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Abstract In this paper, some probability inequalities and moment inequalities for
widely orthant-dependent (WOD, in short) random variables are presented, especially
the Marcinkiewicz–Zygmund type inequality and Rosenthal type inequality. By using
these inequalities, we further study the complete convergence for weighted sums of
arrays of row-wise WOD random variables and give some special cases, which extend
some corresponding ones for dependent sequences. As applications, we present some
sufficient conditions to prove the complete consistency for the estimator of nonpara-
metric regression model based on WOD errors by using the complete convergence that
we established. At last, the choice of the fixed design points and the weight functions
for the nearest neighbor estimates is proposed. Our results generalize some known
results for independent random variables and some dependent random variables.
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1 Introduction

It is well known that the probability limit theorem and its applications for indepen-
dent random variables have been studied by many authors, while the assumption of
independence is not reasonable in real practice. If the independent case is classical in
the literature, the treatment of dependent random variables is more recent.

One of the important dependence structure is the wide dependence structure, which
was introduced by Wang et al. (2013) as follows.

Definition 1.1 For the random variables {Xn, n ≥ 1}, if there exists a finite real
sequence {gU (n), n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈ (−∞,∞),
1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)

n∏

i=1

P(Xi > xi ),

then we say that the {Xn, n ≥ 1} are widely upper orthant dependent (WUOD, in
short); if there exists a finite real sequence {gL(n), n ≥ 1} satisfying for each n ≥ 1
and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)

n∏

i=1

P(Xi ≤ xi ),

then we say that the {Xn, n ≥ 1} are widely lower orthant dependent (WLOD, in
short); if they are both WUOD and WLOD, then we say that the {Xn, n ≥ 1} are
widely orthant dependent (WOD, in short), and gU (n), gL(n), n ≥ 1, are called
dominating coefficients.

An array {Xni , i ≥ 1, n ≥ 1} of random variables is called row-wise WOD if for
every n ≥ 1, {Xni , i ≥ 1} is a sequence of WOD random variables.

Recall that when gL(n) = gU (n) = M for some constant M , the random variables
{Xn, n ≥ 1} are called extended negatively upper orthant dependent (ENUOD, in
short) and extended negatively lower orthant dependent (ENLOD, in short), respec-
tively. If they are both ENUOD and ENLOD, then we say that the random vari-
ables {Xn, n ≥ 1} are extended negatively orthant dependent (ENOD, in short). The
concept of general extended negative dependence was proposed by Liu (2009), Liu
(2010) and further promoted by Chen et al. (2010), Chen et al. (2011), Shen (2011),
Shen (2013a), Wang and Cheng (2011), Wang and Wang (2012), and so forth. When
gL(n) = gU (n) = 1 for any n ≥ 1, the random variables {Xn, n ≥ 1} are called
negatively upper orthant dependent (NUOD, in short) and negatively lower orthant
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dependent (NLOD, in short), respectively. If they are both NUOD and NLOD, then
we say that the random variables {Xn, n ≥ 1} are negatively orthant dependent (NOD,
in short). The concept of negative dependence was introduced by Ebrahimi and Ghosh
(1981) and carefully studied by Joag and Proschan (1983). For more details about
NOD random variables, one can refer to Wang et al. (2010, 2011a,b), Wu (2006,
2010), Wu and Jiang (2011), Sung (2011), Qiu et al. (2011), and so forth. Joag and
Proschan (1983) pointed out that NA random variables are NOD. Hu (2000) intro-
duced the concept of negatively superadditive dependence (NSD, in short) and gave
an example illustrating that NSD does not imply NA. Hu (2000) posed an open prob-
lem whether NA implies NSD. Christofides and Vaggelatou (2004) solved this open
problem and indicated that NA implies NSD. In addition, Hu (2000) pointed out that
NSD implies NOD (see Property 2 of Hu 2000). By the statements above, we can see
that the class of WOD random variables contains END random variables, NOD ran-
dom variables, NSD random variables, NA random variables and independent random
variables as special cases. Hence, studying the probability limiting behavior of WOD
random variables and its applications are of great interest.

The concept of WOD random variables was introduced by Wang et al. (2013) and
many applications have been found subsequently. See, for example, Wang et al. (2013)
provided some examples which showed that the class of WOD random variables con-
tains some common negatively dependent random variables, some positively depen-
dent random variables and some others; in addition, they studied the uniform asymp-
totics for the finite-time ruin probability of a new dependent risk model with a constant
interest rate. Wang and Cheng (2011) presented some basic renewal theorems for a
random walk with widely dependent increments and gave some applications. Wang
et al. (2012) studied the asymptotics of the finite-time ruin probability for a generalized
renewal risk model with independent strong subexponential claim sizes and widely
lower orthant dependent inter-occurrence times. Liu (2012) gave the asymptotically
equivalent formula for the finite-time ruin probability under a dependent risk model
with constant interest rate. He et al. (2013) provided the asymptotic lower bounds of
precise large deviations with nonnegative and dependent random variables. Chen et al.
(2013) considered uniform asymptotics for the finite-time ruin probabilities of two
kinds of nonstandard bidimensional renewal risk models with constant interest forces
and diffusion generated by Brownian motions. Shen (2013b) established the Bernstein
type inequality for WOD random variables and gave some applications, and so forth.

The main purpose of the paper is to present some probability inequalities and
moment inequalities for WOD random variables, especially the Marcinkiewicz–
Zygmund type inequality and Rosenthal type inequality. By using these probability
inequalities and moment inequalities, we further study the complete convergence for
arrays of row-wise WOD random variables. In addition, we will apply the complete
convergence to nonparametric regression model and investigate the complete consis-
tency for the nonparametric regression estimator based on WOD errors.

The following concept of stochastic domination will be used in this work.

