitatively evaluated, and a Pareto surface is developed,
which can be used as a baseline for residential customers
to set up the home EMS for DR implementation. Both the
proposed mechanisms can be used to improve energy efficiency
by uncovering the residential DR potential.

Index Terms—Residential demand response, Residential mi-
crogrid, Time-of-use, Unit commitment, Energy management.

NOMENCLATURE

Sets
AP Appliances
BAP Background Appliances
CAP Controllable Appliances
T Time horizon
Ω Set of scenarios
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Symbols and Variables
λHt Penalty coefficient for a home H at time t
µj Radial basis function centers
ω Index of a scenario
P j
t Maximum power the unit j can generate
QH Rate power of the power panel
πflat flat-rate
πt Electricity Price
π
{off,mid,on}
t Price in off-peak, mid-peak and on-peak de-

mand period
σ Bandwidth of radial basis function
P j
t Minimum power the unit j can generate
toff Minimum down time
ton Minimum up time
Êap Predicted energy consumption̂lap,ωt Predicted load in the scenario ω
l̂apt Predicted load
ξω Probability of the scenario ω
ap Appliance
cj(·) Operation cost of unit j
cmj (·) Marginal cost of reserve power j
CA

t Actual generation cost
CM

t Electricity market-based generation cost
cUj,t Cost of starting up unit j at time t
drated Rated driving distance
f(·) Augment function
Lt Aggregated load at t
LAG
t Aggregated load at time t of a aggregator AG

lap,ωt Load of ap at t in the scenario ω
lapt Load of ap at t
pjt Amount of power generation
pj,ωt Amount of power generation of scenario ω
qaprated Rated power of ap
rj,ωt,D Generation down-reserve of the scenario ω

rj,ωt,U Generation up-reserve of the scenario ω
RD

j Ramping down limit
RU

j Ramping up limit
tap0 Start time of of operating appliance in load

forecast model
tap1 Completing time of of operating appliance in

load forecast model
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tap2 Must completing time of operating appliance
ytj On/off status of unit j at time t
Acronyms
DR Demand Response
EMS Energy Management System
EV Electric Vehicle
RBF Radial Basis Function
SOC State of Charge
TOU Time of Use
UC Unit Commitment

I. INTRODUCTION

THE balance of power generation and demand is crucial
and challenging for power system operation. Increas-

ing penetration of distributed energy resources, intermittent
renewable energy and electric vehicles (EV) makes system
operation more challenging. As an essential compensation to
power generation control, DR enables demand controllability
by changing the electricity usage patterns of consumers [2–
9], which includes 1) shifting demand from on-peak to off-
peak periods; 2) consuming power based on renewable energy
availability; 3) responding to price signals; and 4) responding
to control signals.

Accordingly, DR can 1) save significant capital cost for
utilities by reducing peak demand; 2) reduce greenhouse gas
emission by integrating renewable energy [3], [4]; 3) cost-
effectively balance power generation and demand in electricity
markets [5], [6]; and 4) provide economic ancillary services
for power systems [7–9].

Residential customers consume about one-third of the elec-
tricity, and the residential sector has the most uncovered DR
potential compared with commercial and industrial sectors
[10], [11]. Furthermore, the adoption of EVs and vehicle-to-
grid applications are bringing more DR potential to the resi-
dential sector. It is greatly beneficial to unlock the residential
DR potential and transform residential homes/buildings into
active DR participants. Residential DR has therefore received
considerable attention from academia and industries [12].

Among others, optimization plays an important role in
DR implementation and various deterministic optimization
models [13] and stochastic optimization models [3], [5], [14]
have been developed to aggregate controllable loads. Since
residential electricity consumption is random in nature, using
stochastic and robust optimization models has become a new
trend in DR studies. It appears that robust optimization tends to
provide more desirable results while stochastic programming
requires less computational power [15]. Residential DR should
also consider customers’ comfort level in addition to energy
cost [16–18]. Furthermore, since household loads are small
but numerous, load aggregators can be introduced [19–21].

In addition to these DR technologies, to encourage DR
participation, various policies have been developed and can
be categorized into two groups: price and incentive-based
[22]. More specifically, direct load control, ancillary services
and market programs are considered as the incentive-based
policies. On the other hand, price-based policies includes real-
time pricing, critical peak pricing and TOU [23–27]. TOU

is used worldwide in the residential sector since its structure
is clear and easy to track [28–31]. For example, in Ontario,
Canada, TOU is applied to 60% of buildings with the smart
meters in place [32].

However, peak demand rebounding in the lowest price
period has been reported under TOU since the home EMS
tends to shift the load to the earliest time with the lowest
price [33], [34]. To deal with this issue, augmented TOUs
can be used, e.g., multiple TOUs [35]. However, this may
raise fairness issues since customers are charged with differ-
ent electricity prices. More appropriate augmenting methods
should be developed.

