
MATLAB for Optimization

Zhanle (Gerald) Wang

University of Regina

1 / 64



Outline

I Introduction of mathematical optimization

I How to use optimization to model and solve engineering
problems

I How to solve optimization models using MATLAB and CVX
I Applications

I Production plan
I Smart electric vehicle charging
I Vehicle-to-grid
I Cast some machine learning to optimization
I Stochastic optimization

I Solving optimization problems

I The slides and all the codes are available at my website:
http://uregina.ca/∼wang233z
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What is an optimization model?

I A mathematical approach for seeking a “best”
“decision/action” from a “set of alternatives”

I An objective function that is to be maximized or minimized

I A set of constraints (possibly empty) that must be satisfied
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Formal Formulation

I Mathematical programs are problems of the form

minimize
x

f(x)

subject to gi(x) ≤ 0, ∀i = 1, ...,m
(1)

I x ∈ Rn is the optimization variable
I f : Rn → R is objective function
I gi : Rn → R are (inequality) constraint functions

I Feasible region: C = x : gi(x) ≤ 0, ∀i = 1, ...,m

I x? ∈ Rn is an optimal solution if x? ∈ C, and
f(x?) ≤ f(x), ∀x ∈ C
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Minimization vs Maximization

I Without loss of generality, it is sufficient to consider a
minimization objective since
maximize

x
{f(x) : x ∈ C} ≡ −minimize

x
{f(x) : x ∈ C}

I Thus to develop the theory we will only consider minimization
problems. When actually solving problems we can use the
actual min or max objective
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Program vs Optimization Problem

I A “program” or “mathematical program” is an optimization
problem with a finite number of variables and constraints
written out using explicit mathematical (algebraic) expressions

I The word “program”, “programming” means “plan”,
“planning”

I Early applications of optimization arose in planning resource
allocations and gave rise to “programming” to mean
optimization (predates computer programming)

I We will use “program”, “programming” and “optimization
problem”, “optimization” interchangeably
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Problem Classification

I The tractability of a large scale optimization problem depends
on the structure of the functions that make up the objective
and constraints, and the domain restrictions on the variables.

Functions Variables Problem type Difficulty

All linear Continuous variables
Linear Program (LP) or

Linear Optimization problem
easy

Some nonlinear Continuous variables
Nonlinear Program (NLP)or

Nonlinear Optimization Problem
Easy or Difficult

Linear/nonlinear Some discrete
Integer Program (IP) or

Discrete optimization problem
Difficult
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Develop optimization models

I Many problems of real importance can be formulated as an
optimization problem

I There are two important aspects
I Mathematical modeling of engineering problems
I Problem solving

I Reducing a seemingly new problem to an instance of a
well-known problem allows one to use pre-existing methods for
solving them
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Formulation Steps

I Encode decisions/actions as decision variables whose values
we are seeking

I Identify the relevant problem data

I Express constraints on the values of the decision variables as
mathematical relationships (inequalities) between the variables
and problem data

I Express the objective function as a function of the decision
variables and the problem data
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Ex1: Production plan

I A company produces two types of drinks: Drink 1 and Drink 2
and they yield different profit.

I The capacity of the barrels to contain Drink 1 and Drink 2 are
500 L and 400 L.

I Each type drink requires some amount of ingredient A and B.

I There are 30 L ingredient A and 44 L ingredient B in stock.

I The manager is developing a plan to maximize the profit.