Definition 1.2 An array {Xni , i ≥ 1, n ≥ 1} of random variables is said to be sto-
chastically dominated by a random variable X if there exists a positive constant C
such that
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P(|Xni | > x) ≤ C P(|X | > x)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

Throughout the paper, let {Xn, n ≥ 1} be a sequence of WOD random variables
with dominating coefficients gU (n), gL(n), n ≥ 1. Let {Xni , 1 ≤ i ≤ kn, n ≥ 1}
be an array of row-wise WOD random variables with dominating coefficients gU (n),
gL(n), n ≥ 1 in each row, where {kn, n ≥ 1} is a sequence of positive integers. Denote
g(n) = max{gU (n), gL(n)}, Sn = ∑n

i=1 Xi and Mt,n = ∑n
i=1 E |Xi |t for some t > 0

and each n ≥ 1. Let C denote a positive constant, which can be different in various
places. �x� denotes the integer part of x .

The structure of the paper is as follows: some important probability inequalities and
moment inequalities are presented in Sect. 2. The complete convergence for arrays
of row-wise WOD random variables are studied in Sect. 3 and the complete consis-
tency for the estimator of nonparametric regression model based on WOD errors is
investigated in Sect. 4.

2 Inequalities for WOD random variables

To prove the main results of the paper, we need the following important lemmas. The
first one is a basic property for WOD random variables, which was obtained by Wang
et al. (2013)

Lemma 2.1 (i) Let {Xn, n ≥ 1} be WLOD (WUOD) with dominating coeffi-
cients gL(n), n ≥ 1 (gU (n), n ≥ 1). If { fn(·), n ≥ 1} are nondecreasing,
then { fn(Xn), n ≥ 1} are still WLOD (WUOD) with dominating coefficients
gL(n), n ≥ 1 (gU (n), n ≥ 1); if { fn(·), n ≥ 1} are nonincreasing, then
{ fn(Xn), n ≥ 1} are WUOD (WLOD) with dominating coefficients gL(n), n ≥ 1
(gU (n), n ≥ 1).

(ii) If {Xn, n ≥ 1} are nonnegative and WUOD with dominating coefficients
gU (n), n ≥ 1, then for each n ≥ 1,

E
n∏

i=1

Xi ≤ gU (n)

n∏

i=1

E Xi .

In particular, if {Xn, n ≥ 1} are WUOD with dominating coefficients gU (n), n ≥ 1,
then for each n ≥ 1 and any s > 0,

E exp

{
s

n∑

i=1

Xi

}
≤ gU (n)

n∏

i=1

E exp{s Xi }.

By Lemma 2.1, we can get the following corollary immediately.

Corollary 2.1 Let {Xn, n ≥ 1} be a sequence of WOD random variables.

(i) If { fn(·), n ≥ 1} are all nondecreasing (or all nonincreasing), then { fn(Xn),

n ≥ 1} are still WOD.
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(ii) For each n ≥ 1 and any s ∈ R,

E exp

{
s

n∑

i=1

Xi

}
≤ g(n)

n∏

i=1

E exp{s Xi }.

In the following, we will present some probability inequalities and moment inequal-
ities for WOD random variables. Inspired by Fakoor and Azarnoosh (2005), Asadian
et al. (2006) and Shen (2011), we can get the following probability inequality for
WOD random variables.

Lemma 2.2 Let 0 < t ≤ 2 and {Xn, n ≥ 1} be a sequence of WOD random variables.
Assume further that E Xn = 0 for each n ≥ 1 when 1 ≤ t ≤ 2. Then for all x > 0
and y > 0,

P(|Sn| ≥ x) ≤
n∑

i=1

P (|Xi | ≥ y) + 2g(n) exp

{
x

y
− x

y
ln

(
1 + xyt−1

Mt,n

)}
. (1)

Proof If 0 < t ≤ 1, then we can get (1) by the similar proof of Theorem 2.3 in Shen
(2011). If 1 ≤ t ≤ 2, then we can get (1) by the similar proof of Lemma 3.2 and
Theorem 2.2 in Asadian et al. (2006). The details are omitted. �	

By the probability inequality (1), we can get the following moment inequality for
WOD random variables.

Lemma 2.3 Let 0 < t ≤ 2 and {Xn, n ≥ 1} be a sequence of WOD random variables.
Assume further that E Xn = 0 for each n ≥ 1 when 1 ≤ t ≤ 2. Let h(x) be a
nonnegative even function and nondecreasing on the half-line [0,∞). Assume that
h(0) = 0 and Eh(Xi ) < ∞ for each i ≥ 1, then for every r > 0,

Eh(Sn) ≤
n∑

i=1

Eh(r Xi ) + 2g(n)er

∞∫

0

(
1 + xt

r t−1 Mt,n

)−r

dh(x). (2)

Proof Taking y = x
r in Lemma 2.2, we have

P (|Sn| ≥ x) ≤
n∑

i=1

P
(
|Xi | ≥ x

r

)
+ 2g(n)er

(
1 + xt

r t−1 Mt,n

)−r

,

which implies that

∞∫

0

P (|Sn| ≥ x) dh(x) ≤
n∑

i=1

∞∫

0

P (r |Xi | ≥ x) dh(x)

+2g(n)er

∞∫

0

(
1 + xt

r t−1 Mt,n

)−r

dh(x).

123



X. Wang et al.

Therefore, the desired result (2) follows by the inequality above and Lemma 2.4 in
Petrov (1995) immediately. This completes the proof of the lemma. �	

By taking h(x) = |x |p, p ≥ t in Lemma 2.3, we can get the following moment
inequality for WOD random variables.

Corollary 2.2 Let 0 < t ≤ 2, p ≥ t and {Xn, n ≥ 1} be a sequence of WOD random
variables with E |Xn|p < ∞ for each n ≥ 1. Assume further that E Xn = 0 for each
n ≥ 1 when 1 ≤ t ≤ 2. Then for any r > p/t ,

E |Sn|p ≤ r p Mp,n + C(p, t)g(n)M p/t
t,n , (3)

where C(p, t) = 2per t−1 B
( p

t , r − p
t

)
r p−p/t depends only on p, t and r such that

r > p/t .