A deeper reason behind the peak demand rebounding is
that the electricity pricing and load aggregation are coupled.
More specifically, the electricity price directly depends on
the magnitude of the load; hence, the plain predetermined
price structures may not work as expected. To incorporate this
relationship, attempts have been made to employ game theory
[36], [37], mechanism design [38] and bi-level optimization
[39–41]. However, these methods require intense computation,
which may not be available in embeded home EMSs.

Alternatively, demand flexibility can be incorporated into
UC models, which are solved by a utility or an independent
system operator. UC models can economically schedule var-
ious power generation units such as coal, gas and diesel to
meet a predicted load profile. The traditional UC model can be
modified to incorporate incentive-based DR [42]. For instance,
modified UC models under DR were presented for renewable
energy integration [43] and minimize the operational cost in
the presence of controllable loads, fuel cells, and solar energy
[44].

In this study, to reveal the residential DR benefits, we
proposed two approaches: 1) optimal load aggregation under
augmented TOU pricing; and 2) active DR participation in
UC under rewards. In the first approach, the load aggregation
problem is formulated as a stochastic optimization model and
then reformulated as a deterministic linear programming (LP)
model. The LP model can be efficiently solved by a home
EMS. In the second approach, a two-stage stochastic UC
model with demand flexibility is developed, which can be
solved efficiently by a utility. A reward mechanism is then
developed to encourage DR participation.

This study is extended from our earlier work in [1]. The
difference and new contributions are: 1) Augmented TOU is
developed. 2) UC model with demand flexibility is developed.
3) The time interval/resolution is enhanced from 1 hour
to 5 minutes, which greatly improves the accuracy of the
proposed models. 4) The inconvenience of DR participation
is quantitatively evaluated, and a Pareto surface is developed.

The contributions of this work are summarized as follows:
1) A simple and effective augmented TOU pricing structure

is proposed. An optimal load aggregation model is fur-
ther developed to incorporate the proposed augmented
TOU for DR applications.

2) A two-stage stochastic UC model with demand flexibil-
ity is developed, based on which a reward mechanism is
developed to encourage DR participation. This method
is simple, robust, and practical.
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Fig. 1. System architecture of demand response in a residential microgrid

3) The inconvenience of DR participation is quantitatively
evaluated and a Pareto surface is developed, which can
be used as a baseline for residential customers to set up
the home EMS for DR implementation.

4) Both the proposed mechanisms can be used to improve
energy efficiency by uncovering the residential DR po-
tential.

The rest of the paper is structured as follows. Section II
presents the problem formulation. The simulation results are
presented in Section III followed by a discussion in Section
IV. Section V concludes this study.

II. PROBLEM FORMULATION

Fig. 1 shows the system architecture of the two proposed
DR approaches in a residential microgrid. The microgrid may
have multiple load aggregators and each aggregator contracts
with a number of homes to provide DR services. Each home
has a set of controllable loads such as dishwasher, clothes
dryer and EV. The load aggregators can forecast and aggregate
demand flexibility of the residential loads and participate for
DR applications under TOU or rewards.

This section presents the residential load forecast model, the
stochastic optimal load aggregation model, the deterministic
UC model, and the stochastic UC model with DR flexibility.

A. Stochastic Residential Load Models

In this study, we use a set of stochastic residential load
models developed in our earlier study [33], [34]. These models
include 19 appliances in which dishwasher, clothes dryer and
EV are considered as controllable loads.

lapt = qaprated, ∀ap ∈ AP, t ∈ [tap0 , tap1 ] (1)

lapt = 0, ∀ap ∈ AP, t ∈ T \ [tap0 , tap1 ] (2)

where lapt is the power consumption of appliance ap at time t.
We assume that the appliances are operated at the rated power
qaprated and the operating period is [tap0 , tap1 ] shown in Eq. (1).
The standby power of the appliances is assumed to be 0 shown
in Eq. (2). AP is the set of appliances in a home, which is
further classified as a set of background appliances BAP and
a set of controllable appliances CAP . The background appli-
ances (e.g., light) cannot be rescheduled in a DR application.
The controllable appliance can be rescheduled, e.g., EV. T is
the time horizon of load forecasting and aggregation.

The load profile will be determined by the parameters of
qaprated, t

ap
0 and tap1 . These parameters are stochastic in nature.

For instance, the operation of most of the appliances is based
on human activity. The rated power of appliances is different
from home to home. The statistical information on how people
use appliances are from the UK Time Use Survey [45].
Except for EVs, the parameters of the other appliances (e.g.,
light, refrigerator, oven, etc.) are obtained from [46], which
was validated by a comprehensive comparison with actual
electricity measurements in the UK.

