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Abstract—5G networks are expected to support numerous novel services and applications with versatile quality of service (QoS)
requirements such as high data rates and low end-to-end (E2E) latency. It is widely agreed that E2E latency can be reduced by moving
the computational capability closer to the network edge. The limited amount of computational resources of the edge nodes, however,
poses the challenge of efficiently utilizing these resources while, at the same time, satisfying QoS requirements. In this work, we
employ mixed-integer linear programming (MILP) techniques to formulate and solve a joint user association, service function chain
(SFC) placement, where SFCs are composed of virtualized service functions (VSFs), and resource allocation problem in 5G networks
composed of decentralized units (DUs), centralized units (CUs), and a core network (5GC). Specifically, we compare four approaches
to solving the problem. The first two approaches minimize, respectively, the E2E latency experienced by users and the service
provisioning cost. The other two instead aim at minimizing VSF migrations along with their impact on users’ quality of experience with
the last one minimizing also the number of inter-CU handovers. We then propose a heuristic to address the scalability issue of the
MILP-based solutions. Simulations results demonstrate the effectiveness of the proposed heuristic algorithm.

Index Terms—Latency-sensitive Services, Service Function Chain Placement, User Mobility, Resource Allocation, Mobile Networks.

1 INTRODUCTION

The 5th generation of mobile communication networks (5G)
is on the horizon with the promise to revolutionize the com-
munication landscape. 5G will enable a wide variety of ser-
vices, including massive broadband, virtual/augmented re-
ality (AR/VR), autonomous vehicles, real-time monitoring
and control, and so on [1]. Many of these services will have
stringent quality of service (QoS) requirements in terms of
data transmission rate, latency, reliability, and mobility [2],
[3]. For instance, ultra-low latency services require data to be
delivered satisfying strict end-to-end (E2E) latency budget
and particular data transmission rate, whereas best-effort
broadband communications have to provide gigabytes of
bandwidth with loose latency requirements.

To support the versatile and ambitious QoS requirements
of different 5G services, the mobile network infrastructure
is undergoing a paradigm shift towards adding distributed
micro/edge data centers (DCs) [1]. This is enabled by
the multi-access edge computing (MEC) technology, which
brings the content and the computing resources closer to
the end-users, making up a light data center (DC) and,
therefore, curtailing the round-trip service provisioning la-
tency and alleviating the transport network utilization. MEC
servers can be collocated both with decentralized units
(DUs) and centralized units (CUs) [4], which together make
up a base station, called gNB in 5G terms, and can be
statically deployed with traditional base stations. The DUs
are equipped with antennas to serve the user equipments
(UEs) and are connected to the CUs via fronthaul (FH) links,
while the CUs, that are connected to the 5G core (5GC)
via backhaul (BH) links, can serve multiple DUs. The 5GC
will still be there providing an abundance of computing
resources. Thus, the mobile network will be composed of

distributed DCs (i.e, DU , CU, and 5GC DCs), where the
closer is the DC to the 5GC, the more are its computing
resources and, therefore, the cheaper it is to use these
resources. For example, sub-millisecond latency services
facilitating AR/VR may be composed of multiple service
functions (SFs) some of which (e.g., video rendering) may
need to be processed right at the DU DCs, thus avoiding the
round-trip delay to and from either CU or 5GC DCs.

Another technology expected to play a pivotal role in
5G is virtualization that decouples SFs from dedicated pro-
prietary hardware and deploys virtualized service functions
(VSFs) on commodity servers, thus reducing CapEx [5], [6].
Virtualization provides the opportunity to deploy VSFs at
DU, CU, and 5GC DCs, based on the QoS requirements
and demands of services. Each of these services can be
composed of different kinds and numbers of SFs that are
interconnected in a particular order, also known as service
functions chains (SFCs). An SFC can have its acceptable E2E
latency budget and data rate requirement as per the UE’s
demand. In addition, a VSF has its own computing capacity
demand that can be shared among the VSFs belonging to
different SFCs. However, sharing a VSF among multiple
SFCs may increase both the processing time of the VSF and
transmission delay at the physical machine where the VSF is
hosted. Furthermore, VSF sharing among SFCs whose UEs
are located in distant geographical regions may impose an
unnecessary burden on FH/BH links. On the other hand,
it is impossible to instantiate a separate VSF for each UE
due to the finite computing capacity and link bandwidth
available at DU, CU, and 5GC DCs and FH/BH links,
respectively. Therefore, instantiating an optimal number of
VSFs in different DCs and associating them to UEs even for
a known set of SFCs is a non-trivial problem.



