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Abstract

Distributed energy resources, such as electric vehicles and roof-top solar pan-
els have become increasingly popular and essential components of power dis-
tribution systems. However, their growth poses significant challenges to sys-
tem operation, such as bidirectional power flow, intermittent power genera-
tion, increased peak demand, and unexpected frequency/voltage fluctuation.
To tackle these challenges, we developed a vehicle-to-grid model, which in-
corporated dynamic electric vehicles usages, such as driving times, driving
distance, and charging/discharging locations. The machine learning method
of principal component analysis and XGBoost were used to develop the solar
energy prediction model. We also developed a novel unit commitment model
to coordinate and aggregate the distributed energy resources in power genera-
tion economic dispatch. Electric vehicle charging was used as elastic demand
and electric vehicle discharging was used as power generation sources. The
solar energy was considered as a negative load. Simulation results showed
that uncontrolled electric vehicle charging and solar energy could negatively
impact the power systems. For example, the load ramping rate was increased
by 384%. Simulation results also showed that the proposed models could mit-
igate the negative impact and improve energy efficiency. For example, the
peak demand, load ramping rate and average generation cost were reduced
by 21%, 79%, and 27%.

Keywords: distributed energy resources, unit commitment, solar energy,
electric vehicle, vehicle to grid, demand response.
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Nomenclature1

Sets2

I The set of EVs3

J The set of power generation units4

T Time horizon5

Greek6

αj, βi Constant coefficients7

Symbols and Variables8

∆t Time interval9

PEV
l Rated EV charging/discharging power10

pjt Maximum power generation limit of the unit j11

SOC0 Initial SOC12

SOCmax Maximum SOC13

SOCmax Minimum SOC14

SOCacc Accepted SOC level at driving times15

pjt Minimum power generation limit of the unit j16

toff Minimum down time17

ton Minimum up time18

B
EVi

↓
t Binary variables indicating EV discharging status19

B
EVi

→
t Binary variables indicating EV driving status20

B
EVi

↑
t Binary variables indicating EV charging status21

ci(·) Discharging cost of an EV22
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cj(·) Operation cost of a generation unit23

CA
t Actual generation cost24

CM
t Generation cost in an electricity market25

i, j, k Index26

pjt Amount of power generation27

p
EVi

↓
t EV discharging power28

p
EVi

→
t EV driving power29

p
EVi

↑
t EV charging power30

pEV
i

t Power consumption of the ith EV at time slot t31

PEV
Dri Rated EV driving power32

RD
j Ramping down limit33

RU
j Ramping up limit34

t Time35

ti,1, ti,3 Departure times of the ith EV36

ti,2, ti,4 Arrival times of the ith EV37

ytj On/off status of unit j at time t38

AT Ambient Temperature39

PA Panel Area40

PE Panel Efficiency41

R Radiation Value42

SPG Solar Power Generation43

Acronyms44
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CCG Combined-Cycle Gas45

DER Distributed Energy Resources46

DR Demand Response47

EV Electric Vehicle48

PCA Principal Component Analysis49

SCG Simple-Cycle Gas50

SOC State of Charge51

UC Unit Commitment52

V2G Vehicle-to-Grid53

XGBoost Extreme Gradient Boosting54
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1. Introduction55

The worldwide power system transition from the conventional grid to56

smart grid paradigm is promoting the integration of distributed energy re-57

sources such as roof-top solar, small-scale wind turbines, electrical energy58

storage systems, electric vehicles (EV), and demand response (DR) [1]. How-59

ever, the growth of distributed energy resources (DER) poses significant chal-60

lenges to the power system operation and control, such as bidirectional power61

flow, intermittent power generation, increased peak demand, and unexpected62

frequency/voltage fluctuation [2]. Therefore, DER aggregators and grid op-63

erators need to prepare for high-level distributed energy resource penetration64

to the power system.65

Solar and wind energy are intermittent and not economic dispatchable;66

therefore, accurate short-term forecasting is paramount for their integration.67

Among other methods such as physical and statistical models, the machine68

learning method becomes increasingly suitable for short-term renewable en-69

ergy forecasting [3, 4]. However, the appropriate selection of machine learning70