Now, we discuss the method to determine the parameters
for the EV charging (load) model. The rated power is based
on the charger, which is usually a level 1 or level 2 charger in
the residential sector. In this study, we only consider charging
the EV at home since we focus on residential DR. The
charging period is based on the battery capacity and its state
of charge (SOC) when an EV arrives at home. Since the SOC
approximately linearly depends on EV driving distance, the
SOC can be calculated from the daily driving distance as
follows [47], [48].

soc =
drated − d
drated

(3)

where drated is the rated driving distance, i.e., the driving
distance of a fully charged EV. drated can be found in the
datasheet of EVs. d is the daily driving distance. The average
and standard deviation of d can be found in [49].

The initial charging time tap0 is the same as EV home
arriving time assuming that people plug-in the EV and start
the charging on arrival. This time can be assumed as a normal
distribution [47].

The aggregated load forecasting is defined as follows.

LAG
t =

∑
H∈AG

 ∑
ap∈BAP

lapt +
∑

ap∈CAP
lapt

 (4)

where LAG
t is the aggregated load prediction at time t of a

load aggregator AG.

B. Stochastic Optimal Aggregation Model

Although the residential power consumption is random in
nature, the aggregation of a number of household loads can
be statistically stable. Therefore, we develop an optimization
model based on expected values.

minimize
lapt

E

 ∑
H∈AG

∑
t∈T

∑
ap∈CAP

lapt

 f(πt) (5)
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subject to:

0 ≤ lapt ≤ q
ap
rated, ∀ap ∈ CAP, t ∈ [tap0 , tap2 ] (6)

lapt = 0, ∀ap ∈ CAP, t ∈ T \ [tap0 , tap2 ] (7)∑
t∈T

lapt = Êap, ∀ap ∈ CAP (8)

∑
ap∈AP

lapt ≤ QH , ∀t ∈ T (9)

where the objective is to minimize the total electricity cost.
Since the set of background appliances BAP are not con-
sidered as schedulable, they are not included in the objective
function.
πt is the electricity price. In this study, we use TOU as

the price structure, which is discuss in the next section. f(·)
is an augmenting function to augment the TOU since an un-
augmented TOU can cause peak demand rebound. The RBF
is used to augment the TOU pricing.

RBF = e
−‖t−µj‖

2

2σ2 (10)

f(πt) = πt − (RBF − µRBF ) (11)

where σ is the bandwidth. j = 1, . . . , k and µj is the a RBF
center. The value of an RBF depends on the distance between
the input t and µj , given a value σ. µRBF is the average value
of the RBF. By taking away the average value, the impact of
RBF on TOU is minimized while the variation is still added to
the TOU. Eq. (10) and (11) are discussed in detail in section
III.

Eq. (6) and (7) are the appliance operation constraints. The
difference from the forecasting model shown in Eq. (1) and (2)
is the completing time tap2 . In the forecasting model, the com-
pleting time tap1 depends on tap0 and the operation period. In
the optimization model, tap2 is the must completing time, which
is more flexible. For instance, tap2 for EVs can be the home
leaving time in the morning. In other words, when people
arrive home and plug-in the EV, the optimization model will
determine when to charge the EV based on electricity price πt.
In addition, the power consumption of the controllable loads
are considered as interruptible.

Eq. (8) shows that the rescheduled load should consume
the same amount of energy as predicted Êap. We focus on the
DR effect for peak demand reduction and load flattening rather
than energy reduction. Eq. (9) shows that the rated power of
the power panel cannot be exceeded, which limits the total
demand of a single household.

In the optimization model, the decision variables are
lapt , ∀ap ∈ CAP . The objective function is the summation
of decision variables times predetermined TOU; therefore, the
objective function is linear. In addition, all the constraints
are affine. Therefore, the model is a stochastic LP model.
By minimizing the expected electricity cost, the stochastic
optimization model is transformed into a deterministic LP
model.

C. Deterministic Unit Commitment Model

We use a standard deterministic UC model [50] to develop
the TOU structures. The deterministic UC model is also used
to calculate the generation cost under the plain TOU and
augmented TOU. The demand flexibility is not incorporated
into this model.

minimize
pjt ,y

j
t

∑
t∈T

∑
j∈J

(
cj(p

j
t ) + cUj y

j
t

)
(12)

subject to ∑
j∈J

pjt = LAG
t ,∀t ∈ T (13)

yjt ∈ {0, 1}, ∀t ∈ T , j ∈ J (14)

P j
t y

j
t ≤ p

j
t ≤ P

j
t y

j
t , ∀t ∈ T , j ∈ J (15)

−RD
j ≤ p

j
t − p

j
t−1 ≤ RU

j , ∀t ∈ T , j ∈ J (16)

yjt − y
j
t−1 ≤ y

j
k ∀j ∈ J , t ∈ {2 . . . T − 1},

k ∈
{

min
(
t+ ton − 1, T

) } (17)

yjt−1 − y
j
t ≤ 1− yjk ∀j ∈ J , t ∈ {2 . . . T − 1},

k ∈
{

min
(
t+ toff − 1, T

)} (18)

Eq. 6− 9

The objective is to minimize the operational cost of power
units. cj(p

j
t ) is the operation cost of unit j as a function of

the amount of power generation pjt . cUj,t is the cost of starting
up unit j.