The UE association, SFC placement, and resource allo-
cation problem is further complicated by the skewness in
the amount of computing resources at different DCs and
the existence of heterogeneous services with distinct QoS
requirements. Since the number of DUs is large and they
are distributed in remote geographic locations, the amount
of computing resources in DUs will be very limited [7]. An
SFC placement strategy aiming to minimize E2E latency
for all the SFC requests can prefer to place VSFs to DUs
regardless of the QoS requirement, thus exhausting comput-
ing resources of DUs in no time. This strategy will need to
migrate VSFs whose SFCs do not require strict latency from
DUs to CUs or to 5GC DCs in order to accommodate newly
arrived SFCs with strict latency requirements. Similarly,
another strategy that initially places VSFs of SFCs in 5GC
DCs irrespective of QoS requirements needs to adjust VSF
placement later on. For instance, a VSF placed in a 5GC DC
could satisfy a strict latency requirement when there is a
light load and starts to violate its latency constraint as the
load rises due to an increase in transmission and processing
delays along the other VSFs of the SFC. This strategy will
also result in an increased number of migrations in order to
help the violated SFCs satisfy latency constraints. Therefore,
a sought-after SFC placement strategy should minimize
migration frequencies as migration causes disruption of
services [8], [9]. In addition, when migration is the only
viable option to satisfy UE’s quality of experience (QoE) re-
quirements, the SFC placement strategy should intelligently
select a VSF to migrate so as to reduce the impact of the
migration on the QoE of UEs.

Another factor that affects the joint UE association, SFC
placement, and resource allocation problem is the user
mobility. Such mobility can trigger a change in the UE
association involving handover operation. The handover
operation can be expensive depending on whether it is
performed between DUs that belong to the same CU (called
as intra-CU) or between DUs locating under two different
CUs (called as inter-CU). While the inter-CU handover
involves the 5GC for performing a path switch procedure
to implement the CU change, the intra-CU handover can
be performed without involving the core thanks to the
centralized placement of Packet Data Convergence Protocol
(PDCP) processing at the CU as per the 5G NG-RAN archi-
tecture [4]. Note that the centralized placement of PDCP at
the CU is not feasible when a UE’s VSF is placed at the DU to
satisfy strict latency constraints. In order to take advantage
of intra-CU handover, a mobile UE has to be associated
with a new DU that belongs to the same CU of the UE’s
previous DU. Such a change in UE association can trigger a
migration of a VSF influencing the sharing level of the VSF
and the corresponding latencies. However, the impact of the
UE association change on the number of VSF migrations
is magnified when the handover is an inter-CU operation.
Hence, another goal of an SFC placement strategy is to keep
the number of inter-CU handovers as low as possible.

In this paper, we demonstrate the pros and cons of
the aforementioned four SFC placement strategies through
empirical simulation of a 5G mobile network. To do so,
we employ mixed-integer linear programming (MILP) tech-
niques to formulate and solve a joint UE association, SFC
placement, and resource allocation problem, where SFCs
represent services with certain E2E latency and data rate
requirements requested by mobile UEs. We also develop a
comprehensive E2E latency model suitable for SFCs in the
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5G mobile networks. In order to address the scalability issue
of the MILPs, we then propose a heuristic that follows the
objective of minimizing the number of inter-CU handovers,
which exhibits the best performance.

This paper extends our initial work [10] in several as-
pects. First, we consider the mobility of UEs that further
intricates the problem compared to the static UEs studied
in [10]. Since user mobility induces a higher number of
VSF migrations than in [10], we modify the objective of
minimizing the number of VSF migrations to also include
the impact of migrations on UEs’ QoE. In addition, we
introduce a new objective that minimizes the number of
inter-CU handover operations triggered by user mobility
apart from minimizing the number of VSF migrations and
their impact. We also modify our heuristic algorithm to take
into account the minimization of inter-CU handovers while
keeping the impact of VSF migrations as low as possible.
Finally, we analyse the performance of the compared ap-
proaches with additional metrics such as the number of
intra-CU and inter-CU handovers and the utilization of
physical resource blocks (PRBs), which are chunks of the
time-frequency matrix in the radio access network and can
be allocated to the UEs by the scheduler of the base station.

The rest of this paper is structured as follows. The
related work is discussed in Sec. 2. The problem statement
along with the mobile network and SFC request models are
introduced in Sec. 3. The MILP problem formulation and the
heuristic are presented in Sec. 4. The numerical results are
reported in Sec. 5. Finally, Sec. 6 draws the conclusions.