models and data features remains a significant challenge. A framework to71

evaluate various machine learning models and feature selection methods was72

developed in [5], and the best combination to forecast short-term solar power73

was discovered.74

Besides accurate forecasting, energy storage systems are also helpful in75

renewable energy integration into power systems because energy storage can76

absorb the uncertainty of renewable energy. However, large-scale economic77

energy storage is not mature yet [6, 7]. Alternatively, as EVs have significant78

batteries, they can be considered as mobile energy storage with time-varying79

parameters such as driving distance/period and charging/discharging loca-80

tions [8]. However, uncontrolled EV charging can significantly increase peak81

demand [9].82

To mitigate the challenge of renewable energy and EV integration, they83

must be included in the power system operation routine, e.g., unit commit-84

ment (UC) that economically dispatches power generation to meet demand85

[10, 11]. Power system flexibility metrics, e.g., the ramping rate of a load86

profile, were proposed to assess the flexibility of the power system for re-87

newable energy integration [12]. Energy storage and combined heat & power88

generation were used in a UC model to compensate the intermittent solar89

energy [13].90

Concentrating solar power technology could also smooth out the variation91
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of solar energy because it could store energy [14]. The uncertainty in UC92

model was reviewed in [15]. The security constrained UC model considering93

the uncertainty of wind generation was developed in [16]. Alternatively,94

stochastic UC models were developed to cope with the uncertainty from high95

level penetration of the solar energy [17, 18]. These UC models focused on96

coping with the uncertainty of solar energy, and the solar energy information97

was from actual data or predicted by other sources.However, accurate solar98

prediction models were not integrated into the UC models.99

EVs are parked 95% of the time on average, and EVs can be controlled100

to charge or discharge during the parking time, known as the vehicle-to-101

grid (V2G) application [19]. V2G can be incorporated into UC models. For102

example, a V2G model was developed to analyze the impact of bidirectional103

flow capacity on power generation dispatch [20]. The EV discharging capacity104

was used as the spinning reserve in a UC model to absorb the uncertainty105

from renewable energy [21]. Both the EV charging and discharging in a106

V2G application were coordinated by a UC model to fill the load valley from107

renewable energy integration [22]. Furthermore, a security constrained UC108

model was developed to cope with extreme scenarios of uncertainty from109

renewable energy and EV penetration [23, 24, 25]. However, these models110

did not consider dynamic EV usages, such as driving times, driving distance,111

and plugin locations.112

UC can be formulated into mixed-integer programming models [26, 27].113

Methods have been developed to solve UC models, such as Lagrangian re-114

laxation [28], particle swarm optimization [29, 30, 31] and genetic algorithm115

[32, 33]. Among others, the mixed-integer linear programming was widely116

used due to its flexibility, high efficiency, high convergent rate [34, 35, 36, 37,117

38, 39, 40].118

Nonetheless, highly accurate short-term renewable energy prediction mod-119

els are needed. Also, the dynamic EV usages, such as driving times, driving120

distance, and plugin locations, need to be modeled. To our best knowledge,121

UC models with integrated both highly accurate short-term renewable en-122

ergy prediction and the EV dynamic usage have not been developed. In this123

study, we have developed a highly accurate solar energy prediction model124

and a V2G model with the dynamic EV usage. A UC model was further125

developed, which incorporated the solar prediction and V2G models.126

The contributions of this work are summarized as follows:127

1. A V2G model is developed, in which the dynamic EV usages are mod-128
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eled, such as driving times, driving distance, and charging/discharging129