Drink (L) A (L) B (L) Profit ($)
Drink 1 0.03 0.08 1.00
Drink 2 0.06 0.04 1.25
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Formulation

I Decision variables:

amount of drinks
i.e., x1: Drink 1; x2: Drink 2

I Data: required ingredient to produce drinks, amount of
ingredient in stock, barrel capacity, profit of each drink

I Constraints:
I Ingredient constraints:

0.03x1 + 0.08x2 ≤ 30

0.08x1 + 0.04x2 ≤ 44

I Barrel constraints: x1 ≤ 500, x2 ≤ 400
I Production constraints: x1 ≥ 0, x2 ≥ 0

I Objective function: 1x1 + 1.25x2
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Formulation

minimize
x

− (1x1 + 1.25x2)

subject to 0.03x1 + 0.06x2 ≤ 30

0.08x1 + 0.04x2 ≤ 44

x1 ≤ 500

x2 ≤ 400

x1, x2 ≥ 0

(2)

I Linear programming

I can be solve by linprog using MATLAB
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MATLAB’s Optimization Toolbox

I Not a complete list

Problem type Solvers
Linear Programming linprog
Mixed Linear Programming intlinprog
Linear Least Squares lsqlin, lsqnonneg
Quadratic Programming quadprog
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Linear programming solver

I linprog(c, A, b, Aeq, beq, lb, ub, options)

I Finds the minimum of a problem specified by

minimize
x

cTx

subject to Ax ≤ b
Aeqx = beq

lb ≤ x ≤ ub

(3)

where c, x, b, beq, lb, and ub are vectors, and A and Aeq are
matrices.
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Model reformulation

minimize
x

1x1 + 1.25x2

subject to 0.03x1 + 0.06x2 ≤ 30

0.08x1 + 0.04x2 ≤ 44

x1 ≤ 500

x2 ≤ 400

x1, x2 ≥ 0

minimize
x

cTx

subject to Ax ≤ b
Aeqx = beq

lb ≤ x ≤ ub
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Model reformulation

I What are A, b, c, x?

A =



0.03 0.06
0.08 0.04

1 0
0 1
−1 0
0 −1

 b =



30
44
500
400
0
0

 c =

[
1

1.25

]

I Matlab code: x = linprog(c, A, b)
here:

x =

[
x1
x2

]
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Model reformulation (alternative)

I x = linprog(c, A, b, [ ], [ ], lb, ub)

A =

[
0.03 0.06
0.08 0.04

]
b =

[
30
44

]
c =

[
1

1.25

]

lb =

[
0
0

]
ub =

[
500
400

]
x =

[
x1
x2

]
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Quadratic programming solver

I quadprog(H, c,A, b, Aeq, beq, lb, ub)

I Finds the minimum of a problem specified by

minimize
x

1

2
xTHx+ cTx

subject to Ax ≤ b
Aeqx = beq

lb ≤ x ≤ ub

(4)

where c, x, b, beq, lb, and ub are vectors, and H,A and Aeq
are matrices.

I It is harder to reformulate a problem to standard quadratic
program.
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CVX

I CVX is a Matlab-based modeling system for convex
optimization.

I CVX turns Matlab into a modeling language, allowing
constraints and objectives to be specified using standard
Matlab expression syntax.
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CVX code

minimize
x

1x1 + 1.25x2

subject to 0.03x1 + 0.06x2 ≤ 30

0.08x1 + 0.04x2 ≤ 44

x1 ≤ 500

x2 ≤ 400

x1, x2 ≥ 0

cvx_begin

variable x(2);

minimize -(1*x(1)+

1.25*x(2))

subject to

0.03*x(1)+0.06*x(2)<=30;

0.08*x(1)+0.04*x(2)<=44;

x(1)<=500;

x(2)<=400;

x(1)>=0;

x(2)>=0;

cvx_end
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CVX code
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CVX Python code

import numpy as np

import cvxpy as cp

n = 2

x = cp.Variable(n)

objective = cp.Minimize(-(100*x[0]+125*x[1]))

constraints = [3*x[0]+6*x[1]<=30,

8*x[0]+4*x[1]<=44,

x[0]<=5,

x[1]<=4,

x[0]>=0,

x[1]>=0]

prob = cp.Problem(objective, constraints)

result = prob.solve()

print(x.value)
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Electric vehicles (EV)

I Lower maintenance costs

I Lower taxes

I Cheaper fuel (electricity)

I Government subsidy
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Basic EV charging