2 RELATED WORK
2.1 Server selection

One of the problems tackled in our study is the server
selection in a heterogeneous cloud network for computation
offloading. There is a sizable body of work published on this
problem [11]-[13]. A hierarchical edge cloud architecture is
proposed in [11] that offloads users” computational tasks to
the clouds preferably closer to the users. The authors of [12]
propose a heuristic local/remote cloud server selection al-
gorithm that aims to increase the probability of successfully
executing the tasks within their delay constraints. Another
server selection strategy is presented in [13] that groups
users into clusters where users belonging to the same cluster
have similar latency to remote servers. The clustered users’
demand is then assigned to the appropriate servers with
the goal of minimizing the overall latency by reducing the
distance between clusters and servers. However, none of the
aforementioned studies consider realistic latency-sensitive
applications with E2E latency requirements envisioned to
be supported in 5G networks.

2.2 SFC placement and scheduling

SFC placement and scheduling is a well-studied topic [14]-
[20]. A number of works in this literature augments the SFC
placement problem with a certain E2E latency requirement
to be satisfied [21]-[23]. A delay-aware SFC placement prob-
lem is studied in [21] assuming that VSF processing delay
linearly depends on the allocated resources. Nonetheless,
this work considers the placement of VSFs on cloud servers
neglecting the 5G mobile network architecture altogether.
The authors in [22] address a VSF placement problem in a
service-customized network where each SFC has a latency



bound based on the application. However, [22] uses a sim-
plistic latency model where transmission delay is indepen-
dent of the load, and the processing delay of VSFs is ignored.
Several other works, including [24]-[27], strive to mini-
mize E2E latency while placing VSFs and scheduling SFCs.
Among them, [25] studies the joint VSF placement and CPU
allocation in 5G networks seeking to minimize the ratio be-
tween the actual and the maximum allowed latency across
all services. Similarly, [26] addresses the joint optimization
of SFC placement and request scheduling to minimize the
average response latency. The authors in [28] adopt the idea
of deploying a sequential SFC with parallel VSFs as long
as there is no dependency on a packet imposed by these
VSFs. However, these works do not consider heterogeneous
servers located in hierarchical DCs, which augment the
search space, making the SFC placement problem more
cumbersome. Although [27] considers hierarchical DCs to
perform resource allocation for ultra-low latency services, it
ignores the delay in the air interface and user mobility.
Another thrust of relevant research formulates VSF
scheduling and network resource allocation to establish an
SFC while taking into account the latency of the SFC. For
instance, the objective in [29] is to minimize the latency of
the overall VSF’s schedule to meet stringent delay require-
ments. On the other hand, [30] formulates the problem of
composing and placing an SFC to nodes that minimizes the
network and the processing latency. However, both of these
works consider VSF instances already being placed in DCs
and ignore the capacity constraints in the nodes. Similarly,
[31] minimizes transport network latency to embed a set
of VSFs for network slices, while ignoring VSF processing
latency. Several other models, including [32]-[38], have been
proposed for quantifying E2E latency in the context of a
virtual network. Our proposed latency model stands out
from these models in considering delays in the context of 5G
networks including, delay in the transport network and VSF
processing delays as a function of the users, respectively,
sharing the transmission links and computational resources.

2.3 VSF instantiation and migration

The VSF instantiation and migration problem is studied
in [39], having the goal of maximizing network throughput
by dynamically admitting as many requests as possible,
while ensuring that their resource demands and E2E latency
requirements are satisfied. The authors of [40] employ an
MILP model to decide whether to re-instantiate or mi-
grate the VSFs and find their optimal placements while
seeking to achieve minimal downtimes for the VSFs. In
contrast, [41] studies the VSF migration problem with the
goal of minimizing its effect on the overall network, which
is defined as the sum of link delay difference before and
after VSF migrations. Similarly, [9] strives to minimize the
number of VSF migrations and to achieve load balancing
in order to meet E2E delay requirements with time-varying
traffic. However, [9] considers only processing delay of VSFs
modeled using queueing theory ignoring transmission and
propagation delay on links altogether. In contrast to existing
studies on VSF migration, the focus of this paper is on
minimizing the inter-CU handovers as well as the number
of VSF migrations and their effect on the UEs” QoE for a 5G
mobile network. In addition, the VSF migration decision in
our study is influenced by several factors including mobility
of users, E2E latency constraint satisfaction, and level of VSF
sharing by different UEs as opposed to other studies.