locations.130

2. A UC model with integrated solar energy prediction and V2G mod-131

els is developed. This model incorporates EV discharging as power132

generation and controlled EV charging as elastic demand under DR.133

3. The proposed models can be used to integrate a high level penetration134

of EV and renewable energy to power systems.135

The paper is organized as follows. Section II describes the problem for-136

mulation and Section III presents case the simulation results. The discussion137

is given in Section IV and the conclusion is presented in Section V.138

2. Problem Formulation139

The main objective of this study is to economically and reliably integrate140

DERs including EVs and solar energy into power systems. Fig. 1 shows the141

system architecture. DER aggregators collect the information from DERs142

and aggregate DERs to participate in UC. Solar energy is predicted and143

considered as a negative load in the system. The V2G model incorporates144

dynamic EV usage. The predicted EV discharging energy is used as power145

generation in the UC model for economic dispatch. The predicted EV charg-146

ing energy is used as elastic demand under DR. Four conventional genera-147

tors are also used, including coal, combined-cycle gas, simple-cycle gas, and148

diesel. The developed UC model economically dispatches conventional gener-149

ation units, EV discharging capacity, and EV charging capacity. The major150

outcomes include reduced generation cost, lower peak demand, lower load151

variation, and less greenhouse gas emissions.152

This section presents the dynamic EV usage and V2G model, the solar153

energy prediction model, and the UC model.154

2.1. Dynamic EV Usage and V2G155

A fleet of EVs can be used as a battery bank for power system operation156

and control. For instance, EV discharging can be used as distributed energy157

resources, and controlled EV charging can be used as flexible demand in DR.158

However, this battery bank has dynamic parameters such as driving times,159

driving distance, and charging/discharging locations.160

Fig. 2 shows the plug-in and dynamic driving times. Blue color presents161

EV plug-in periods at homes or workplaces while green color shows driving162
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Figure 1: System architecture
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Figure 2: The diagram of important EV usage times

periods. Throughout the day, there are two driving periods from home t1163

to workplace t2 and from workplace t3 to home t4. As the daily routine of164

the people are similar, the values of t1, t2, t3 and t4 tends to be normally165

distributed [8].166

The V2G problem is modeled as follows.167

pEV
i

t = p
EVi

↑
t − p

EVi
↓

t − p
EVi

→
t (1)

0 ≤ p
EVi

↑
t ≤ B

EVi
↑

t PEV
l ,∀i, t ∈ [ti,2, ti,3] ∪ [ti,4, ti,1] (2)

0 ≤ p
EVi

↓
t ≤ B

EVi
↓

t PEV
l ,∀i, t ∈ [ti,2, ti,3] ∪ [ti,4, ti,1] (3)

p
EVi

→
t = B

EVi
→

t PEV
Dri ,∀i, t ∈ [ti,1, ti,2] ∪ [ti,3, ti,4] (4)

B
EVi

↑
t , B

EVi
↓

t , B
EVi

→
t ∈ {0, 1} (5)

B
EVi

↑
t +B

EVi
↓

t +B
EVi

→
t ≤ 1 (6)

SOCi,ts = SOC0 +
ts∑
t=0

pEV
i

t ∆t, ∀i (7)

SOCmin ≤ SOCi,ts ≤ SOCmax, ∀i, t (8)

SOCi,t1 ≥ SOCacc, ∀i (9)

SOCi,t3 ≥ SOCacc, ∀i (10)

where pEV
i

t is the power consumption of the ith EV at time slot t. p
EVi

↑
t , p

EVi
↓

t168

and p
EVi

→
t are the EV power consumption of charging, discharging and driving169

respectively. B
EVi

↑
t , B

EVi
↓

t and B
EVi

→
t are binary variables indicating EV status170
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of charging, discharging and driving respectively. For example, B
EVi

↑
t = 1171

indicates EV charging and B
EVi

↑
t = 0 indicates no EV charging.172

Eq. (2) shows that the EVs can be charged with the power between 0 and173

rated charging power when they are at homes or workplaces. t ∈ [ti,2, ti,3] ∪174

[ti,4, ti,1] is the time period when the ith EV is at homes or workplaces. This175

time is different among EVs. Likewise, Eq. (3) shows the EV discharging176

constraint when they are at homes or workplaces. Eq. (4) is the power177

consumption during the driving period.178

Eq. (5) shows that B
EVi

↑
t , B

EVi
↓

t , B
EVi

→
t are binary variables. Eq. (6) shows179

the EV cannot be charging, discharging and driving simultaneously.180

Eq. (7) shows the SOC of the ith EV at t, where ∆t is the time duration181

of each interval. Eq. (8) is a constraint for limiting the individual EV’s SOC182

