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1 Meeting Program (Education Bldg. # 193)

Saturday, May 27, 2023

Registration08:30-09:15

Welcome & Information09:15-09:30

Chair: Steve Kirkland

Jane Breen (ILAS Speaker), Kemeny’s constant for Markov chains and random walks09:30-10:20
on graphs

Break (ED 192)10:30-11:00

Chair: Shaun Fallat

Kerry Ojakian, Markov processes and graph labelings11:00-11:25

Parthasarathi Nag, Topological insights into class of controllable Linear Time Invariant11:30-11:55
System [(A,B)]

Lunch (on your own)12:00-13:30

Chair: Pauline van den Driessche

Rakesh Jana, The Bipartite Distance Matrix of a Nonsingular Tree13:30-13:55

Allen Herman, Feasibility Conditions for parameters of quotient-polynomial graphs14:00-14:25

Leslie Hogben (invited), Uniform and apportionable matrices14:00-14:25

Break (ED 192)15:30-16:00

Chair: Shaun Fallat

Mohsen Zahraei, On the generalized numerical ranges of the powers of a matrix16:00-16:25

Avleen Kaur, Unraveling the Friedrichs Angle: A Key to Lower Bounds on the Minimum16:30-16:55
Singular Value

Seyed Ahmad Mojallal, Applications of the vertex-clique incidence matrix of a graph17:00-17:25

Informal Banquet–Bushwakker’s 2206 Dewdney Ave.18:30
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Sunday, May 28, 2023

Chair: Michael Tsatsomeros

Colin Garnett, Coefficient Support Arbitrary patterns09:30-09:55

Hermie Monterde, Twins are mostly sedentary10:00-10:25

Group photo and break (ED 192)10:30-11:00

Chair: Hadi Kharaghani

Prateek K. Vishwakarma, Inequalities for totally nonnegative matrices: Gantmacher–11:00-11:25
Krein, Karlin, and Laplace

Eugene Agyei-Kodie, Recursion formulas for determinants of k-Tridiagonal Toeplitz Ma-11:30-11:55
trices

Peter Zizler, Singular Value Decomposition at FIFA 202212:00-12:25

Closing remarks (Fallat)12:30-12:40

Posters (ED 192)

Vlad Zaitsev, An Introduction to Orthogonal Arrays and Equiangular Lines

Caleb Van’t Land, An Attempt to Find a Maximal Set of Equiangular Lines
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2 Abstracts for talks (alphabetical by speaker)

Recursion formulas for determinants of k-Tridiagonal Toeplitz Matrices
Eugene Agyei-Kodie

As defined in [2], we consider an n× n Toeplitz matrix , T, to be of the form:

Tij =


a ; i = j

b ; |i− j| > k

c ; |i− j| < k

0 otherwise

There has been a renewed interest in Toeplitz matrices due to their applications in engi-
neering and computational sciences along with their connections to other matrices as well
as recent research identifying the role of Toeplitz matrices in Matrix Theory. For instance,
one study has shown that any matrix is the product of Toeplitz matrices and another study
shows that any square matrix is similar to a Toeplitz matrix. Toeplitz matrices with its
spectral properties are of great essence to physics, statistics and signal processing. More-
over, Toeplitz matrices help model problems including computation of spline functions,
signal and image processing, polynomial and power series computations etc.

Over the years, there have been studies on Toeplitz matrices such as recursion of determi-
nants of 2-tridiagonal Toeplitz matrix [1] and tridiagonal 2-Toeplitz matrices [3]. In our
study, we investigate the determinant of a k-tridiagonal Toeplitz matrices for k > 2. By
extending the work of Borowska et al.[1] , we identified recursion formulas for determinants
of all k− tridiagonals Toeplitz matrices. Thus, we propose to share our findings at the
Conference.

References

[1] J. Borowska, L.  Lacińska. Eigenvalues of 2-tridiagonal Toeplitz matrix, Journal of Ap-
plied Mathematics and Computational Mechanics, vol.14, no.14,2015

[2] M. Elouafi, On a relationship between Chebyshev polynomials and Toeplitz determi-
nants,Applied Mathematics and Computation, vol.229, pp. 27-33, 2014.

[3] M.J Gover, The eigenproblem of a tridiagonal 2-Toeplitz matrix, Linear Algebra and its
Applications, vol. 197, pp. 63-78, 1994.

Kemeny’s constant for Markov chains and random walks on graphs
Jane Breen

Kemeny’s constant is an interesting and useful quantifier of how well-connected the states
of a Markov chain are. Though it was first introduced in the 1960s, interest in this concept
hasrecently exploded.