2.4 Joint UE association and SFC placement

The work that considers user mobility and delay minimiza-
tion while addressing access point selection and service
placement for a number of users is [8]. This work discretizes
the timeline of a MEC system into time slots and models the
total queuing delay, communication delay, and the migra-
tion delay for all the users at each time frame. It strives to
minimize the number of migrations by tolerating as much
queuing delay and communication delay as possible until
these delays exceed migration delay by a large margin.
However, this work minimizes the total delays of the system
where an individual user may experience a higher delay or
its latency constraint may be violated. In contrast to all these
related works, we consider the joint problem of SFC place-
ment, user association, and network resource allocation that
allows optimization of both computational and network
resources based on users’ location, services’ demands and
QoS requirements in terms of bandwidth and E2E latency.

3 NETWORK MODEL
3.1 Problem Statement

Figure la depicts the reference network architecture for
the joint UE association, SFC placement, and resource al-
location problem. Let us consider a 5G network with the
NG-RAN architecture in which we assume that, like tra-
ditional evolved NodeBs (eNBs), DUs can still perform the
entire baseband signal processing for those UEs whose VSFs
are served from DUs, while if the UEs’ requested VSFs
are served by the CUs or the 5GC then the PDCP layer
processing for all the DUs that UEs got associated with is
centralized at their corresponding CUs [4]. Thus, each CU
can serve multiple DUs over the FH links while each 5GC
can serve multiple CUs over the BH links. In this hierar-
chical network architecture, each node (e.g., DU, CU, 5GC)
can be thought of a DC that has a certain computational
capacity, and it is assumed that the closer is the DC to the
5GC, the more is its computational capacity.

Figure 1b illustrates examples of SFCs with the red
and blue requests having, respectively, strict and loose
latency requirements. Receiving SFC requests by the UEs,
the network provider shall associate UEs to DUs, place
their requested SFCs onto the network and allocate suffi-
cient resources (e.g., computational resource (CPU), FH/BH
bandwidth), while making sure that the requirements of the
SFCs are satisfied and the network resources are used in an
efficient manner. Depending on the SFC requirements and
the utilization of network resources, there may be several
mapping options each minimizing a certain cost function.
The problem of UE association, SFC placement, and resource
allocation can be formally stated as follows:

Given: a 5G network with the NG-RAN architecture,
the computational capacity of each DC/node, the transport
network topology with the capacity of each FH/BH link and
UEs with their requested SFCs along with the data rate and
E2E latency requirements of the requested services.

Find: UEs associations, SFC placements, and resource
allocation in the network.

Objectives: (i) minimize E2E latency for all UEs, (ii) min-
imize the overall service provisioning cost, (iii) minimize
the number of VSF migrations and their effect onto the UE’s
QoE, and (iv) apart from the previous objective, minimize
also the number of inter-CU handovers in the network.
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Fig. 1: Sample mobile network, SFC requests and SFC placements.

TABLE 1: Mobile network parameters

TABLE 2: SEC request parameters

Parameter [ Description ‘ l Parameter [ Description
Ghret Mobile network graph. Greq UE’s SFC request graph.
Nnet Set of nodes/DCs in Gpet. Nye Set of UEs in Gr¢q.
Nsge Set of 5GCs in Gpet. Nsufc Set of VSFs in the SFC request of UE u € Nye.
Nau, New, Npgu | Set of DUs, CUs, non-DUs in Gpet, respectively. NY Class of the SFC requested by the UE u € Nye.
N, ggc Core node that is connected to the DU d € Ng,,. Ereq, Ereq(u) | Setof all virtual links, and of the UE u € Nye.
Ng, CU that is connected to the DU d € Ng,,. wbw (€ Data rate demand of link €’ € Eeq(u) of UE w.
Nyss Set of virtualized service functions (VSFs). z” u b (d) PRB demand of UE u € Ny, from DU d € Ng,,.
NZ . Set of instances of the VSF s € N4 ¢. wd Data (in Mbit) generated by UE u € Ny per sec.
Neis Set of SFC classes.
Efft Set of FH and BH links in Grnet. : assigned to each link €"™ € Ec; : wpyt(e"™) € NT repre-
Wram (1) # of UEs that can share instance 7 of VSF s on n. F . . .

- : , , : senting the capacity of the FH/BH link connecting the nodes
wprre () Processing capacity of instance i of VSFsonn. |, 414"y Table 1 summarizes the network parameters.
Wepu (M) Processing capacity of the node n € Nyet.
Wowt (") Capacity of the link e"™ € Bnet. 3.3 Service Function Chain (SFC) Request Model
o(d) Coverage radius of the DU d € Ny, (in meters). i
b Big positive number. SFC requests are modelled as directed graphs Gr., =
Apr, Mpwt Per PRB and Mbps link bandwidth usage costs. (Nreqa Ereq) where Nreq = Nye U stc is the union of the
AL, Per CPU usage cost at node n € Nper. set of UEs and their requested SFCs, while E,., is the set
Act Reward for UEs remaining under the same CU. of virtual links between UEs and their SFCs, and the links
Ajwnd»w Reward for UEs not changing the serving VSF. between VSFs that make up SFCs. Each UE generates a cer-

Note that the mobile network/infrastructure provider is
assumed to be the same entity providing the services imple-
mented by the SFCs. The proposed optimization approach,
however, can be easily adapted to consider also the case in
which these entities are different.