between the minimum and maximum limit of SOC, e.g., 0% and 100%. Eq.183

(9) and Eq. (10) constraints the SOC at start of driving times (t1 and t3),184

which indicates that the EV should have sufficient energy for driving.185

This V2G model is incorporated into the UC model discussed in Section186

2.3.187

2.2. Solar Prediction188

Solar energy prediction is paramount in power system operation since so-189

lar energy is intermittent and generally non-dispatchable. Machine learning190

algorithms play an important role in solar energy prediction. Our earlier191

research in [5] showed that the combination of principal component analysis192

(PCA) and XGBoost provided the most accurate prediction among others:193

PCA with random forest, PCA with neural networks, feature importance194

with XGBoost, feature importance with neural networks, and feature impor-195

tance with random forest.196

Therefore, this study uses PCA and XGBoost for solar energy prediction.197

Specifically, we use PCA for feature selection and use XGBoost to map the198

selected features to solar radiation signals. To train the predictive model, we199

use the weather data in the period of September-December, 2016, from the200

Kaggle database [41]. The data includes 11 attributes such as date, time,201

radiation, temperature, etc.202

The following steps are carried out [5].203

Step 1. Data pre-processing: 1) The data are cleaned. 2) The time and204

date are extracted from the UNIX time. 3) The sunset and sunrise times are205
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used to extract the length of the daytime. 4) The data are divided into three206

data sets: training, cross-validation, and test.207

Step 2. Manual feature selection: By using statistical methods, the at-208

tributes are ordered based on the correlations with solar radiation. The209

most seven correlated attributes are selected: temperature, humidity, pres-210

sure, wind direction, wind speed, day, and time.211

Step 3. PCA for feature selection: PCA is used to reduce the seven212

attributes into four components.213

Step 4. XGBoost to map the selected features to solar radiation signals:214

XGBoost is a machine learning algorithm based on a sequential ensemble of215

decision trees, where weak learners can learn jointly to build a strong learner.216

The training and cross-validation datasets are used to train the param-217

eters and hyperparameters. For example, the number of trees, maximum218

depth of trees, and step size were tuned as 70, 13, and 0.05, respectively.219

The final test using the test dataset shows 99.4% accuracy.220

Finally, the predicted solar radiation is used to estimate the solar power
generation, which is calculated as follows.

SPG = PE · PA ·R · [1− 0.005(AT − 25)] (11)

where PE is the panel efficiency, and PA is the panel area. R is the radiation221

value, while AT is the ambient temperature. SPG represents solar power222

generation.223

The predicted solar energy is considered a negative demand and incorpo-224

rated into the UC model discussed in the next section.225

2.3. Unit Commitment Model with V2G and Solar Prediction226

UC is used to economically dispatch generation units to meet demand.227

Unlike a conventional UC model, the proposed model incorporates the V2G228

model and solar energy prediction. EV discharging is used as power genera-229

tion units, and EV charging is used as an elastic load under the concept of230

DR. The predicted solar energy is used as a negative load.231

minimize

pjt ,p
EVi

↓
t ,p

EVi
↑

t

∑
t∈T

[∑
j∈J

cj(p
j
t) +

∑
i∈I

ci(p
EVi

↓
t )

]
(12)

subject to:232
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∑
j∈J

pjt +
∑
i∈I

p
EVi

↓
t = pdt − pst +

∑
i∈I

p
EVi

↑
t , ∀t ∈ T (13)

yjt ∈ {0, 1}, ∀t ∈ T , j ∈ J (14)

pjty
j
t ≤ pjt ≤ pjty

j
t , ∀t ∈ T , j ∈ J (15)

RU
j ≤ ptj − pt−1

j ≤ RD
j , ∀t ∈ T , j ∈ J (16)

yjt − yjt−1 ≤ yjk ∀j ∈ J , t ∈ {2 . . . |T | − 1},
k ∈

{
min

(
t+ ton − 1, |T |

) } (17)

yjt−1 − yjt ≤ 1− yjk ∀j ∈ J , t ∈ {2 . . . |T | − 1},

k ∈
{
min

(
t+ toff − 1, |T |

)} (18)