Eq. (13) is the balance constraint of power generation and
demand, where LAG

t is the aggregated demand shown in
Eq. (4). In Eq. (14), ytj is the on/off status of unit j at time t,

which is a binary constraint. In Eq. (15), P j
t and P j

t are the
maximum and minimum amount of power that the unit j can
generate, respectively. Eq. (16) shows the unit’s ramping up
and down constraint, where RU

j and RD
j are the ramping up

and down limit, respectively.
Eq. (17) represents that the power generation unit needs to

stay on for a minimum amount of time ton after it turns on due
to mechanical design limits or economic reasons. Similarly,
as shown in Eq. (18), a unit needs to stay off for a minimum
amount of time toff after it turns off before it can be turned
back on.

D. Stochastic Unit Commitment Model

A two-stage stochastic UC model is also developed. In the
first stage, the generation units are dispatched to meet the
expected demand. The uncertainty is realized in the second
stage by various scenarios: ω ∈ Ω, where ω is the index
of a scenario, and Ω is the set of scenarios. Each scenario
occurs with a probability of ξω , and

∑
ω∈Ω ξω = 1. Also, the

generation will match the demand in each scenario by varying
generation up-reserve (rj,ωt,U ) and down-reserve (rj,ωt,D). We also
incorporate DR flexibility into this stochastic UC model so
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that the householders can use DR flexibility as a virtual power
plant to participate in power economic dispatch.

minimize
∑
t∈T

∑
j∈J

(
cj(p

j
t ) + cUj y

j
t

)
+
∑
ω∈Ω

∑
t∈T

∑
j∈J

ξωc
m
j

(
rj,ωt,U − r

j,ω
t,D

)
+
∑
ω∈Ω

ξω
∑

H∈AG

∥∥∥λHt ∑
ap∈CAP

(lap,ωt − ̂lap,ωt )
∥∥∥
(19)

subject to ∑
j∈J

pjt = E
[
LAG
t

]
,∀t ∈ T (20)

pj,ωt = pjt + rj,ωt,U − r
j,ω
t,D,∀t ∈ T ,∀ω ∈ Ω (21)∑

j∈J
pj,ωt = LAG,ω

t ,∀t ∈ T ,∀ω ∈ Ω (22)

P j
t y

j
t ≤ p

j,ω
t ≤ P j

t y
j
t , ∀t ∈ T ,∀ω ∈ Ω, j ∈ J (23)

−RD
j ≤ p

j,ω
t − pj,ωt−1 ≤ RU

j , ∀t ∈ T ,∀ω ∈ Ω, j ∈ J (24)

Eq. 6− 9, 14− 18

The objective is to minimize the operational cost of power
units and the inconvenience of residential customers in the UC
for DR purposes. The first term is the expected cost in the first
stage, and the second term is the generation cost in the second
stage. cmj (·) is the marginal generation cost function. The third
term is the `1 norm of the difference between predicted load
and rescheduled load from participating in the UC. λHt is the
penalty coefficient for a home H at time t, representing the
unwillingness or inconvenience to participate in the UC for
DR applications. This value can be different from home to
home and from time to time.

Eq. (20) is the power-demand balance constraint in the
stage 1. Eq. (21) is the realized power generation unit j in all
the scenarios. Eq. (22) is the power-demand balance constraint
in all the scenarios. Eq. (23) and Eq. (24) are the power unit
operation constraints in all the scenarios.

The decision variables include pjt , y
j
t , r

j,ω
t,U , r

j,ω
t,D and

lap,ωt ,∀ap ∈ CAP . The stochastic variables are household
load lapt . For instance, one home may use a dishwasher and
anther home may not use a dishwasher in the simulation
day. One homeowner may need to drive their EV at 8 am
(tap2 = 8) and another homeowner may need it at 8:30 am.
To realize the stochastic variables, sampling is applied for the
100 homes. More precisely, each home is one scenario with
1% probability. The Monte Carlo method is used to conduct
the simulation.

III. SIMULATION RESULTS AND ANALYSIS

We considered one load aggregator and 100 homes in
the residential microgrid. Dishwashers, Dryers and EVs were
considered as controllable loads, and 20% of homes were
assumed to have EVs. The Nissan Altra-EV with Lithium-
Ion Battery was considered in this study, and the capacity was
33 kW [47], [48]. We also assumed the DR participant had a