This talk will provide an introduction to Markov chains, an overview of the history of
Kemeny’s constant, discussion of some applications, and a survey of recent results, with an
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emphasis on thosewhere the combinatorial structure of the Markov chain is of interest. This
comes to the forefront when the Markov chain in question is a random walk on a graph,
in which case Kemeny’s constant is interpreted as a measure of how ‘well-connected’ the
graph is.

Coefficient Support Arbitrary patterns
Colin Garnett

The ideas of spectrally arbitrary patterns and inertially arbitrary patterns have been well
studied. We will introduce the concept of coefficient support arbitrary (CSA) patterns that
seems to be somewhere in betweenthese two. In particular we are interested in whether
a given pattern can attain any zero-nonzero pattern in the coefficients of its characteristic
polynomial. CSA patterns can be thought of as a generalization of potentially nilpotent
patterns, where ratherthan just a nilpotent realization (i.e. the case where all coefficients
of the characteristic polynomial are 0) we consider the case where any number of the coef-
ficients is 0. This concept allows us to harness the power of the computer algebra system
Sageto resolve the 2n conjecture for n up to 6, and it rules out all but 2 patterns when
n = 7. Additionally over the real numbers we can describe a pattern as being Coefficient
Sign Arbitrary patterns and we can show that this is not equivalent to the concept of spec-
trally arbitrary for patterns over the real numbers. It seems worthwhile to consider these
conditions that can be checked by a computer.

Feasibility Conditions for parameters of quotient-polynomial graphs
Allen Herman

Quotient-polynomial graphs are finite simple graphs whose adjacency algbras are equal to
the adjacency algebra of a symmetric association scheme generated by the graph. Strongly-
regular graphs and distance-regular graphs are special cases of these graphs. In these two
important cases, parameter sets are well-studied because existence of the SRG or DRG
requires its parameters to satisfy several feasibility conditions. In this talk I will propose a
parameter set scheme for quotient-polynomial graphs and some feasibility conditions that
can be checked efficiently.

Uniform and apportionable matrices
Leslie Hogben

There has been extensive study of diagonalization of matrices, or finding the Jordan Canon-
ical Form for a matrix that is not diagonalizable. Diagonalization can be viewed as using a
similarity to concentrate the magnitude of all the entries with a small subset of entries. Here
we study what can be viewed as reversing this process, spreading out the magnitudes as
uniformly as possible. A uniform matrix plays the role of a diagonal matrix in this process.
A square complex matrix is uniform if all entries have the same absolute value and a square
complex matrix is apportionable if it is similar to a uniform matrix. Hadamard matrices
and discrete Fourier transforms are important examples of uniform matrices.
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Various results and examples are presented. Every rank one matrix is apportionable and
there is a procedure to find an apportioning matrix. However, not all spectra and Jordan
Canonical Forms are are attainable by uniform matrices. There are expamples of matrices
A such at there are infinitely many possible magnitudes of entries of the uniform matrices
MAM−1. Gracefully labelled graphs can be used to construct apportionable matrices with
prescribed spectra.

Unraveling the Friedrichs Angle: A Key to Lower Bounds on the Minimum
Singular Value

Avleen Kaur

Estimating the eigenvalues of a sum of two symmetric matrices, say P + Q, in terms of
the eigenvalues of P and Q, has a long tradition. To our knowledge, no study has yielded
a positive lower bound on the minimum eigenvalue, λmin(P + Q), when P + Q is sym-
metric positive definite with P and Q singular positive semi-definite. We derive two new
lower bounds on λmin(P + Q) in terms of the minimum positive eigenvalues of P and
Q. The bounds take into account geometric information by utilizing the Friedrichs angles
between certain subspaces. The basic result is when P and Q are two non-zero singu-
lar positive semi-definite matrices such that P + Q is non-singular, then λmin(P + Q) ≥
(1−cos θF ) min{λmin(P ), λmin(Q)}, where λmin represents the minimum positive eigenvalue
of the matrix, and θF is the Friedrichs angle between the range spaces of P and Q. We
will discuss the interaction between the range spaces for some pair of small matrices to
elucidate the geometric aspect of these bounds. Such estimates lead to new lower bounds
on the minimum singular value of full rank 1×2, 2×1, and 2×2 block matrices in terms of
the minimum positive singular value of these blocks. Some examples provided in this talk
further highlight the simplicity of applying the results in comparison to some existing lower
bounds.

This is joint work with S. H. Lui (Manitoba). Supported by the University of Manitoba
Graduate Fellowship (Avleen Kaur) and the Natural Sciences and Engineering Research
Council of Canada (S. H. Lui).