Eq. (1) - (10)233

The objective function is to minimize the generation cost. T is the set of
EV plug-in times. J is the set of power generation units. pjt and cj(·) is the
power generation and cost of the jth power unit, which is defined as follows:

cj(p
j
t) = αjpjt (19)

where αj is constant.234

I is the set of EVs. ci(·) is the discharging cost of the ith EV, which can
be defined as follows.

ci(p
EVi

↓
t ) = βip

EVi
↓

t (20)

where βi is constant.235

The decision variables include pjt , p
EVi

↓
t and p

EVi
↑

t . Although EV charging236

(p
EVi

↑
t ) is not in the objective function, it is flexible load under DR shown in237

Eq. (13).238

Eq. (13) is the power balance constraint between power generation and239

demand. pdt is a reference load at time t. We define the reference load as the240

load profile without EV and solar energy penetration. pst represents the solar241

power at time t. The power are from the power generation units (pjt) and242

EV discharging. The demand includes the net load (pdt − pst) and the flexible243

EV charging load.244
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In Eq. (14) ytj is a binary variable, which is the on/off status of unit j245

at time t. In Eq. (15), pjt represents the maximum power generation limit246

of the unit j and pjt is the minimum power generation that the unit j needs247

to produce once it is on due to physical constraints. Eq. (16) exhibits the248

ramping up/down constraint of the unit j, where RU
j and RD

j show ramping249

up and down limit respectively.250

Eq. (17) is the minimum on-time constraint, which means that the power251

generation unit has to remain on for a minimum time ton after it is switched on252

due to economical reasons or mechanical design limits. Similarly, as observed253

in Eq. (18), a unit has to remain off for a minimum time toff after it is switched254

off. |T | is the cardinality of the set T .255

3. Simulation Results and Analysis256

To evaluate the proposed models, cases studies were conducted in 3 sce-257

narios:258

1. Reference scenario: no EV nor solar energy penetration259

2. Uncontrolled EV and solar energy penetration260

3. V2G and solar energy penetration with 30% EVs penetration261

4. V2G and solar enegry penetration with 80% EVs penetration262

3.1. Experimental Setup263

This study simulated a power system having 300 homes. We first deter-264

mined the energy consumption of the simulated power system as follows. The265

electricity usage can be grouped as residential, industrial, and commercial266

sectors, while the residential sector consumes 1/3 of total electricity [42, 43].267

Furthermore, the average electricity usage per household is 30 kWh/day [44].268

Therefore, the energy consumption of the simulated power system was calcu-269

lated as 0.03MWh×300×3 = 30MWh. The load profile from PJM [45] was270

used and scaled down to fit the magnitude of our simulation. Fig. 3 shows271

the scaled load profile, and we denote it as the reference load profile in this272

study.273

Table 1 summarizes the parameters for the V2G model. We assumed that274

30% of the consumers have EVs; therefore, 90 EVs were considered. The start275

EV driving times follow a normal distribution, and the expected value µ and276

the standard deviation σ are shown in the table. The driving time period277

was assumed as 45 minutes [8]; therefore t2 = t1 + 45 and t4 = t3 + 45. The278
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Figure 3: The reference load profile (Scaled from the actual load profile on October 27,
2019 from PJM. [45])