TABLE I
PARAMETERS OF THE CONTROLLABLE LOADS [54], [55]

qaprated tap0 tap1 − t
ap
0 tap2

EV 1.7 kW µ = 17
σ : 2.8 h

µ = 4.39 h
σ = 0.61 h

µ = 7
σ = 1 h

Dishwasher µ = 1.13 kW
σ = 0.12 kW

Some usages
µ = 10 : 25
σ = 3 h
Other usages
µ = 18 : 15
σ = 1.6 h

µ = 1.41 h
σ = 0.72 h

t ∈ T

Dryer µ = 2.52 kW
σ = 0.26 kW

Some usages
µ = 9 : 25
σ = 1.5 h
Other usages
µ = 16 : 00
σ = 3.1 h

µ = 1.41 h
σ = 0.35 h

t ∈ T

Fig. 2. Forecasted load profiles. Left: 4 individual homes (H); Right:
aggregated load profile of 4 groups (G) of 25 homes

home EMS to schedule the controllable appliances. The time
horizon was 24 hours, and the time resolution was 5 minutes.
The CVX [51], [52] and Gurobi solver [53] were used to solve
the proposed optimization models. Case studies and simulation
were conducted in three scenarios:

1) Residential loads were predicted and aggregated without
DR application. This is our reference scenario.

2) Optimal load aggregation under TOU and augmented
TOU.

3) DR applications in UC.

A. Scenario #1: Residential load forecast

We first simulated an aggregated load profile where there
were no DR applications. The key parameters included
qaprated, t

ap
0 and tap1 . These parameters for controllable loads

were summarized in Table I, which were derived from our
earlier research [54], [55].

Fig. 2 shows forecasted load profiles for individual homes,
and an aggregated load profile of 25 homes. As can be seen
from the left plot, the load profile is very random from
home to home. However, the aggregated load profile can
have high correlation with 25 home profiles shown on the
right. Therefore, although the homes are heterogeneous, the
aggregated load profile of a large number of homes can be
statistically stable due to similar daily routines.
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Fig. 3. Aggregated load profile of 100 homes

TABLE II
PARAMETERS IN THE UNIT COMMITMENT MODEL

Coal Gas Diesel

aj 0.01 0.1 0.2
bj 4 10 20

P j
t 60 kW 60 kW 60 kW

P j
t 10 kW 0 kW 0 kW

RU
j , R

D
j 1 kW/min − −

Fig. 3 shows the aggregated load profile of 100 homes and
the areas show load from different type of appliances. The
background loads are non reschedulable loads such as lighting,
TV, and Oven. To simulate this aggregated load profile, we ran
the load forecast model with 1000 homes. The load profile of
these 1000 homes are divided into 10 groups and each group
has 100 homes. We then take the average load profile as the
expected load aggregation of 100 homes as shown in Fig. 3.

We now discuss the method to use the deterministic UC
model to calculate the generation cost. We also developed a
flat-rate and a TOU structure based on the generation cost.
The load profile shown in Fig. 3 was used as the demand in
the deterministic UC model. For demonstration purposes, only
three types of generation units were considered, including coal,
gas, and diesel units. Also, since the simulated grid is much
smaller than a real-world grid, the generation units’ capacities
were scaled down, which does not imply any real-world
applications. We did not constrain the minimum on or off
period for these units. The starting up cost was also assumed
to be 0. The quadratic function was used for power generation
cost shown in Eq. (25), and its first order derivative function
at 80% of the capacity was used as marginal generation cost
of reserve power shown in Eq. (26).

cj(p
j
t ) = aj(p

j
t )

2 + bjp
j
t (25)

cmj

(
rj,ωt,U − r

j,ω
t,D

)
= 1.6 ajP

j
t

(
rj,ωt,U − r

j,ω
t,D

)
(26)

The key parameters of the UC model are summarized in Table
II. Note that all these parameters can be readily tuned.

Fig. 4. Power generation and load profile in Scenario 1

The simulation results from the UC are shown in Fig. 4. As
can be seen, the units are dispatched in the merit order, i.e.,
the units with the lowest cost are dispatched first followed by
more expensive ones. The are two types of generation costs:
actual generation cost defined in Eq. (27) and market-based
generation cost defined in Eq. (28).

CA
t =

∑
j∈J

(
cj(p

j
t ) + cUj,ty

j
t

)
(27)

CM
t = max

j∈J

(
cj(p

j
t ) + cUj,ty

j
t

)
(28)

where CA
t is the actual generation cost and CM

t is the
generation cost in an electricity market.

If all the units are owned by a utility or the microgrid
operator, the actual generation cost should be considered. On
the other hand, in a market context, the generation cost is
determined by the generation cost of most expensive units
at time t. The electricity market is cleared when the power
generation units are dispatched to meet the demand. All the
dispatched generation units are paid the same as the generation
unit with the highest generation cost. For instance, at 20:00,
all the units are operating and they are paid by the cost of
Diesel unit since the Diesel unit has the highest generation
cost.

Since dynamic pricing such as TOU is a market incentive
measure, we use the market generation cost to calculate the
TOU. For a comparison, we also calculate a flat-rate. To
calculate the equivalent TOU and flat-rate based on market
generation cost, we assume a budget balanced market, i.e., the
power generation units do not yield profit. This does not lose
generality since the price can be easily modified to incorporate
profits.