Applications of the vertex-clique incidence matrix of a graph
Seyed Ahmad Mojallal

Let G be a graph of order n and let F = {C1, C2, . . . , Ck} be an edge clique cover for G.
The vertex-clique incidence matrix of G associated with the edge clique cover F is defined
as follows:
Corresponding to any edge clique cover F , we define a real n × k matrix MF with rows
and columns indexed by the vertices in V and the cliques in F , respectively, such that the
ij-entry of MF is real and nonzero if and only if the vertex i belongs to the clique Cj ∈ F .
In this talk, we present applications of such matrices in spectral graph theory.
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Twins are mostly sedentary
Hermie Monterde

Let A be the adjacency matrix of a graph X. The transmission of quantumstates within
a quantum spin network represented by the graph X is determined by the unitary matrix
U(t) = exp(itA). In fact, one may interpret |U(t)u,v|2 as the probability of quantum state
transfer between vertices u and v in X. Whilesome pairs of twin vertices (vertices that share
the same neighbours) exhibit accurate transmission of quantum states within a graph, we
will show in this talk that vertices in a set of twins of size at least three resist high probability
quantum state transfer

Topological insights into class of controllable Linear Time Invariant System
[(A,B)]

Parthasarathi Nag

Consider a linear time invariant control system

dx

dt
= Ax + Bu, x(0) = 0 (1)

where A : X → X is a linear map such that X ∼= Cn, B : U → X is a linear map such that
U ∼= Cm, the state of the system x ∈ X and the control input u ∈ U . A Laplace transformed
of the control system (1) can be rewritten as

sX = AX + BU (2)

where X = X(s), U = U(s) and s ∈ C. Hermann and Martin constructed vector bundles
on the Riemann sphere defined by linear time invariant control system (2) in 1978. In that
same article Hermann and Martin mentions that “it can be proved, . . . that the Chern
numbers of these line bundles are equal to Kronecker indices.”

The current research presentation is motivated by the above statement. We are going to
show that the first Chern number of rank m Hermann-Martin bundle for a controllable class
of system given by (1) or (2) such that

rank[B AB · · · An−1B] = n

and rank B = m and the Brunovsky canonical form can be obtained by the first Chern
numbers, via Brikhoff-Grothendeick decomposition, of the Hermann-Martin bundle. These
first Chern numbers are essentially the Kronecker indices. This article attempts to provide
some topological insights into controllable linear time invariant systems.

Markov processes and graph labelings
Kerry Ojakian
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We motivate various graph labeling questions by their connection to questions about Markov
processes. We consider a basic Markov process on an n vertex graph, i.e. an entity moves
randomly through the graph, according to proscribed edge probabilities. For each vertex,
we consider the expected proportion of time the object will be there, and can thus associate
a length n probability vector with the Markov process; i.e. its stationary vector. Our first
fundamental question is this: Given a graph, which stationary vectors can be achieved by
adjusting the edge probabilities of the Markov process? There is a nice condition for deter-
mining which vectors are possible (the answer is essentially buried in the literature). For
the main part of our investigation, we consider the “rank vector” derived naturally from the
stationary vector; for example, if the stationary vector is [5, 9, 8, 7], then its corresponding
rank vector is [1, 4, 3, 2]. Our second fundamental question is this: Given a graph, by
adjusting the probabilities of the Markov process, what rank vectors are achievable? Using
standard Markov theory we reduce this question to a graph labeling question. Given an
edge labeling, we can determine a length n vector by assigning each vertex the sum of the
numbers on its incident edges, then from this vector we derive a rank vector. We ask:
Which rank vectors are achievable by such an edge labeling? The graph labeling question
turns out to be equivalent to our second fundamental question, so we focus on this graph
labeling question. We answer the question in special cases, and give a nice condition which
we conjecture to fully answer the question. Behind the scenes, these questions are moti-
vated by an interest in associating centrality measures (i.e. betweeness centrality, closeness
centrality, etc) to natural graph processes (such as a Markov process). This is joint work
with David Offner.

The Bipartite Distance Matrix of a Nonsingular Tree
Rakesh Jana

Abstract The bipartite adjacency matrix (J. A. Bondy and U. S. R. Murty. Graph theory,
Springer-Verlag London, New York, 2008) is used to store the adjacency information for a
bipartite graph. Similar to the bipartite adjacency matrix, we define the bipartite distance
matrix of a bipartite graph. That is, the bipartite distance matrix B(G) of a bipartite
graph G with m+ n vertices is a m× n matrix whose (i, j)th entry is the distance between
vertices li and rj , where L := {l1, . . . , lm}, R := {r1, . . . , rn} is a vertex bipartition of G. If
|L | = |R | = p, then detB(G) is always a multiple of 2p−1. Based on this observation, we
define the bipartite distance index of G as bd(G) := detB(G)/(−2)p−1.