Proof Taking h(x) = |x |p, p ≥ t in Lemma 2.3, we can get that for every r > 0,

E |Sn|p ≤ r p
n∑

i=1

E |Xi |p + 2pg(n)er

∞∫

0

x p−1
(

1 + xt

r t−1 Mt,n

)−r

dx . (4)

It is easy to check that

I
.=

∞∫

0

x p−1
(

1 + xt

r t−1 Mt,n

)−r

dx

=
∞∫

0

x p−1
(

r t−1 Mt,n

r t−1 Mt,n + xt

)r

dx

=
∞∫

0

x p−1
(

1 − xt

r t−1 Mt,n + xt

)r

dx .

If we set y = xt

r t−1 Mt,n+xt in the last equality above, then we have for r > p/t that

I = r p−p/t M p/t
t,n

t

1∫

0

y
p
t −1(1 − y)r− p

t −1dy = r p−p/t M p/t
t,n

t
B

( p

t
, r − p

t

)
,

where

B(α, β) =
1∫

0

xα−1(1 − x)β−1dx, α, β > 0
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is the Beta function. Substitute I to (4), we can obtain the desired result (3) immedi-
ately. The proof is completed. �	

By Corollary 2.2, we can get the Marcinkiewicz–Zygmund type inequality and
Rosenthal type inequality for WOD random variables as follows.

Corollary 2.3 Let p ≥ 1 and {Xn, n ≥ 1} be a sequence of WOD random variables
with E |Xn|p < ∞ for each n ≥ 1. Assume further that E Xn = 0 for each n ≥ 1
when p ≥ 2. Then there exist positive constants C1(p) and C2(p) depending only on
p such that

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤ [C1(p) + C2(p)g(n)]
n∑

i=1

E |Xi |p, for 1 ≤ p ≤ 2 (5)

and

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤ C1(p)

n∑

i=1

E |Xi |p + C2(p)g(n)

(
n∑

i=1

E |Xi |2
)p/2

, for p ≥ 2.

(6)

Proof If 1 ≤ p ≤ 2, then (5) follows by (3) immediately by taking t = p. If p ≥ 2,
then we can get (6) immediately by taking t = 2. The proof is completed. �	

The last one is a fundamental inequality for stochastic domination. For the proof,
one can refer to Wu (2006) or Shen and Wu (2013).

Lemma 2.4 Assume that {Xni , i ≥ 1, n ≥ 1} is an array of random variables sto-
chastically dominated by a random variable X. Then for all α > 0 and b > 0, there
exist positive constants C1 and C2 such that

E |Xni |α I (|Xni | ≤ b) ≤ C1
[
E |X |α I (|X | ≤ b) + bα P (|X | > b)

]

and

E |Xni |α I (|Xni | > b) ≤ C2 E |X |α I (|X | > b) .

Consequently, E |Xni |α ≤ C E |X |α .

3 Complete convergence for arrays of row-wise WOD random variables

In Sect. 2, we get some probability inequalities and moment inequalities for WOD ran-
dom variables, especially the Marcinkiewicz–Zygmund type inequality and Rosenthal
type inequality. These inequalities will be applied to prove the complete convergence
for weighted sums of arrays of row-wise WOD random variables.

Recently, Kruglov et al. (2006) obtained the following complete convergence the-
orem for arrays of row-wise independent random variables {Xni , 1 ≤ i ≤ kn, n ≥ 1},
where {kn, n ≥ 1} is a sequence of positive integers.
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Theorem 3.1 Let {Xni , 1 ≤ i ≤ kn, n ≥ 1} be an array of row-wise independent
random variables with E Xni = 0 for all 1 ≤ i ≤ kn, n ≥ 1 and {bn, n ≥ 1} be a
sequence of nonnegative constants. Suppose that the following conditions hold:

(i)
∑∞

n=1 bn
∑kn

i=1 P (|Xni | > ε) < ∞ for all ε > 0;
(ii) there exists J ≥ 1 such that

∞∑

n=1

bn

( kn∑

i=1

E X2
ni

)J

< ∞.

Then for all ε > 0,

∞∑

n=1

bn P

(
max

1≤m≤kn

∣∣∣∣∣

m∑

i=1

Xni

∣∣∣∣∣ > ε

)
< ∞.

Our goal is to extend the result of Theorem 3.1 for arrays of row-wise independent
random variables to the case of arrays of row-wise WOD random variables and give
its application. One of our main results is as follows.

Theorem 3.2 Let {Xni , 1 ≤ i ≤ kn, n ≥ 1} be an array of row-wise WOD random
variables with E Xni = 0 for 1 ≤ i ≤ kn, n ≥ 1 and {bn, n ≥ 1} be a sequence of
nonnegative constants. Suppose that the condition (i) of Theorem 3.1 is satisfied and
there exist constants J ≥ 1 and 0 < p ≤ 2 such that

∞∑

n=1

bng(kn)

( kn∑

i=1

E |Xni |p

)J

< ∞. (7)

Then
∞∑

n=1

bn P

(∣∣∣∣∣

kn∑

i=1

Xni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0. (8)

Proof By Lemma 2.2, we have for x = ε, y = ε/J and t = p that

P

(∣∣∣∣∣

kn∑

i=1

Xni

∣∣∣∣∣ > ε

)

≤
kn∑

i=1

P (|Xni | > ε/J ) + 2g(kn)e
J

(
1 + ε p/J p−1

∑kn
i=1 E |Xni |p

)−J

≤
kn∑

i=1

P (|Xni | > ε/J ) + 2g(kn)e
J J J (p−1)ε−J p

( kn∑

i=1

E |Xni |p

)J

,

which implies (8) according to the conditions (i) of Theorem 3.1, (7) and the inequality
above immediately. �	
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Remark 3.1 Taking g(n) = gU (n) = gL(n) = M , where M is a positive constant, the
notion of WOD random variables reduces to END random variables, which contains
NOD, NSD, NA and independent random variables as special cases. Hence, the result
of Theorem 3.2 still holds for END random variables and the condition (7) can be
weakened by

∞∑

n=1

bn

( kn∑

i=1

E |Xni |p

)J

< ∞,

where J ≥ 1 and 0 < p ≤ 2 are constants. Therefore, our result generalizes the corre-
sponding ones for independent random variables, NA random variables, NOD random
variables and END random variables. For similar results on complete convergence of
NA random variables and NOD random variables, one can refer to Liang (2000), Chen
et al. (2008), Qiu et al. (2011), and so forth.