Based on the TOU in Ontario Canada [56], we define the
TOU with three tiers as follows.

πt =


πoff
t t ∈ Toff
πmid
t t ∈ Tmid

πon
t t ∈ Ton

(29)
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Fig. 5. The market-based generation cost, time-of-use price and flat-rate

where πt is the TOU. π{off,mid,on}
t are the price in off-peak,

mid-peak and on-peak demand period respectively. Similarly,
T{off,mid,on} are the corresponding time periods.

We assume πmid
t = 1.5πoff

t and πpeak
t = 2πoff

t . Then, the
πoff
t is calculated from the following equation.∑

t∈Toff

πoff
t Lt +

∑
t∈Tmid

1.5πoff
t Lt +

∑
t∈Ton

2πoff
t Lt

=
∑
t∈T

CM
t

(30)

where Lt is the aggregated load at t. In this equation, the
only unknown is πoff

t .
The flat-rate πflat is calculated from the following equation.∑

t∈T
πflatLt =

∑
t∈T

CM
t (31)

Fig. 5 shows the market generation cost, TOU and flat-rate.
The electricity market is cleared when the power generation
units are dispatched to meet the demand. All the dispatched
generation units are paid the same as the generation unit with
the highest generation cost regardless their actual generation
cost. The dots show the market-based generation cost, from
which the off-peak, mid-peak and on-peak periods can be
identified. The pricing of each tier of the TOU is calculated
by Eq. (30). The flat-rate is calculated from Eq. (31).

The electrical energy consumption in this reference scenario
was 1.77 MWh. The peak demand was 167 kW and the
standard deviation of the load profile was 43 kW. The actual
generation cost was $118 and the market-based generation cost
was $224. The electricity price in the off-peak demand period
was calculated as πoff

t = 7.76 ¢/kWh and the flat-rate was
calculated as πflat = 12.61 ¢/kWh.

B. Scenario #2: Optimal load aggregation under TOU

In this section, we applied the stochastic optimal aggrega-
tion model discussed in Section II.B. Both plain TOU and
augmented TOU were used. We also evaluated the impact of
DR participation levels on the DR implementation. We did not

Fig. 6. Load profile before and after application of optimal load aggregation
with TOU

incorporate the flexible loads in the UC models. However, we
used the deterministic UC model for generation dispatch to
meet the aggregated load. The loads were aggregated under
TOU with various DR participation levels. The aggregated
load was used as the demand in the deterministic UC model.
Eq. (28) was used to calculate the generation cost.

It is well understood that the application of plain TOU
causes peak demand to rebound at the start of πoff

t as shown
in Fig. 6. Within each tier of TOU, the electricity price is the
same; therefore, the EMS will schedule the load to the earliest
time of the tier with the lowest price.

To overcome this problem, an augmented TOU strategy
is implemented in Eq. (10). The strategy provides some
price variation within each tier so that the home EMSs will
not schedule the load at the same time simultaneously. For
example, Fig. 7 shows 5 zero mean negative RBF curves,
−(RBF − µRBF ), with σ = 1 and different µ in the off-
peak period of the TOU. If these functions are added to
the off-peak period of the TOU and assigned to 5 homes,
the augmented TOU will distribute the preference of using
controllable appliances in different homes uniformly inside the
tier. Fig. 8 shows 100 sets of TOU pricing signals augmented
by the RBFs, and the graph in the right bottom corner shows
a zoomed-in view of the off-peak demand period, in which
100 RBFs uniformly distributed their centers in the off-peak
periods. These pricing signals will be randomly assigned to
100 homes, and each home will have a similar but unique
TOU. σ was set as 1, and each home has a different µ.

These RBFs can be randomly assigned to different house-
holders. The magnitude of these RBFs is tiny and has little
impact on the electricity payment of the householders. How-
ever, they can effectively overcome the peak-demand rebound.
Fig. 9 shows the load profile before and after the application
of optimal load aggregation with augmented TOU with a 50%
participation level. As can be seen, the augmented TOU can
flatten the controllable load in the lowest price period.

However, the performance can be affected by DR partic-
ipation levels. We evaluated the participation level from 0%
to 100% in an interval of 10%, and the results are shown in
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Fig. 7. Five negative radial base functions (RBF) (σ = 1) in the off-peak
period of time-of-use (TOU)

Fig. 8. One hundred sets of time-of-use (TOU) pricing signals augmented
by the radial base functions (RBF)

Fig. 9. Load profile before and after application of optimal load aggregation
under augmented TOU with 50% of participation level

Fig. 10. The market-based generation cost ($) and load profile standard
deviation (kW) based on different participation levels

Fig. 11. Electricity cost of individual homes who participate in DR before
and after the DR participation (50% participation level)

Fig. 10. The deterministic UC model was used for generation
dispatch to meet the aggregated load. Eq. (28) was used to
calculate the generation cost. The participation level of 10%
means that there are ten homes responding to the augmented
TOU using home EMSs. The participation level of 0% is
the same as Scenario 1. As expected, the generation cost
and standard deviation of the load profile started to reduce
when people participate in the DR. The lowest generation cost
($163) occurred when the participation level was 90%, and the
lowest standard deviation (24.5 kW) of the load profile was
achieved at the participation level of 60%.

