Dilutions Help

Let's say we had a test tube with a sample (Green) that was at a 3.0 M concentration. And we had a test tube with some water.

Sample

Water

If we took 1 mL of Sample and place it in a new tube, and then added 4 mL of water and then mixed.

We have just made a dilution. The total volume is 5 mL (or 5 total volumes). To calculate the dilution factor (df) we divide the total volumes by the volumes of sample.

(def.) dilution factor

$$
\text { d.f is then: } \frac{\text { total volumes }}{\text { sample volume }}=\frac{5}{1}=5
$$

Now you may hear different terms to express this dilution as:
"The dilution factor is 5 "
"It was a 5 fold dilution"
"It was diluted $1 / 5$ "

These all mean the same thing. There is 1 volume part of sample and 4 volume parts of whatever liquid is being used to dilute the sample for a total of 5 volume parts.

CALCULATING THE CONCENTRATION
To calculate the concentration of our diluted sample we multiply by the inverse of our dilution factor.

CALCULATING THE UNDILUTED CONCENTRATION

Often we wish to work backwards. Let's say we had a sample that had been diluted $1 / 5$ that has a concentration of 0.60 M . What was its undiluted concentration?
diluted

If it was diluted $\frac{1}{5}$.
It he a dilution factor of 5
Therefore we take our concentration and multiply by our dilution factor.

Multiple Dilutions

Let's say we took our sample (3.0 M) and diluted it by taking 1 part of the sample and adding 4 parts water. That's a $1 / 5$ dilution.

We know that the diluted concentration would be 0.60 M from above. What is the concentration if we take 1 part of this 0.60 M solution and add 3 parts water? $(1+3=4$ total parts) In other words, a $1 / 4$ dilution.

But we can also calculate this another way.

$$
3.0 M *\left(\frac{1}{5} * \frac{1}{4}\right)=
$$

$$
3.0 \mathrm{M} * \frac{1}{20}=0.15 \mathrm{M}
$$

By doing two dilutions, our final dilution ends up being a $1 / 20$ dilution. In other words our sample has been diluted 20 fold. $($ d.f. $=20)$

This means that in this diluted sample, there is 1 volume part sample to 19 volume parts of water for a total of 20 parts.

Let's work backwards now. If our diluted sample was 0.15 M and it had been diluted 20 fold what was its undiluted concentration?

$$
0.15 \mathrm{M} * \frac{20}{1}=3.0 \mathrm{M}
$$

Remember: We don't always dilute samples with water ... we may instead use a buffer solution to dilute or perhaps some other solvent.

Though the terms used are different, ... this concept isn't new. Remember $C_{1} V_{1}=C_{2} V_{2}$?