I Typical battery capacity: 30kWh− 100kWh

I Onboard charger: 1.9 – 22 kW

I DC offboard charger: 50 – 350 kW
I Charging level

I Level 1: 0 – 10 kW
I Level 2: 10 – 50 kW
I Level 3: 50 – 350 kW
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Impact on power system
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Smart charging and vehicle-to-grid (V2G)

I Using the electric vehicle battery to feed power back to the
grid using a bidirectional EV charger

I Advantages: storage for renewables, reduce peak demand,
ancillary services, etc

I Challenges: optimal control, bidirectional charger, battery
degradation, standardization, regulatory framework, etc
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V2G applications

I Local load balancing
I Adjust charging time/power according to load
I Balance multiple charge points with priority

I Renewable energy utilization

I Price based charging/discharging

I Peak shaving

I Grid back up
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Renewable energy availability
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Price based charging
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Ex2: Smart charging

I You have an EV and can be charged at home.

I The electricity price is real-time pricing (RTP).

I You need 20kW to charge up your EV.

I The rated power of the charger is 2kW .

I Assume that the EV can be charged anytime in the day.

I Now, you need to determine what time to charge to minimize
the electricity bill in the day.

29 / 64



Real-time-pricing
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Smart charging model

minimize
t

∑
t∈T

πtpt

subject to
∑
t∈T

pt = 20

0 ≤ pt ≤ 2

where πt is price, pt is charging power.
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CVX code

load(’As3_data’)

price = price’;

cvx_begin

variable p(288)

minimize price * p

subject to

sum(p)==20*60/15; %kW15min

0<=p<=2;

cvx_end
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Smart charging
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Smart charging?

I Is this too aggressive?

I How about battery degradation cost?
I How about

I home arriving, leaving and driving time?
I state of charge?
I multiple vehicles?
I convenience and privacy?
I power system reliability?
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Ex3: V2G
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Machine learning: data fitting
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Machine learning: data fitting
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I Given xi, yi, i = 1, ...,m, find f(θ) = θ1 ∗ x+ θ2 that
optimizes

minimize
θ

m∑
i=1

(θ1xi + θ2 − yi)2

where θ1 is slope, θ2 is intercept.
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Formal problem setting

I Input: xi ∈ Rn, i = 1, ...,m

I Output: yi ∈ R, i = 1, ...,m

I Model parameters: θ ∈ Rk

I Predicted output: ŷ ∈ R

I Let’s define a function that maps inputs to feature vectors

φ : Rn → Rk

I Then, we can write

ŷi =
k∑
j=1

θj · φj(xi) ≡ θTφ(xi)
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Formal problem setting

ŷi =

j∑
i=1

θj · φj(xi) ≡ θTφ(xi)

I Let’s write it in a more compact way

Φ ∈ Rm×k =


φ(x1)

T

φ(x2)
T

...
φ(xm)T

 , y ∈ Rm =


y1
y2
...
ym


Then,

ŷ = Φθ
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Loss function

I The loss function is defined as

` : R× R→ R+

I Square loss
`(ŷ, y) = (ŷ − y)2

I Absolute loss
`(ŷ, y) = |ŷ − y|

I Deadband loss

`(ŷ, y) = max{0, |ŷ − y| − ε}, ε ∈ R+
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Data fitting with square Loss

I Square loss
`(ŷ, y) = (ŷ − y)2

I Called least-squares objective function

minimize
θ

(ŷ − y)2 = minimize
θ

‖ŷ − y‖22

I Has analytical solution

θ? = (ΦTΦ)−1ΦT y
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Ex4: Electricity peak demand forecasting
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Linear regression 2d vector
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”Nonlinear regression” 2d vector
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Matlab code

X = load(’max_temp_b.txt’);

y = load(’max_demand_b.txt’);

[m,n] = size(X);

%% linear

Phi = [X ones(m,1)];

% theta = inv(Phi’ * Phi) * Phi’ * y;

theta = Phi \ y;

%% 4th order polynomial

Phi = [X.^4 X.^3 X.^2 X ones(m,1)];

theta = Phi \ y;
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Ex5: Newsvendor problem

I A company produces winter coats.