We use the word ‘nonsingular tree’ to mean a tree with a (unique) perfect matching.
We show that the bipartite distance index of a nonsingular tree T satisfies an interesting
inclusion-exclusion type of principle at any matching edge of the tree. Even more interest-
ingly, we show that the bipartite distance index of a nonsingular tree T can be completely
characterized by the structure of T via what we call the f -alternating sums.

Quite similar to Graham, Hoffman and Hosoya (On the distance matrix of a directed graph,
Journal of Graph Theory, 1(1):85–88, 1977) result on the distance matrix, we identify
some basic elements and a merging operation and show that each of the trees that can be
constructed from a given set of elements, sequentially using this operation, have the same
bipartite distance index, independent of the order in which the sequence is followed.

The talk is based on following papers.

1. RB Bapat, Rakesh Jana, and S Pati. The bipartite distance matrix of a nonsingular
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tree. Linear Algebra and its Application, 631:254-281, 2021.

2. Rakesh Jana. A q-analogue of the bipartite distance matrix of a nonsingular tree,
Discrete Mathematics, 346(1):113153, 2023.

Inequalities for totally nonnegative matrices: Gantmacher–Krein,
Karlin, and Laplace

Prateek Kumar Vishwakarma

Set theoretic operations preserving total nonnegativity naturally translate into operations
preserving determinantal inequalities for this class of matrices. We introduce set row/column
operations that act directly on all determinantal inequalities for totally nonnegative ma-
trices, and yield inequalities for these matrices. These operations assist in discovering
additive inequalities for totally nonnegative matrices embedded in classical identities due
to Laplace (1772) and Karlin (1968). This as well generalizes the seminal inequalities due
to Gantmacher–Krein (1941) over these matrices. These refinements reveal sequences of
inequalities oscillating about zero. The proposed set operations and planar networks cor-
responding to totally nonnegative matrices facilitate obtaining a novel class of oscillating
inequalities. Furthermore, it is needless to say that these set row/column operations birth an
algorithm that can detect certain determinantal expressions that do not form an inequal-
ity over totally nonnegative matrices. However, the algorithm completely characterizes
inequalities comparing products of pairs of minors. Moreover, the underlying row/column
operations add that these inequalities are offshoots of the complementary ones. These novel
results seem very natural, which in addition thoroughly describe and enrich the classification
due to Fallat–Gekhtman–Johnson [Adv. Appl. Math. 2003] and later Skandera [J. Algebr.
Comb. 2004]. This is joint work with S. Fallat.

On the generalized numerical ranges of the powers of a matrix
Mohsen Zahraei

In the presennt paper, we provide several inequalities for the generalized numerical radius
of the powers of the matrices as introduced by Charles R. Johnson and I. M. Spitkovsky in
[1]. In addition, we added some new comments including generalization of [2, Theorem 2.1]
(and subsequent results) to the setting of bounded operators B(H) on a Hilbert space H
and also some of the notions that appear in [2, Theorem 2.1] are well defined in this more
general setting.

[1] C. R. Johnson and I. M. Spitkovsky, Inequalities Involving the Numerical Radius,
Linear and Multilinear Algebra, 37 (1994), 13-24.

[2] H.-L. Gau, Kuo-Zhong Wang, Pei Yuan Wu Equality of Numerical Ranges of Matrix
Powers, Linear Algebra and its Applications 578 (2019), 95-110.

Singular Value Decomposition at FIFA 2022
Peter Zizler
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Team’s offense and defense ability can be estimated by goalcounts, for and against, in round
robin tournaments. We introduce of-fense and defense scores for the teams, stemming out of
the singular value decomposition of a matrix, that are sensitive to goal scoring on good orbad
defensive teams, and goals against from good or bad offense teams.Further finer analysis of
team interactions in a tournament is discussed along with numerical considerations.

3 Other Relevant Conference Information:

� University Map: Available on the conference website.

� Parking is available free of charge on the weekends (avoid parkades and accessbility
spots) Lots 2,6, and 10 will work for visitors.

� Dining: There is very limited dining on campus over the weeked. Luther Colloege
Cafteria is open on Saturday and Sunday. There are also some restaurants available
in a strip mall at the corner of Kramer Bvld and Wascana Parkway (5-8 minute walk).

� Group Photo: Will take place on Sunday during the morning break...

� Zoom Link: https://uregina-ca.zoom.us/j/4941174436 (Meeting ID: 494 117 4436)
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