3.2 Mobile Network Model

Let Gpet = (Npet, Enet) be an undirected graph modelling
the mobile network, where Ny.; = Ng,, U Ney, U N3y, is the
union of the set of DUs, CUs, and the 5GC. E,,.; is the set of
FH and BH links. An edge ™™ € E,,.; exists if and only if a
connection exists between n, m € N,,;. Each network node
n € Npet has wepy(n) computational capacity expressed in
terms of the number of CPUs, and a single CPU is required
per VSF to be instantiated. Each instance i € N7, of VSF
5 € N,ss instantiated at the node n € N, has capacity
wsi (n) expressed in terms of the maximum number of
UEs that can share the same VSF mapped on the node. It
is worth mentioning that the model also tackles the case
where, due to high VSF demand, multiple instances of the
same VSF are needed. Each node n € N,,; is associated
with a geographic location loc(n), as z, y coordinates while
each DU d € Ny, is also associated with a coverage radius
of §(d), in meters. It is assumed that DUs have a sulfficient
amount of PRBs in order to meet the data rate demand
for the requested services. Another weight wpy(e"™) is

tain amount of data per second w},,,, to be processed by the
requested SFC characterized by a maximum acceptable E2E
latency TraF (e.g., strict, medium, loose) and data rate wy), ;.
Tr2g is computed from the time UEs start transmitting data
in the uplink (UL) until the time they receive and process
the data in the downlink (DL) as follows:

TE2E — Tg‘zr_i_Tazr_i_Tdu +Tfh,bh+Tf}z bh+T9fc+Tue

prp prc prp exc prec

)
where Tt“T”,Ta”’ and Tf h.bh ijrf;;bh are transmission and
propagation tlme respectlvely, over the air and FH/BH
links, and T;f#c is the baseband processing time in both UL
and DL directions. Lastly, 75/¢ is the SFC execution time
computed as the summation of the execution times 7/%5/
of its component VSFs, and 1% is the UE processing time
in DL. Since in reasonable settings the target block error
rate (BLER) in mobile networks is 10% [42], we mimic
hybrid automatic repeat request (HARQ) re-transmissions
by considering the data size to be transmitted and processed
by the SFC 10% more the data generated by UEs. It is
worthwhile to mention that, although in the considered
scenario data is transmitted and received by the same UE,
the system model can be easily adapted to consider also the
case in which data may be transmitted by one UE in UL
and after processing be received by another UE in DL [43].
Figure 1b illustrates examples of SFC requests while Table 2
summarizes the SFC request parameters of UEs.

It is worth to mention that both the VSF and SFC

placements are performed simultaneously. This is because



TABLE 3: Binary (£) and continuous (¢) variables.

‘ Variable‘ Description ‘
&y Indicates if UE u € Ny is associated with DU d € Ny,,.
i Indicates if VSF s € N, requested by UE u is served by

instance i € N7 _ of the same VSF type on node n € Nyet.
S5 Represents the execution time of VSF s € N, requested by
UE u mapped on instance i of the same VSF type on node n.
Co s Execution time of 3¢ instance of VSF s € N,,, 7 of node n.
& Indicates if any UE uses i’ instance of VSF s of node n.
7
e Indicates if the virtual link ¢/ € Eyeq(u) of the UE u € Nye
is mapped to the substrate link e € Eyet.
7
¢ Represents the transmission time of the data on virtual link
€' € Ereq(u) of UE u € Ny over substrate link e € Eg,.
Ce Represents data transmission time over substrate link e.

the VSF placement takes into account the VSF demand of
all the UEs, while the SFC placement is tied with the VSF
placement in order to guarantee that the end-to-end latency
requirements of the SFCs are satisfied.