rated power (PEV
l ) of EV charging/discharging was 3.3 kW at both home and279

workplace. The rated power for EV driving (PEV
Dri ) was 8 kW. In addition,280

the EV battery capacity was 50 kWh, and the initial SOC was 50%. The281

maximum and minimum SOC were 0% and 100%.282

The solar model discussed in Section II.B was used to predict the solar283

energy based on the weather data in [41]. We assumed that 20% of homes284

have roof-top solar, and 10 kW PV system was designed with overall 70%285

system efficiency. The total PV area per home roof-top was 87 m2 with286

PV panel efficiency of 16%. Eq. 11 was used to calculate the solar power287

generation. Table 2 shows the parameters. Fig. 4 shows the predicted solar288

power.289

Table 3 summarizes the parameters of the UC model for conventional290

power generation units: coal (j = 1), combined-cycle gas (j = 2), simple-291

cycle gas (j = 3) and diesel (j = 4). The combined-cycle gas units use292

both gas-turbine and heat recovery steam-turbine and therefore are more293

efficient than simple-cycle gas units. However, simple-cycle gas units have294

the advantages of quick start and high ramping rate.295

We also considered the power generation dispatch in an electricity mar-
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Table 1: Major Parameters for V2G Model

Parameter Values
βi,∀i ∈ J $50/MWh
t1 (normal distribution) µ = 7 : 00 and σ= 1 hour [8, 9]
t3 (normal distribution) µ = 17 : 00 and σ= 2.8 hours [8, 9]
T 24 hours
Time Interval 5 minutes

PEV
l 3.3 kW [8]

PEV
Dri 8 kW

SOCmin 0%
SOCmax 100%
SOCacc 50%

Table 2: Parameters for Solar Prediction
Parameter Values
Rated Solar Power per home 10 kW
Ambient Temperature 28 Co

PV Efficiency (PE) 16%
System Efficiency 70%
PV Area (PA) 87 m2
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Figure 4: Predicted solar power

ket. The electricity market is cleared when the power generation units are
dispatched to meet the demand. All the dispatched generation units are
paid the same as the generation unit with the highest generation cost. The
market-based generation cost was calculated as follows.

CM
t = max

[
cj(p

j
t)
]

(21)

The proposed optimization models were solved by the CVX with the296

Gurobi solver [46, 47, 48].297

3.2. Scenario #1: Reference Scenario298

The reference scenario did not consider the integration of solar energy299

and EVs. The UC model without V2G was solved to dispatch the four300

power units.301

Fig. 5 shows the economic dispatch of the four power generation units,302

where the area plots show the power production of the units, and the envelope303

shows the total generation. The generation must always meet the demand.304

The energy consumption was 30 MWh. The total generation cost was $1538.305

The average generation cost was 1538/30 = $51.3/MWh.306
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Table 3: Major Parameters of the UC Model

Parameter Coal CCG SCG Diesel

αj ($/MWh) 28.1 30.2 45 62

pjt (kW) 750 400 400 1000

pjt (kW) 10 4 2 0

ton (minutes) 30 10 20 5
toff (minutes) 15 10 20 5
RU

j (kWh/5-min) 0.5 2 4 100
RD

j (kWh/5-min) -0.5 -2 -4 -100

CCG: Combined-Cycle Gas. SCG: Simple-Cycle Gas

The peak demand and the variance of the reference load were 1478.1307

kW and 22237.0 kW, respectively. The maximum ramping rate was 13.9308

kWh/5-min.309

3.3. Scenario #2: Uncontrolled EV and solar energy penetration310

To evaluate the impact of uncontrolled EV charging and solar energy311

penetration on the power system, three sub-scenarios were designed: #2A -312

uncontrolled EV charging penetration, #2B - solar energy penetration, and313

#2C - both uncontrolled EV charging and solar energy penetration.314

The blue line in Fig. 6 shows the load profile in Scenario #2A. The peak315

demand and the variance of the load profile were 1741.7 kW and 42939.0316

kW, respectively. The maximum ramping rate 67.3 kWh/5-min. The energy317

consumption was 32 MWh. The generation cost was $1698. The average318

generation cost was $53.1/MWh.319

The red line in Fig. 6 shows the net load profile in the case of solar energy320

penetration. The predicted solar power is shown in Fig. 4 acts as a negative321

load. The peak demand and the variance of the load profile were 1477.4 kW322

and 37529.0 kW, respectively. The energy consumption was 26.4 MWh. The323

generation cost was $1398. The average generation cost was $52.9/MWh324

Fig. 7 shows the reference load profile and the net load profile with both325

uncontrolled EV and solar penetration. With both uncontrolled EV and solar326

penetration, the peak demand and the variance of the load profile were 1741.0327

kW and 82699.0 kW, respectively. The energy consumption was 28.4 MWh.328

The generation cost was $1554. The average generation cost was $54.9/MWh.329
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Figure 5: Power generation of different units in Scenario #1