The result of Theorem 3.2 can be applied to establish the following complete
convergence result for arrays of row-wise WOD random variables by using the
Marcinkiewicz–Zygmund type inequality of WOD random variables. The main idea
is inspired by Baek et al. (2008), Wu (2012) and Sung (2012).

Theorem 3.3 Suppose that β ≥ −1 and p ≥ 1. Let {Xni , 1 ≤ i ≤ kn, n ≥ 1} be
an array of row-wise WOD random variables with mean zero, which is stochastically
dominated by a random variable X. Let {ani , 1 ≤ i ≤ kn, n ≥ 1} be an array of
constants satisfying

max
1≤i≤kn

|ani | = O
(
n−γ

)
for some γ > 0 (9)

and
kn∑

i=1

|ani |q = O
(

n−1−β+γ (p−q)
)

for some q < p. (10)

Further assume that

kn∑

i=1

|ani |t = O
(
n−α

)
for some 0 < t ≤ 2 and some α > 0 (11)

if p ≥ 2. There exists some 0 ≤ λ < 1 such that g(kn) = O(nγ λ), and 0 ≤ λ < 2 − p
if 1 < p < 2. If E |X |p+λ < ∞, then

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani Xni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0. (12)
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Proof Note that

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani Xni

∣∣∣∣∣ > ε

)
≤

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

a+
ni Xni

∣∣∣∣∣ >
ε

2

)

+
∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

a−
ni Xni

∣∣∣∣∣ >
ε

2

)
.

So, without loss of generality, we assume that ani ≥ 0 for all 1 ≤ i ≤ kn and n ≥ 1.
For 1 ≤ i ≤ kn and n ≥ 1, define

X
′
ni = −nγ I

(
Xni < −nγ

) + Xni I
(|Xni | ≤ nγ

) + nγ I
(
Xni > nγ

)
,

X
′′
ni = Xni − X

′
ni = (

Xni − nγ
)

I
(
Xni > nγ

) + (
Xni + nγ

)
I
(
Xni < −nγ

)
.

By Lemma 2.1 (i), we can see that {ani X
′
ni , 1 ≤ i ≤ kn, n ≥ 1} and {ani X

′′
ni , 1 ≤ i ≤

kn, n ≥ 1} are arrays of row-wise WOD random variables. Since E Xni = 0, in order
to prove (12), it suffices to show that for all ε > 0,

H
.=

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani

(
X

′
ni − E X

′
ni

)∣∣∣∣∣ > ε

)
< ∞ (13)

and

G
.=

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani

(
X

′′
ni − E X

′′
ni

)∣∣∣∣∣ > ε

)
< ∞. (14)

We will consider the following three cases.

Case 1: p = 1.

For H , it follows by Markov’s inequality and Corollary 2.3 that

H ≤ C
∞∑

n=1

nβ E

∣∣∣∣∣

kn∑

i=1

ani

(
X

′
ni − E X

′
ni

)∣∣∣∣∣

2

≤ C
∞∑

n=1

nβ

kn∑

i=1

a2
ni E

∣∣∣X
′
ni

∣∣∣
2 + C

∞∑

n=1

nβg(kn)

kn∑

i=1

a2
ni E

∣∣∣X
′
ni

∣∣∣
2

.= H1 + H2. (15)

By Lemma 2.4 and conditions (9)–(10), we have

H1
.= C

∞∑

n=1

nβ

kn∑

i=1

a2
ni E

∣∣∣X
′
ni

∣∣∣
2
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≤ C
∞∑

n=1

nβ

kn∑

i=1

a2
ni

[
E X2 I

(|X | ≤ nγ
) + n2γ P

(|X | > nγ
)]

≤ C
∞∑

n=1

nβ max
1≤i≤kn

|ani |2−q
kn∑

i=1

|ani |q
[

E X2 I
(|X | ≤ nγ

) + n2γ P
(|X | > nγ

)]

≤ C
∞∑

n=1

nβn−γ (2−q)n−1−β+γ (1−q)
[

E X2 I
(|X | ≤ nγ

) + n2γ P
(|X | > nγ

)]

= C
∞∑

n=1

n−1−γ E X2 I
(|X | ≤ nγ

) + C
∞∑

n=1

n−1+γ P
(|X | > nγ

)

= C
∞∑

n=1

n−1−γ
n∑

i=1

E X2 I
(
(i − 1)γ < |X | ≤ iγ

)

+C
∞∑

n=1

n−1+γ
∞∑

i=n

P
(
iγ < |X | ≤ (i + 1)γ

)

≤ C
∞∑

i=1

E X2 I
(
(i − 1)γ < |X | ≤ iγ

)
i−γ + C

∞∑

i=1

P
(
iγ < |X | ≤ (i + 1)γ

)
iγ

≤ C E |X | < ∞. (16)

Similar to the proof of (16), and note that g(kn) = O(nγ λ) for some 0 ≤ λ < 1,
we can see that

H2
.= C

∞∑

n=1

nβg(kn)

kn∑

i=1

a2
ni E

∣∣∣X
′
ni

∣∣∣
2

≤ C
∞∑

n=1

n−1−γ+γ λ
n∑

i=1

E X2 I
(
(i − 1)γ < |X | ≤ iγ

)

+C
∞∑

n=1

n−1+γ+γ λ
∞∑

i=n

P
(
iγ < |X | ≤ (i + 1)γ

)

≤ C
∞∑

i=1

E X2 I
(
(i − 1)γ < |X | ≤ iγ

)
i−γ+γ λ

+C
∞∑

i=1

P
(
iγ < |X | ≤ (i + 1)γ

)
iγ+γ λ

≤ C E |X |1+λ < ∞. (17)

Hence H < ∞ follows from (15)–(17) immediately. That is to say, (13) has been
proved.
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In the following, we will prove (14). Firstly, we prove that

kn∑

i=1

|ani | E
∣∣∣X

′′
ni

∣∣∣ → 0 as n → ∞.