I The company must commit to specific production quantity x
before knowing the exact demand d, 3 months before the
winter season.

I After seeing demand d, the company decides the amount yr
to sell in regular price πr, and the amount ys to sell at a
salvage/discounted price πs.

I This is called decision making under uncertainty, because
decision x is made under uncertain demand d.
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Two stage stochastic programming

I Decision variables:
I Here-and-Now decision: production quantity x
I Wait-and-See decision: regular price quantity yr, discounted

price quantity ys

I Objective: minimize production cost and expected future cost

I Stochastic program

minimize
x

f(x) + Ed[Q(x, d)]

subject to 0 ≤ x ≤ x̂

Q(x, d) = minimize
yr(d),ys(d)

− (πr yr(d) + πs ys(d))

subject to yr(d) ≤ d,∀d ∈ D
yr(d) + ys(d) ≤ x, ∀d ∈ D
yr(d), ys(d) ≥ 0,∀d ∈ D
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yr(d),ys(d)

− (πr yr(d) + πs ys(d))

subject to yr(d) ≤ d,∀d ∈ D
yr(d) + ys(d) ≤ x, ∀d ∈ D
yr(d), ys(d) ≥ 0,∀d ∈ D
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Reformulation

I Combine the two stages

minimize
x, yr(d), ys(d)

f(x) + Ed[−(πr yr(d) + πs ys(d))]

subject to 0 ≤ x ≤ x̂
yr(d) ≤ d,∀d ∈ D
yr(d) + ys(d) ≤ x,∀d ∈ D
yr(d), ys(d) ≥ 0,∀d ∈ D

I Suppose demand d is a discrete random variable with S
scenarios (d1, ..., ds), and each scenario di with a probability
pi.

I Correspondingly, the sell quantities have yr,i and ys,i for each
scenario di.
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Reformulation

minimize
x, yr(d), ys(d)

f(x) + Ed[−(πr yr(d) + πs ys(d))

subject to 0 ≤ x ≤ x̂
yr(d) ≤ d,∀d ∈ D
yr(d) + ys(d) ≤ x,∀d ∈ D
yr(d), ys(d) ≥ 0,∀d ∈ D

⇓

minimize
x, yr,i, ys,i

cx−
S∑
i=1

pi(πr yr,i + πs ys,i)

subject to 0 ≤ x ≤ x̂
yr,i ≤ di,∀i = 1, ..., S

yr,i + ys,i = x,∀i = 1, ..., S

yr,i, ys,i ≥ 0,∀i = 1, ..., S
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A concrete example

I Suppose there are 3 scenarios, d1 = 10 with probability of 1
4 ;

d2 = 30 with probability of 5
12 ; d3 = 50 with probability of 1

3 .
I Unit cost to produce coats: c = 5, regular price: πr = 10,

discounted price: πs = 3.
I Production capacity: x̂ = 70.

minimize
x, yr,i, ys,i

5x− [
1

4
(10yr,1 + 3ys,1) +

5

12
(10yr,2 + 3ys,2)

+
1

3
(10yr,3 + 3ys,3)]

subject to 0 ≤ x ≤ 70

yr,1 ≤ 10, yr,2 ≤ 30, yr,3 ≤ 50

yr,i + ys,i ≤ x,∀i = 1, ..., S

yr,i, ys,i ≥ 0, ∀i = 1, ..., S

52 / 64



A concrete example

I Suppose there are 3 scenarios, d1 = 10 with probability of 1
4 ;

d2 = 30 with probability of 5
12 ; d3 = 50 with probability of 1

3 .
I Unit cost to produce coats: c = 5, regular price: πr = 10,

discounted price: πs = 3.
I Production capacity: x̂ = 70.