Figure 6: Load profiles of Scenario #2A and #2B
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Figure 7: Load profiles of Scenario #1 and #2C

Fig. 8 shows the economic dispatch of the four power generation units for330

Sub-scenario #2C.331

The intermittent solar energy can significantly increase the net load ramp-332

ing rate, which can pose a significant challenge for power system operation.333

The maximum ramping rate was 67 kWh/5-min for Scenario #2B and #2C.334

The ramping rate was increased by 384% compared with Scenario #1.335

3.4. Scenario #3: V2G and solar energy penetration336

In this scenario, the UC model with V2G was applied in the case with337

both EV and solar penetration. EV charging was included as flexible demand338

and EV discharging was included as power generation in the UC model. Eq.339

20 was used to calculate the EV discharging cost.340

Fig. 9 shows the load profiles of Scenario #2C and #3. As can be seen,341

the peak demand was reduced from 1741.0 kW to 1376.6 kW and the variance342

of the load profile was reduced from 82699.0 to 16808.0 kW. The maximum343

ramping rate was reduced from 67.4 kWh/5-min to 14.1 kWh/5-min. Fig. 10344

shows uncontrolled EV charging and the EV charging and discharging curves345

under V2G. Blue line shows the uncontrolled EV charging as the reference.346

Red line shows the aggregated EV charging/discharging curves under V2G,347
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Figure 8: Power generation of different units in Scenario #2C

Figure 9: Load profiles of Scenario #2C and #3
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Figure 10: Uncontrolled EV charging curve (Scenario #2C) and EV charging and dis-
charging curve with V2G (Scenario #3)

where positive values were EV charging and negative values were EV dis-348

charging. As can be seen, the EVs were under charging during the load349

valley period. This is the period when there is plenty of solar energy avail-350

able. By contrast, EVs were under discharging during the peak demand351

period. Fig. 11 shows the economic dispatch of the four power generation352

units in the Scenario #3. The EV discharging energy was not shown in the353

area plot but it acted as a negative load similar to the solar energy. The354

energy consumption was 27.1 MWh. The generation cost was $1098. The355

average generation cost was $40.1/MWh.356

3.5. Scenario #4: V2G and solar energy penetration with 80% EVs penetra-357

tion358

In Scenario #4, to further investigate the flexibility of the UC model with359

V2G (solar and EV penetration), we increased the EV penetration to 80%.360

Half of the EVs were charged with 3.3 kW chargers, and the rest of the EVs361

were with 9.6 kW chargers.362

Fig. 12 shows the load profiles of uncontrolled EV charging and EV charg-363

ing and discharging curve with V2G. The blue line represents the load profile364
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Figure 11: Power generation of different units in Scenario #3

Figure 12: Uncontrolled EV charging curve and EV charging and discharging curve with
V2G in Scenario #4
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Table 4: Major observations in three SubScenarios of Scenario #2

# Peak Demand Load Variance Max Ramping
kW kW kWh/5-mins

#1 1478.1 22237.0 13.9
#2A 1741.7 42939.0 67.3

(18% ↑) (98% ↑) (384% ↑)
#2B 1477.4 37529.0 29.1

(0%) (69% ↑ ) (109% ↑ )
#2C 1741.0 82699.0 67.4

(18% ↑) (272% ↑) (384% ↑)