4 PROBLEM FORMULATION
4.1 MILP Formulation

Before formulating the MILP model, we need the set of DUs
that provide coverage to each UE. Considering the location
loc(u) of UE u € N, along with the location loc(d) and the
coverage radius 0(d) of DUs d € Ny, the set of candidate
DUs Q(u) for the UE u can be computed as follows:

Q(u) = {d € Nyu|dist(loc(d), loc(u)) < 5(d)} 2)

Additjonally, for each UE u € N,., we need to know the
DCs (u) that can host VSFs of the SFC requested by each
UE. In our model, either the UE’s candidate DU or the CU
connected to the candidate DU, or the 5GC DC connected to
the CU hosting the candidate DU can serve the UE’s SFC.
Table 3 shows all binary and continuous variables used
in this MILP formulation. The first objective function of the
MILP formulation minimizes the E2E latency to serve SFCs.

2.2 > > Gt

MILP-Lat: mm(
UENye N€ENnet SENY;  iENS,

S (T @+ T )+ Te(d))&i+ > T (w)

UENy e dEN gy,

HDIED DS

UENye e€EFnet €/ €EEreq(u)

UENye
(e + TJJL””L(e)&S"’)) ©)

It is worth to mention that since the FH/BH links
and VSFs are shared, the transmission time over the links
(S bRy and the VSF execution time (C? =123
are calculated based on aggregated traffic demand over
those links and data processing demand on the VSFs, re-
spectively. As illustrated in Fig. 1c, this objective function
results in both SFCs being placed on the DU as long as the
DU has sulfficient computational capacity.

The second objective function (formula (4)) aims at mini-
mizing the overall SFC provisioning cost. This encompasses
the PRB usage cost A, (per PRB), the cost for using FH/BH
bandwidth resources Ayt (per Mbps) and the CPU usage
cost Ar,,,, (per CPU) with the latter being much more expen-
sive than the former ones. While A, and A, are the same

for, respectively, all DUs and links, A7, varies depending

5

on thenode n € N, hosting the VSF. Specifically, the closer
is the host DC to DUs, the more expensive is the CPU usage
cost on that DC. This cost selection approach is justified
by the fact that the edge DCs possess less computational
capacity compared to the 5GC DCs. This objective function
places both SFCs on the 5GC, as shown in Fig. 1c, as long as
the E2E latency requirements of the SFCs are satisfied.

MILP-Cost: min( Z Z Aprpwpry (d)Eq+
’UIGNuc dENdu

S IID I M) SRS

UENy e NENpet SENysp 1ENS,

ins

XYY Awul)e) @

UENye €€EEnet €/ €EEreq(u)

The third objective function (formula (5)) has the goal
of minimizing the number of VSF migrations and their
effect on the overall UEs’ QoE. This is motivated by the
fact that the fewer is the number of VSF migrations for
the UEs across SFC mappings, the higher is the QoE of the
UEs using those VSFs since VSF migrations might result
in the service interruption, degrading UEs” QoE. The VSF
migrations are minimized by selecting the most appropriate
DC/node for VSFs to be spawned/instantiated. Note that
as opposed to MILP-Lat and MILP-Cost, the CPU usage
cost AZ;ZI(U) in MILP-Mig depends not only on the DC n
hosting the required VSF, but also on the service class of
the SFC requested by the UE w. For example, if the UE
requests an SFC that has a strict E2E latency requirement,
it is cheaper to serve the SFC from a DU compared to CUs
or the 5GC. Conversely, if the SFC a has loose E2E latency
requirement, it is cheaper to serve the SFC at the 5GC
compared to CUs and DUs. This approach effectively leads
to the minimization of migrated VSFs since VSF migration,
which mostly occurs in the previous mapping strategies, is
triggered due to E2E service latency violation that stems
from FH/BH and processing resource sharing.

The minimization of the effect of the VSF migration on
the UEs” QOE instead is achieved by introducing A7""",
which represents a reward for the UE u for using the same
i" instance of the VSF s in the DC n across SFC mappings.

AT d’s’i = 0 if the VSF instance serving the UE is changed;
otherwise, A\ > (. This essentially means that, in order

to minimize the objective function, MILP-Mig tends to keep
serving the UEs from the same VSF instance during their
mobility when mapping new SFC requests along with the
old ones. As a consequence, due to UEs mobility and new
UEs making SFC requests, when there is no other way
but to migrate VSFs in order to embed/re-embed the SFCs
and satisfy their demands, the least utilized VSFs will be
migrated in order to keep awarding as many UEs as possible
with the ultimate goal of minimizing the number of UEs
whose QoE will be degraded due to the VSF migrations. A
placement example of this objective function is displayed in
Fig. 1c, where the red and the blue SFCs, thanks their E2E
latency demand, are placed, respectively, on DU and 5GC.