Noting that

∣∣∣X
′′
ni

∣∣∣ = (
Xni − nγ

)
I
(
Xni > nγ

) − (
Xni + nγ

)
I
(
Xni < −nγ

)

≤ |Xni | I
(|Xni | > nγ

) ≤ |Xni | ,

it follows by Lemma 2.4 and conditions (9)–(10) again that

kn∑

i=1

|ani | E
∣∣∣X

′′
ni

∣∣∣ ≤
kn∑

i=1

|ani | E |Xni | I
(|Xni | > nγ

)

≤ C max
1≤i≤kn

|ani |1−q
kn∑

i=1

|ani |q E |X | I
(|X | > nγ

)

≤ Cn−1−β E |X | I
(|X | > nγ

) → 0 as n → ∞.

Hence, to prove (14), we only need to show that

G∗ .=
∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani X
′′
ni

∣∣∣∣∣ > ε

)
< ∞.

Putting 0 < δ < 1 such that 1 − δ = p − δ > q, we have by Markov’s inequality,
Lemma 2.4 and conditions (9)–(10) that

G∗ ≤ C
∞∑

n=1

nβ E

∣∣∣∣∣

kn∑

i=1

ani X
′′
ni

∣∣∣∣∣

1−δ

≤ C
∞∑

n=1

nβ

kn∑

i=1

|ani |1−δ E |Xni |1−δ I
(|Xni | > nγ

)

≤ C
∞∑

n=1

nβ max
1≤i≤kn

|ani |1−δ−q
kn∑

i=1

|ani |q E |X |1−δ I
(|X | > nγ

)

≤ C
∞∑

n=1

nβn−γ (1−δ−q)n−1−β+γ (1−q)E |X |1−δ I
(|X | > nγ

)

= C
∞∑

n=1

n−1+γ δ
∞∑

i=n

E |X |1−δ I
(
iγ < |X | ≤ (i + 1)γ

)
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≤ C
∞∑

i=1

E |X |1−δ I
(
iγ < |X | ≤ (i + 1)γ

)
iγ δ

≤ C E |X | < ∞.

It completes the proof of (14).

Case 2: 1 < p < 2.

In this case, note that E |X |p < ∞ and g(kn) = O(nγ λ) for some 0 ≤ λ < 2 − p.
Similar to the proof of Case 1, we have

H ≤ C E |X |p + C E |X |p+λ < ∞.

In the following, we will prove G < ∞. Taking δ > 0 such that p−δ > max{1, q},
we have by Markov’s inequality, Corollary 2.3 and condition (10) that

G ≤ C
∞∑

n=1

nβ E

∣∣∣∣∣

kn∑

i=1

ani

(
X

′′
ni − E X

′′
ni

)∣∣∣∣∣

p−δ

≤ C
∞∑

n=1

nβg(kn)

kn∑

i=1

|ani |p−δ E
∣∣∣X

′′
ni

∣∣∣
p−δ

(by Corollary 2.3)

≤ C
∞∑

n=1

nβ+γ λ max
1≤i≤kn

|ani |p−δ−q
kn∑

i=1

|ani |q E |X |p−δ I
(|X | > nγ

)

≤ C
∞∑

n=1

n−1+γ δ+γ λ
∞∑

i=n

E |X |p−δ I
(
iγ < |X | ≤ (i + 1)γ

)

≤ C
∞∑

i=1

E |X |p−δ I
(
iγ < |X | ≤ (i + 1)γ

)
iγ δ+γ λ

≤ C E |X |p+λ < ∞. (18)

Case 3: p ≥ 2.

In this case, we will show H < ∞ and G < ∞ by Theorem 3.2.
In order to prove H < ∞, taking δ > 0, we have by Markov’s inequality, Cr

inequality, Lemma 2.4, conditions (9)–(10) that for all ε > 0,

∞∑

n=1

nβ

kn∑

i=1

P
(∣∣∣ani

(
X

′
ni − E X

′
ni

)∣∣∣ > ε
)

≤ C
∞∑

n=1

nβ

kn∑

i=1

E
∣∣∣ani

(
X

′
ni − E X

′
ni

)∣∣∣
p+δ ≤ C

∞∑

n=1

nβ

kn∑

i=1

|ani |p+δ E
∣∣∣X

′
ni

∣∣∣
p+δ

≤ C
∞∑

n=1

nβ max
1≤i≤kn

|ani |p+δ−q
kn∑

i=1

|ani |q
[

E |X |p+δ I
(|X | ≤ nγ

) + nγ (p+δ) P
(|X | > nγ

)]
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≤ C
∞∑

n=1

n−1−γ δ
n∑

i=1

E |X |p+δ I
(
(i − 1)γ < |X | ≤ iγ

)

+C
∞∑

n=1

n−1+γ p
∞∑

i=n

P
(
iγ < |X | ≤ (i + 1)γ

)

≤ C
∞∑

i=1

E |X |p+δ I
(
(i − 1)γ < |X | ≤ iγ

)
i−γ δ + C

∞∑

i=1

P
(
iγ < |X | > (i + 1)γ

)
iγ p

≤ C E |X |p < ∞. (19)

Taking J ≥ 1 such that α J − β − γ λ > 1 and noting that |X ′
ni | ≤ |Xni |, we have by

(11), Lemma 2.4 and E |X |t < ∞ (since 0 < t ≤ 2 ≤ p) that

∞∑

n=1

nβg(kn)

( kn∑

i=1

E
∣∣∣ani

(
X

′
ni − E X

′
ni

)∣∣∣
t
)J

≤ C
∞∑

n=1

nβ+γ λ

[ kn∑

i=1

|ani |t
(

E
∣∣∣X

′
ni

∣∣∣
t +

(
E

∣∣∣X
′
ni

∣∣∣
)t

)]J

≤ C
∞∑

n=1

nβ+γ λ

[ kn∑

i=1

|ani |t
(
E |X |t + (E |X |)t)