with the uncontrolled EV charging, and the red line shows the EV charging365

and discharging curve with the V2G application. With uncontrolled EV366

charging, the peak demand and load profile variance were 2767 kW and367

333990 kW, respectively. The proposed UC model with V2G reduced the368

peak demand by 43% to 1590 kW. It also reduced the load profile variance369

by 92% to 26872 kW.370

4. Discussion371

In this study, we have developed a V2G model and a machine learning372

model for solar energy prediction. We also develop a UC model that in-373

corporates the V2G and solar energy prediction model. In the UC model,374

EV discharging is used as power generation, and EV charging is used as a375

flexible demand in DR. The predicted solar energy is considered a negative376

load. Experiments are designed in four scenarios to evaluate the proposed377

models. For a demonstration purpose, we only considered small scale power378

generation units, and a small number of EVs, and small scale solar energy379

generation. However, the proposed model is readily to be scaled up.380

Table 4 summarizes the simulation results in Scenario #2. The results381

show that uncontrolled EV charging and solar energy can negatively impact382

the power system. For example, uncontrolled EV charging can increase the383

peak demand by 18%, if 30% of householders have EVs. To meet the in-384

creased peak demand, utilities may need to build new power plants, which385

requires significant investment. Solar energy can also negatively impact the386

power system because solar energy is not economically dispatchable and inter-387

mittent. For instance, if 20% of householders install solar panels, solar power388
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Table 5: Major observations in Scenario #2C and #3

# Peak Demand Load Variance Max Ramping AGC
kW kW kWh/5-mins $/MWh

#2C 1741.0 82699.0 67.4 54.9
#3 1376.6 16808.0 14.1 40.1

(21% ↓) (80% ↓) (79% ↓) (27% ↓)
AGC: Average Generation Cost.

can increase the load ramping rate by 109%. To meet the higher ramping389

load, less efficient power generators must be used, e.g., simple-cycle gas tur-390

bines or diesel generators. The usage of inefficient generators will produce391

more greenhouse gases and decrease the value of solar energy. Furthermore,392

as shown in Scenario #2C the negative impact can be superimposed with393

both EVs and solar energy penetration. As the current solar power gen-394

eration cost is not viable comparing with conventional generators, it is not395

fair to compare the total generation cost between Scenario #1 and #2. We396

therefore do not compare the generation cost between Scenario #1 and #2.397

Table 5 summarized the simulation results of Scenario #2C and #3. As398

can be seen, the proposed method can mitigate the negative impact of so-399

lar and uncontrolled EV penetration. Furthermore, the proposed model can400

incorporate V2G applications to reduce peak demand, flatten load profile,401

reduce generation cost, and improve energy efficiency. Specifically, the peak402

demand is reduced by 21%. The load variance and load ramping are de-403

creased by 80% and 79%, respectively. Furthermore, the average generation404

cost is reduced by 27%. Furthermore, in the case of 80% of EV penetra-405

tion, the proposed UC model with V2G reduced the peak demand and load406

profile variance by 43% and 92%, respectively, compared with uncontrolled407

EV charging. The improvement can avoid new infrastructure investment be-408

cause of the reduced peak demand. Renewable energy integration and EV409

incorporation can also reduce greenhouse gas emissions.410

5. Conclusion411

The penetration of DERs poses significant challenges to power system op-412

eration. However, proper management of them can also provide benefits. To413

tackle the challenges and reveal the benefits, we have developed a V2G model414

and a solar energy prediction model. We also developed a UC model that415
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incorporates the V2G and solar energy prediction models. Simulation results416

showed that uncontrolled EV charging and solar energy could negatively im-417

pact the power systems. For example, if 30% of the households have EVs and418

20% of households install solar panels, the peak demand and ramping rate of419

the load profile would be increased by 18% and 384%, respectively. It may420

require building new power plants to meet the increased peak demand and421

using less efficient power plants to meet the increased load variation. The422

proposed UC model could economically dispatch EV discharging and use EV423

charging as a flexible demand to mitigate the negative impact and improve424

energy efficiency. For instance, the peak demand, ramping rate of the load425

profile, and average generation cost were reduced by 21%, 79%, and 27%.426

The proposed models can be used to quantitatively evaluate the impact of427

EVs and solar energy on the power systems with different penetration levels.428

Through the evaluation, grid operators can visualize the impact and prepare429

for the penetration based on their situation. The proposed UC and V2G430

models can also efficiently and economically integrate EVs and solar energy431

into power systems. Specifically, the proposed models can reduce generation432

costs, delay infrastructure investments, and reduce greenhouse gas emissions.433
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