MILP-Mig: min » Y > > (Abe—

UENye NENpet SENysp 1ENS,

ins

_ Au,n,s,i)gu,s (5)

rwd n,t

Finally, the last objective function (formula (6)), apart
from minimizing the number of VSF migrations and its



effect on the UEs” QoE, strives also to minimize the number
of inter-CU UE handovers. We remind the reader that as
opposed to the intra-CU handover in which the handover
is performed at the CU, the inter-CU handover requires the
CU change and, therefore, involves the core network for
performing a path switch procedure, which requires more
network resources due to required additional signalling and
may result in VSF migrations if the VSFs are instantiated on
the DUs or CUs. The handover minimization is achieved
by the use of A%, (A%, > A™™*"), which represents the
reward for the UEs who stay under the same serving CU
during mobility and new arrival of UEs, which triggers re-
mapping of all SFCs. Thus, due to its higher reward, more
priority is given by MILP-HO to minimizing the number
of inter-CU handovers that does not necessarily minimize
also the number of VSF migrations. Fig. 1c illustrates an
example of SFC placements performed by this objective
function. UE1 and UE2, which are initially associated with
DU1, due to their mobility, move to an area that is covered
by both DU2 and DU3. At this point, MILP-HO associates
the UE1 to DU2 in order to keep it under the control of CU1
without triggering an inter-CU handover. This is because
UE1 has a strict E2E latency requirement and its SFC1 is
placed on CU1. UE2 instead is associated with DU3 since it
has a loose E2E latency requirement and its SFC2 is placed
on 5GC. Since both MILP-Mig and MILP-HO seek to prevent
the UEs” QoE degradation, they are more suitable to be used
for the applications, such as AR/VR, real-time monitoring
and control, that have stringent QoS requirements in terms
of latency, jitter, packet loss, etc.

MILP-HO: min( YT Y (ande
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All the aforementioned objective functions follow a dy-
namic SFC embedding strategy. In essence, this means that
with the arrival of a new SFC request, all the previously em-
bedded requests along with the new one are re-embedded.
This is justified by the fact that due to the UEs” mobility
some of the previously mapped UEs change their location
across embeddings.

We will now detail the constraints used in this MILP
formulation. Regardless of the objective function, all the
constraints have to be satisfied for all UEs in order for a
solution to be valid. This means that upon each embedding,
all the objective functions try to admit all the UEs as long as
the following constraints are satisfied. Constraint (7) ensures
that each UE is associated with only one DU that belongs to
its candidate set (Constraint (8)).

D &i=1 VYue Ny 7)
dE€N gy
> Ei=0 Yue Ny ®)
dENg, \Q(u)

Each VSF s € N of the SFC requested by the UE u € N
must be served only once (Constraint (9)) by either the UE’s
host DU, or the CU connected to the host DU or by the 5GC
node connected to the CU of the host DU (Constraint (10)).
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(10)

Constraint (11) enforces for each virtual link there will be a
continuous path established between the DU hosting the UE
and the DC(s) serving the SFC. E}!, is the set of the links
that originate from any DC and directly arrive at the DC
i € Nyet, while E;‘;t is the set of links that originates from

the DC ¢ and arrive at any DC directly connected to <.

-1 ifi=n
Yot Y =41 ifi=m (11)
ecExL, ecEix, 0 otherwise
Vi € Npet, Ve™™ € Epeq

Virtual links can be mapped to a FH/BH link in the mobile
network as long as the link has enough capacity to meet the
data rate demand of the virtual links (Constraint (12)).
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A VSF instance is considered to be used as long as at
least one UE is served by that instance (Constraint (13)).

Z Eni = én i <0 VN € Npet, s € Nysyp, i € Njpg
UENye
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While constraint (14) makes sure that the Computational
capacity of the DCs is not exceeded, where if 3-, . v &7 >
1 then &, ; = 1, Constraint (15) sets an upper bound on the
number of UEs that can share the same VSFE.
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The transmission time (. over the substrate link e € E,.;
is computed by Constraint (16) considering the aggregated
data demand on that link.
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Constraint (17) handles the accurate transmission time
computation of the data on the virtual link e’.

C:ﬂe, S Hb Yu € Nu57 ec Enety 6/ S Ereq(u)

17)
Thus, regardless of how much is the bandwidth requirement
of virtual link € € E,.q4(u), if this link has been mapped

,ubgqel’e +<e -

onto the substrate link e € FE, ¢ (g;j@’ = 1) then its
transmission time is (" = (.. Note that the possibility
of having (¢ > 0 and {° = 0 is ruled out since (¢

variable is used in all objective functions, which seeks to
minimize certain costs. The arguments that contain (" ¢ and
C:; 7 with a small coefficient are not shown in the objective
functions for the sake of simplicity.