]J

≤ C
∞∑

n=1

nβ+γ λ−α J < ∞. (20)

Therefore, H < ∞ follows by Theorem 3.2, (19) and (20) immediately.
In the following, we will prove G < ∞. Taking δ > 0 such that p−δ > max{1, q},

it follows by the proof of (19) and (18) that

∞∑

n=1

nβ

kn∑

i=1

P
(∣∣∣ani

(
X

′′
ni − E X

′′
ni

)∣∣∣ > ε
)

≤ C
∞∑

n=1

nβ

kn∑

i=1

E
∣∣∣ani

(
X

′′
ni − E X

′′
ni

)∣∣∣
p−δ

≤ C
∞∑

n=1

nβ

kn∑

i=1

|ani |p−δ E
∣∣∣X

′′
ni

∣∣∣
p−δ

≤ C E |X |p < ∞. (21)

Noting that |X ′′
ni | ≤ |Xni |, it follows by the proof of (20) that

∞∑

n=1

nβg(kn)

( kn∑

i=1

E
∣∣∣ani

(
X

′′
ni − E X

′′
ni

)∣∣∣
t
)J

≤ C
∞∑

n=1

nβ+γ λ

[ kn∑

i=1

|ani |t
(
E |X |t + (E |X |)t)

]J

≤ C
∞∑

n=1

nβ+γ λ−α J < ∞, (22)
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provided that J ≥ 1 such that α J −β −γ λ > 1. Hence, G < ∞ follows by Theorem
3.2, (21) and (22) immediately. This completes the proof of the theorem. �	

Remark 3.2 Similar to the proof of Theorem 2 (i) in Sung (2007), we can see that
the result of Theorem 3.3 holds for arbitrary arrays of row-wise random variables
{Xni , 1 ≤ i ≤ kn, n ≥ 1} when 0 < p < 1 (in this case, the condition mean zero is
not needed and E |X |p+γ < ∞ can be weakened to be E |X |p < ∞).

Combining Theorem 3.3 and Remark 3.2, we can get the following complete con-
vergence for arrays of row-wise WOD random variables.

Corollary 3.1 Suppose that β ≥ −1. Let {Xni , 1 ≤ i ≤ kn, n ≥ 1} be an array
of row-wise WOD random variables which is stochastically dominated by a random
variable X and {ani , 1 ≤ i ≤ kn, n ≥ 1} be an array of constants such that (9) holds
and

kn∑

i=1

|ani |θ = O(nμ) for some 0 < θ < 2 and some μ such that θ + μ

γ
< 2.

(23)
Assume further that there exists some 0 ≤ λ < 1 such that g(kn) = O(nγ λ), and

0 ≤ λ < 2−
(
θ + 1+μ+β

γ

)
if 1 < θ + 1+μ+β

γ
< 2, 0 ≤ λ < − 1+μ+β

γ
if 1+μ+β < 0

and 1 < θ < 2.

(i) If 1 + μ + β < 0 and E |X |θ < ∞, then (12) holds.
(ii) If 1 + μ + β > 0 and

E |X |s < ∞, wheres = θ + 1 + μ + β

γ
+ λ,

and assume further that E Xni = 0 when θ + 1+μ+β
γ

≥ 1, then (12) hold.

Proof (i) If 1 + μ + β < 0, we consider the following two cases.

Case 1: 0 < θ ≤ 1.

The result can be easily proved by

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani Xni

∣∣∣∣∣ > ε

)
≤ C

∞∑

n=1

nβ E

∣∣∣∣∣

kn∑

i=1

ani Xni

∣∣∣∣∣

θ

≤ C
∞∑

n=1

nβ

kn∑

i=1

E |ani Xni |θ

≤ C
∞∑

n=1

nμ+β E |X |θ < ∞.
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Case 2: 1 < θ < 2.

Noting that 0 ≤ λ < − 1+μ+β
γ

if 1 + μ + β < 0, we have by Markov’s inequality,

Corollary 2.3, (23) and E |X |θ < ∞ that

∞∑

n=1

nβ P

(∣∣∣∣∣

kn∑

i=1

ani Xni

∣∣∣∣∣ > ε

)
≤ C

∞∑

n=1

nβ E

∣∣∣∣∣

kn∑

i=1

ani Xni

∣∣∣∣∣

θ

≤ C
∞∑

n=1

nβg(kn)

kn∑

i=1

E |ani Xni |θ

≤ C
∞∑

n=1

nμ+β+γ λE |X |θ < ∞.

(ii) If 1 + μ + β > 0, we will apply Theorem 3.3 with p = θ + 1+μ+β
γ

and q = θ .
By (9) and (23), we can see that (10) holds and

kn∑

i=1

a2
ni ≤ max

1≤i≤kn
|ani |2−θ

kn∑

i=1

|ani |θ = O
(

n−(γ (2−θ)−μ)
)

.= O(n−α),

where α = γ (2 − θ) − μ > 0. That is to say (11) holds for t = 2. Thus, (12) follows
by Theorem 3.3 immediately. The proof is complete. �	

By using Corollary 3.1, we can get the following result for WOD random variables.

Corollary 3.2 Let p ≥ 1, 0 < α < 2 and pα > 1. Let {Xni , 1 ≤ i ≤ n, n ≥ 1} be
an array of row-wise WOD random variables with mean zero, which is stochastically
dominated by a random variable X. Assume further that there exists some 0 ≤ λ < 1
such that g(n) = O(nλ/α), and 0 ≤ λ < 2 − pα if 1 < pα < 2. Then E |X |pα+λ

implies that

∞∑

n=1

n p−2 P

(∣∣∣∣∣

n∑

i=1

Xni

∣∣∣∣∣ > εn1/α

)
< ∞ for all ε > 0. (24)

Proof Let ani = 0 if i > n and ani = n−1/α if 1 ≤ i ≤ n. Hence, conditions (9) and
(23) hold for θ = 1, γ = 1/α and μ = 1 − 1/α such that θ + μ

γ
= α < 2, where

kn = n, β
.= p − 2 ≥ −1. It can be found that

1 + μ + β = p − 1/α > 0, s
.= θ + 1 + μ + β

γ
+ λ = pα + λ.