For the 50% participation level case, we also evaluated the
individual homes’ electricity cost (bills) before and after the
DR participation under TOU shown in Fig. 11. All the homes
had reduced electricity cost. The average saving of the homes
was 13%. The #31 home has the largest saving with 26%.
Note that the #11 home has an EV. The #38 home has the
least saving with 6%.

C. Scenario #3: Stochastic Unit Commitment with DR

From the simulation results in Scenario 2, we have seen
that the un-augmented TOU will cause peak demand rebound
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Fig. 12. Power generation in Scenario 3

and, therefore, not applicable if the homes are equipped with
home EMSs to shift the loads automatically. With augmented
TOU, the results are satisfactory when the participation level
is less than 80%. However, the augmented TOU became less
effective when the participation level is greater than 80%.

In this section, we will evaluate the proposed stochastic
UC model with the incorporation of demand flexibility. We
first assume λHt = 0,∀t ∈ T , H ∈ AG. In words, all the
homes have zero unwillingness or zero inconvenience to shift
their controllable loads for DR purposes. This is a reasonable
assumption since the home EMSs will automatically shift the
load and the load will complete based on users’ settings. For
instance, if the householder set up 7am to drive the EV, then
the EV will be fully charged by 7am. We will also present the
effect of unwillingness on the model later in this section.

Fig. 12 shows the power generation from various units. By
incorporating demand flexibility in the UC model, the market-
based generation cost was reduced by 20% from $224 to $179.
The standard deviation of the load profile was reduced by 77%
to 10.41 kW, which helps with power system control. Fig. 13
shows the load profiles of background and controllable loads
in this scenario. The controllable loads were coordinated to fill
the load valleys. Note that most of the EVs were not able to
charge in the period from 7 to 17 o’clock because of driving.
In addition, the driving times were stochastic and followed a
normal distribution. The SOC of a sample EV is shown in
Fig. 14.

The total savings compared with the reference scenario of
the generation cost was 224 − 179 = $45, which represents
a 20% reduction. Also, the flattened load profile can greatly
increase energy efficiency. If a budget balanced market is
considered, these savings can be used as rewards r to the
householders to encourage them to participate in DR. The
rewards can be calculated as follows.

r =
saving∑

H∈AG

∑
t∈T

∑
ap∈CAP |l

ap
t − l̂

ap
t |

(32)

where l̂apt is predicted load profile and lapt is rescheduled load
in UC. In this particular case, the r = 4.38¢/kWh, which was

Fig. 13. Load profile of background and controllable loads

Fig. 14. SOC of the same EV in Scenario 1 and Scenario 3

about 1/3 of the flat rate.
Fig. 15 shows the electricity cost for individual homes in

both Scenario 1 (with flat-rate) and Scenario 3. The average
saving for the homes was 20%. The #56 home had the largest
saving with 37%. Note that the #56 home had an EV. The #60
home had the least saving with 5%.

Since householders may have different preferences, some
people may weigh convenience higher than others. This factor
can be reflected by λHt in the UC model. In this case, we
can obtain Pareto optimal solutions by solving the UC model.
By changing the setting of λHt , householders can determine a
trade-off between monetary benefit and convenience. Fig. 16
shows the Pareto surface by varying λHt from 1 to 10. We also
assumed a constant λHt . The results can provide householders
a baseline to select a good λHt .

IV. DISCUSSION

In this study, we have developed a stochastic optimal load
aggregation model under TOU and a two-stage stochastic UC
model with DR flexibility. We also develop an augmented
TOU pricing structure. It should be noted that this study
does not consider the impact of market power on the DR
application. In other words, all the DR participants are price
takers. However, if the DR participants are not honest or
unwilling to participate in the DR applications, the results
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Fig. 15. Electricity cost for individual homes in Scenario 1 (with flat-rate)
and Scenario 3

Fig. 16. Pareto surface by varying the penalty coefficient λHt in the stochastic
UC model

may be undesired. Approaches such as game theory can be
applied to study this effect. This study also ignores the power
flow in the distribution network. In power system integration,
frequent reschedule of power usages may cause line congestion
or transformer overload in some areas, e.g., the appliance
usages are simultaneously rescheduled to one time under one
transformer. Coordination may be required in such a situation.

To evaluated the proposed models, simulations were con-
ducted in three scenarios. In the first scenario, we presented
the load profile from the residential load forecasting model
as well as the corresponding power generation cost by using
the deterministic UC model. We also designed the augmented
TOU pricing structure to encourage customers to participate
in the DR application.