minimize
x, yr,i, ys,i

5x− [
1

4
(10yr,1 + 3ys,1) +

5

12
(10yr,2 + 3ys,2)

+
1

3
(10yr,3 + 3ys,3)]

subject to 0 ≤ x ≤ 70

yr,1 ≤ 10, yr,2 ≤ 30, yr,3 ≤ 50

yr,i + ys,i ≤ x,∀i = 1, ..., S

yr,i, ys,i ≥ 0, ∀i = 1, ..., S

52 / 64



Results

0

1

2

3

1st stage

2nd stage

x = 50

d = 10, yr,1 = 10, ys,1 = 40

p1 = 1
4 , profit= −30

d = 30, yr,2 = 30, ys,2 = 20

p2 = 5
12 , profit=110

d = 50, yr,3 = 50, ys,3 = 0

p3 = 1
3 , profit=250

121.7
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Dealing with the General Case

I What if it is hard to define scenarios?

I What if our distribution is not discrete?

I Sampling is enough under most general conditions
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Results
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Electricity market-clearing problem

I A two-settlement market clearing problem with day ahead
(DA) and real time (RT) stages

minimize
pDA
g ,pRT

g,ω ,p
shed
d,ω ,

costDA(pDAg ) + Eω[costRT (pRTg,ω , p
shed
d,ω )]

subject to f(pDAg ) ≤ 0

g(pRTg,ω , p
shed
d,ω ) ≤ 0, ∀ω

g(pDAg , pRTg,ω , p
shed
d,ω ) ≤ 0, ∀ω
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How is the optimization problem actually solved?

I Unconstrained problem. Set the derivative (one dimensional)
or gradient (high dimensional)

∇xf(x) = 0

I Then how to find ∇xf(x) = 0
I Direct solution: Analytically compute
I Gradient descent

Repeat: x← x− α∇xf(x)

I Newton’s method

Repeat: x← x− (∇2
xf(x))

−1∇xf(x)
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Constrained optimization

I Barrier method: Approximate problem via unconstrained
optimization

minimize
x

f(x)− t
m∑
i=1

log(−gi(x))

as t→ 0, this approaches original problem

I Maximize Lagrangian dual problem

maximize
λ

{minimize
x

f(x) +

m∑
i=1

λigi(x)}
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Practically solving optimization problems

I The good news, for many classes of optimization problems,
people have already done all the ”hard work” of developing
numerical algorithms

I A wide range of tools that can take optimization problems in
”natural” forms and compute a solution

I Some well-known libraries: CVX (MATLAB), CVXPY
(Python), YALMIP(MATLAB), AMPL (custom language),
GAMS (custom language), Gurobi (custom language)
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Brief history of convex optimization

I Theory (convex analysis): ca1900–1970
I Algorithms

I 1947: simplex algorithm for linear programming (Dantzig)
I 1960s: early interior-point methods (Fiacco & McCormick,

Dikin, . . . )
I 1970s: ellipsoid method and other subgradient methods
I 1980s: polynomial-time interior-point methods for linear

programming (Karmarkar 1984)
I late 1980s–now: polynomial-time interior-point methods for

nonlinear convex optimization (Nesterov & Nemirovski 1994)

I Applications
I before 1990: mostly in operations research; few in engineering
I since 1990: many new applications in engineering (control,

signal
I processing, communications, circuit design, . . . ); new

problem classes (semidefinite and second-order cone
programming, robust optimization)
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MATLAB history

I Invented by Prof. Cleve Moler, University of New Mexico in
late 1970s

I The MathWorks, Inc. was formed in 1984 by Moler and Jack
little. One product: MATLAB

I Today: 100 products; over 1 million users worldwide.
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Take home messages

I Many problems of real importance can be formulated as an
optimization problem.

I Particularly, convex optimization problems that can be solved
efficiently and which still find a huge number of applications

I Reducing a seemingly new problem to an instance of a
well-known problem allows one to use pre-existing methods for
solving them
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Thank you!
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