Hence, the desired result (24) follows by Corollary 3.1 (i i) immediately. The proof is
complete. �	
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4 Complete consistency for the estimator of nonparametric regression model
based on WOD errors

In this section, we will give some applications of complete convergence obtained
in Sect. 3 in nonparametric regression models based on WOD errors. The complete
consistency for the estimator of nonparametric regression model will be investigated
in this section.

Consider the following nonparametric regression model:

Yni = f (xni ) + εni , i = 1, 2, . . . , n, (25)

where xni are known fixed design points from A, f (·) is an unknown regression
function defined on A and εni are random errors. Here and below, A ⊂ Rd is a given
compact set for some positive integer d ≥ 1. As an estimator of f (·), we will consider
the following weighted regression estimator:

fn(x) =
n∑

i=1

Wni (x)Yni , x ∈ A ⊂ Rd , (26)

where Wni (x) = Wni (x; xn1, xn2, . . . , xnn), i = 1, 2, . . . , n are the weight functions.
This class of estimator (26) was first introduced by Stone (1977) and next adapted

by Georgiev (1983) to the fixed design case. Up to now, the estimator (26) has been
studied by many authors, especially the strong consistency, mean consistency, com-
plete consistency and the asymptotic normality for independent errors or dependent
errors. For more details about the consistency or asymptotic normality, one can refer to
Roussas (1989), Fan (1990), Roussas et al. (1992), Tran et al. (1996), Hu et al. (2002),
Liang and Jing (2005), Yang et al. (2012), and so forth. The main purpose of this
section is to further investigate the complete consistency of the estimator fn(x) under
WOD errors by using the complete convergence obtained in Sect. 3. The proofs for
the main results here are different from other literatures that studied the consistency
of the estimator fn(x) of nonparametric regression model.

4.1 Theoretical results

In this subsection, let c( f ) denote all continuity points of the function f on A. The
symbol ‖x‖ denotes the Euclidean norm. For any point x ∈ A, we will consider the
following assumptions on weight functions Wni (x):

(H1)
∑n

i=1 Wni (x) → 1 as n → ∞;
(H2)

∑n
i=1 |Wni (x)| ≤ C < ∞ for all n;

(H3)
∑n

i=1 |Wni (x)| · | f (xni ) − f (x)| I (‖xni − x‖ > a) → 0 as n → ∞ for all
a > 0.

Based on the assumptions above, we will further study the complete consistency
of the nonparametric regression estimator fn(x) by using Corollary 3.1 obtained in
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Sect. 3. Our main results on complete consistency of the nonparametric regression
estimator fn(x) are as follows.

Theorem 4.1 Let {εni , 1 ≤ i ≤ n, n ≥ 1} be an array of row-wise WOD random
variables with mean zero, which is stochastically dominated by a random variable X.
Suppose that the conditions (H1)–(H3) hold true, and

max
1≤i≤n

|Wni (x)| = O
(
n−γ

)
for some 0 < γ ≤ 1.

Assume further that there exists some 0 ≤ λ < 1 such that g(n) = O(nγ λ). If

E |X | 2
γ

+λ
< ∞, then for any x ∈ c( f ),

fn(x) → f (x) completely, as n → ∞. (27)

Proof For x ∈ c( f ) and a > 0, it follows by (25) and (26) that

|E fn(x) − f (x)| ≤
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)| I (‖xni − x‖ ≤ a)

+
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)| I (‖xni − x‖ > a)

+ | f (x)| ·
∣∣∣∣∣

n∑

i=1

Wni (x) − 1

∣∣∣∣∣ . (28)

Since x ∈ c( f ), it follows that for any ε > 0, there exists a δ > 0 such that | f (x∗) −
f (x)| < ε when ‖x∗ − x‖ < δ. Taking a ∈ (0, δ) in (28), we have

|E fn(x) − f (x)| ≤ ε

n∑

i=1

|Wni (x)| + | f (x)| ·
∣∣∣∣∣

n∑

i=1

Wni (x) − 1

∣∣∣∣∣

+
n∑

i=1

|Wni (x)| · | f (xni ) − f (x)| I (‖xni − x‖ > a). (29)

It follows by (29) and conditions (H1)–(H3) that for any x ∈ c( f ),

lim
n→∞ E fn(x) = f (x).

Hence, to prove (27), it suffices to show that

fn(x) − E fn(x) =
n∑

i=1

Wni (x)εni → 0 completely, as n → ∞,
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that is to say,

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)εni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0. (30)

Note that for any point x ∈ c( f ),

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

Wni (x)εni

∣∣∣∣∣ > ε

)
≤

∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

W +
ni (x)εni

∣∣∣∣∣ >
ε

2

)

+
∞∑

n=1

P

(∣∣∣∣∣

n∑

i=1

W −
ni (x)εni

∣∣∣∣∣ >
ε

2

)
.

So, without loss of generality, we assume that Wni (x) > 0. Applying Corollary 3.1
with μ = 0, θ = 1 and β = 1 − γ ≥ 0, we have 1 + μ + β = 2 − γ > 0 and
s = θ + 1+μ+β

γ
+ λ = 2

γ
+ λ. Denote ani = Wni (x) in Corollary 3.1. It can be found

that the conditions (9) and (23) in Corollary 3.1 are satisfied. Hence, it follows by
Corollary 3.1 (i i) that

∞∑

n=1

nβ P

(∣∣∣∣∣

n∑

i=1

Wni (x)εni

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0,

which implies (30). The proof is complete. �	
Theorem 4.2 Let {εni , 1 ≤ i ≤ n, n ≥ 1} be an array of row-wise WOD random
variables with mean zero, which is stochastically dominated by a random variable X.
Suppose that the conditions (H1)–(H3) hold true, and

max
1≤i≤n

|Wni (x)| = O
(
n−γ

)
for some γ > 0.