In the second scenario, we demonstrated that the plain (un-
augmented) TOU structure could cause significant peak de-
mand rebound. This shows that plain TOU is not a promising
solution if residential customers are able to respond to TOU,
e.g., using home EMSs. We, therefore, proposed an augmented
TOU with negative RBF functions with various RBF centers.

These centers can uniformly distribute the controllable load in
the lowest price periods, which provides some price variation
within each tier so that the home EMSs will not schedule the
load at the same time simultaneously. The augmented TOU
strategy is also fair for all DR participants. The RBFs are
randomly assigned to different householders. In addition, the
magnitude of these RBFs is tiny and has little impact on the
electricity payment of the DR participants.

We also showed the impact of DR participation levels
on the DR application. Simulation results show that the
DR participation level between 50% and 80% provides low
power generation cost and load profiles with low standard
deviation. TOU is predetermined from the generation cost
without consideration of DR, and it is not a good reflection of
the generation cost. The generation cost is coupled with loads
that can be affected by electricity prices. In other words, with
DR, the load will increase in the lowest price period and hence
increase the generation cost. Therefore, the augmented TOU
became less effective when the participation level is greater
than 80%.

In real-world plain TOU applications (e.g., in Ontario,
Canada), this peak demand rebound has not been reported.
We believe this is because most homes do not have EMSs.
Since people respond to TOU manually, the demand rebound
problem is avoided. However, utilities should be aware that
if the customers install the home EMS, the augmented TOU
should be used or some other mechanisms should be designed.

In the third scenario, we applied the two-stage stochastic
UC model with demand flexibility in the residential microgrid.
The simulation results were very promising, with the lowest
standard deviation of load profiles and very low generation
cost, among others. Based on the saved generation cost,
we designed rewards to encourage residential customers to
participate in the UC with DR. We further presented the impact
of the householder’s inconvenience or unwillingness on the
DR application. A Pareto surface has been developed, which
can be used by householders to set up the home EMS in
DR participations. It can also be used by utilities or load
aggregators to predict customer’s behavior in DR and design
contracts.

The energy usage in the three scenarios was 1.77 MWh.
Table III shows the peak demand, the standard deviation of
load profile, and market-based generation cost across the three
scenarios. In Scenario #2, the participation level (PL) of 60%
(PL=60%) is shown. All the observations in Scenarios #2
and #3 are better than Scenario #1. Although Scenario #2
has the lowest generation cost, Scenario #3 has the lowest
peak and standard deviation, which are much lower than
those in the Scenarios #2. In addition, the generation cost in
Scenario #3 is only $9 higher than Scenario #2. Therefore,
both proposed mechanisms can be used to effectively unlock
residential DR benefits. More precisely, the first approach is
suitable in the current real-world situation where EMSs are
not widely installed. The second approach provides the best
results if EMSs are in place.
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TABLE III
PEAK DEMAND, STANDARD DEVIATION OF LOAD PROFILE AND

MARKET-BASED GENERATION COST IN THE SCENARIOS

#1 #2 (PL=60%) #3
Peak demand (kW) 167 129 (23%) 109 (35%)

Standard deviation (kW) 43 25 (42%) 10 (77%)

Generation cost ($) 224 170 (24%) 179 (20%)
? The values in the parenthesis are the decrease percentage compared
with the scenario #1. PL: participation level

V. CONCLUSION

DR is one of the most economical methods to reduce peak
demand, integrate intermittent renewable energy sources, and
improve energy efficiency. The residential sector has the most
unlocked DR potential and this needs to be incorporated into
power system operation. This study proposes two mechanisms
to unlock residential DR potential. These two approaches
do not consider market power, i.e., the DR participants are
assumed to be price takers. The first mechanism is to use
augmented TOU to encourage residential customers to partic-
ipate in DR. A stochastic optimal load aggregation model is
designed to accomplish this goal. Simulation results show that
it is a promising solution in the current real-world situation,
in which residential customers can only partially control their
appliances. For example, when 60% of homes participate in
DR, the standard deviation and generation cost can be reduced
by 42% and 24%, respectively. However, the mechanism
becomes less efficient if the participation level exceeds 80%.

As the second mechanism, we propose a two-stage stochas-
tic UC model to incorporate the DR flexibility. Simulation
results show that this model can dramatically decrease the peak
demand, standard deviation, and generation cost. The saved
generation cost can be used as rewards to encourage residential
customers for DR participation. We further present the impact
of the householder’s inconvenience or unwillingness on the
DR applications. A Pareto surface has been developed, which
can be used by householders to set up their home EMS for DR
participation. It can also be used by utilities or load aggregators
to predict customer’s behavior in DR and design contracts.

Both the proposed mechanisms can be used to unlock
residential DR potential to reduce power generation costs,
decrease customers’ electricity bills, and improve energy effi-
ciency.
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