Assume further that there exists some 0 ≤ λ < 1 such that g(n) = O(nγ λ), and
0 ≤ λ < 1 − 1

γ
if γ > 1. If E |X |1+1/γ+λ < ∞, then (27) holds.

Proof The proof is similar to that of Theorem 4.1. Under the conditions of Theorem
4.2, we only need to prove (30). We will apply Corollary 3.1 with μ = 0, θ = 1 and
β = 0. Hence, 1 + μ + β = 1 > 0 and s = θ + 1+μ+β

γ
+ λ = 1 + 1

γ
+ λ. Denote

ani = Wni (x) in Corollary 3.1. It can be found that the conditions (9) and (23) in
Corollary 3.1 are satisfied. Hence, the desired result (30) follows by Corollary 3.1 (i i)
immediately. The proof is complete. �	
Theorem 4.3 Let p > 1 and {εni , 1 ≤ i ≤ n, n ≥ 1} be an array of row-wise WOD
random variables with mean zero, which is stochastically dominated by a random
variable X. Suppose that the conditions (H1)–(H3) hold true, and

max
1≤i≤n

|Wni (x)| = O
(
n−γ

)
for some γ ≥ 1

p − 1
.
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Assume further that there exists some 0 ≤ λ < 1 such that g(n) = O(nγ λ), and
0 ≤ λ < 2 − p if 1 < p < 2. If E |X |p+λ < ∞, then (27) holds.

Proof The proof is similar to that of Theorem 4.1. Under the conditions of Theorem
4.3, we still only need to prove (30). We will apply Corollary 3.1 with μ = 0, θ = 1 and
β = γ (p −1)−1 ≥ 0. Hence, 1+μ+β = γ (p −1) > 0 and s = θ + 1+μ+β

γ
+λ =

p + λ. Denote ani = Wni (x) in Corollary 3.1. It can be found that the conditions
(9) and (23) in Corollary 3.1 are satisfied. Hence, the desired result (30) follows by
Corollary 3.1 (i i) immediately. The proof is complete. �	
Remark 4.1 If g(n) = gU (n) = gL(n) = M , where M is a positive constant, then
g(n) = O(nγ λ) holds for λ = 0. By using Theorems 4.1–4.3, we can get the similar
results on complete consistency of the nonparametric regression estimator fn(x) under
END errors, which contains NOD, NSD, NA and independent random variables as
special cases.

Remark 4.2 In Yang et al. (2012), they studied the mean convergence and almost
sure convergence of the nonparametric regression estimator fn(x) under NOD errors.
In this paper, we further investigate the complete convergence of the nonparametric
regression estimator fn(x) under WOD errors, which contains NOD as a special case.
Hence, our main results on complete consistency of the nonparametric regression
estimator fn(x) also hold under NOD errors.

Remark 4.3 Theorem 4.2 under NA errors is considered by Liang and Jing (2005),
so the result of Theorem 4.2 generalizes the corresponding one of Liang and Jing
(2005) under NA errors to the case of WOD errors. We point out that the method used
to prove Theorem 4.2 is different from that of Liang and Jing (2005). In addition,
Theorems 4.1 and 4.3, which provide some different conditions from Theorem 4.2,
are not considered by Liang and Jing (2005). Since WOD contains NA as a special
case, Theorems 4.1 and 4.3 also hold under NA errors.

Remark 4.4 Roussas (1989) discussed strong consistency and quadratic mean consis-
tency of fn(x), and Roussas et al. (1992) established asymptotic normality of fn(x)

assuming that the errors form a strictly stationary stochastic process and satisfying
the strong mixing condition, while this paper is devoted to establish the complete
consistency of the nonparametric regression estimator fn(x) under WOD errors.

4.2 The choice of the fixed design points and the weight functions

In this subsection we show that the designed assumptions (H1)–(H3) are satisfied for
nearest neighbor weights. For simplicity, we assume that A = [0, 1], taking xni = i

n ,
i = 1, 2, . . . , n. For any x ∈ A, we rewrite |xn1 − x | , |xn2 − x | , . . . , |xnn − x | as
follows:

∣∣∣x (n)
R1(x) − x

∣∣∣ ≤
∣∣∣x (n)

R2(x) − x
∣∣∣ ≤ · · · ≤

∣∣∣x (n)
Rn(x) − x

∣∣∣ ,

if |xni − x | = ∣∣xnj − x
∣∣, then |xni − x | is permuted before

∣∣xnj − x
∣∣ when xni < xnj .
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Let 1 ≤ kn ≤ n, the nearest neighbor weight function estimator of f (x) in model
(25) is defined as follows:

f̃n(x) =
n∑

i=1

W̃ni (x)Yni ,

where

W̃ni (x) =
{

1/kn, if |xni − x | ≤
∣∣∣x (n)

Rkn (x) − x
∣∣∣ ,

0, otherwise.

Assume further that f is continuous on the compact set A. It is easily checked that for
any x ∈ [0, 1], if follows by the definitions of Ri (x) and W̃ni (x) that

n∑

i=1

W̃ni (x) =
n∑

i=1

W̃n Ri (x)(x) =
kn∑

i=1

1

kn
= 1,

max
1≤i≤n

W̃ni (x) = 1

kn
, W̃ni (x) ≥ 0,

and

n∑

i=1

∣∣∣W̃ni (x)

∣∣∣ · | f (xni ) − f (x)| I (|xni − x | > a)

≤ C
n∑

i=1

(xni − x)2
∣∣∣W̃ni (x)

∣∣∣
a2

= C
kn∑

i=1

(
x (n)

Ri (x) − x
)2

kna2 ≤ C
kn∑

i=1

( i
n

)2

kna2

≤ C

(
kn

na

)2

, ∀a > 0.

If we take kn = �ns� for some 0 < s < 1, then the conditions (H1)–(H3) are satisfied.
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