Similarly, the execution time (; ; of the it" instance of
the VSF s € N,,; on the node n € N, is computed



by Constraint (18) considering the aggregated data to be
processed by that VSE.
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(18)
The following Constraint (19) ensures that if the UE u € N,
uses the instance i of the VSF type s € Ny, of the node

n € Npet (€7 = 1) then this VSF execution time ( =Cni
is taken into account
/’('bf +C’rst_ nz _/J/b (19)
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Finally, Constraint (20) guarantees that the E2E latency to
serve the UE u € N, does not violate the latency limit of
the service requested by the UE.
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Note that the E2E latency depends on the requested
service class and, along with the other constraints, has to
be satisfied by all the objective functions in order for an
embedding solution to be valid. It is important to mention
that the time required to find an embedding solution for the
SFCs by all the algorithms does not count in the estimation
the E2E service latency. This could be realized, for example,
by employing machine learning (ML) techniques to predict
the traffic demand [44] and the location of the users then
feed them to the algorithms before starting to serve the users
based on the new SFC embedding results.

4.2 Heuristic

The MILP formulation becomes computationally intractable
as the size of the mobile network increases, e.g., the number
of DUs/CUs, the variety of VSFs, the complexity of SFCs.
For example, the MILP algorithm takes a day on Intel Core
i7 laptop (3.0 GHz CPU, 16 Gb RAM) using the ILOG
CPLEX 12.8 solver to associate and serve 200 UEs making
latency-sensitive SFC requests each composed of three VSFs
in the network composed of 4 DUs, 2 CUs, and a 5GC.
In order to address this scalability issue, we develop a
heuristic, as shown in Algorithm 1, that is able to embed
the same requests in less than a second.

The proposed heuristic (HEU-HO) follows the same
objective of MILP-HO based on the results of the MILP-
based algorithms reported in Section 5, in which MILP-HO
achieves the best performance across most of the metrics.
The heuristic is composed of four steps. In the first step,
the heuristic initiates sfc_cls matrix for each DU to keep
the count of each VSF demand per service class on that
DU. Then, the heuristic creates a list of candidate DUs
cand_du for each UE by looping over all DUs, considering
the coverage radius of each DU and the distance between
the DU and the UE. Additionally, the heuristic creates a list
of candidate DCs cand_vsf for VSFs in the UE requested
SFC and populates s fc_cls matrix.

Algorithm 1: Heuristic (HEU-HO)

wms

Data: (Get, Greq)

Result: UEs association, SFC placement and resource allocation.
1 Step 1: Find candidate nodes per UE and VSF demand per SFC class per DU
2 ford € Ng, do
forcl € N do

L for s € Ny, s do

o oR W

| sfccls(d,cl,s) < @

6 foru € N, do

7 cand_du(u), cand_vsf(u) < @;

8 ford € Ng, do

9 dist < dis(loc(u), loc(d));

10 if dist < §(d) then

11 cand_du(u), cand_vsf(u) < d;

12 cand_'usf(u) «~ NZ;

13 fors € N, do

14 | sfe_ cls(d NY,s) < sfe_els(d, N3y, s) +1;

15 cand_vsf(u) < N\ch

16 Step 2: Find VSF placement and CPU resource allocation per node;
17 forn € Ny do
18 L map_cand_vsf(n) + O;

19 ford € Ng, do

20 o Strict class delay VSFs mapping ~ d— > N& — > Nggc,

21 o Medium class delay VSFs mapping N&, — > NS(;C > d;

2 ® Loose class delay VSFs mapping qu, > NG, —>d;

23 | e Populate map_cand_vs f per VSF host;

24 Step 3: Perform UE association;

25 foru € Ny, do

26 me(u) « 0;

27 for p € cand_du(u) do

28 fors € NJ;. do

29 Ceurr = +00;

30 for q € cand_vsf(u) do

31 if s € map_cand_vsf(q) then

32 if host CU is the same then

33 L cnew + Clink(P; @) + Cnode (D) — cho(p);

34 else

35 L cnew < Clink (P, @) + cnode(p);

36 Ceurr ¢ MIN(Ceurr; Cnew);

37 L me(p) + me(p) + ceurrs

38 p + argmin(m.(p));

39 mapped(u) < p;

40 Step 4: Perform SFC placement and resource allocation;

a1 fors € NJ;. do

2 me(s) < 0;

43 Ceurr <= +00;

44 for g € cand_vsf(u) do

45 o Compute Tgop (u);

46 if s € map_cand_vsf(q) then

47 fori € inst_vsf(s) do

48 if map_cand_vsf(p){s,i} < 0or
TEzE(u) > Thm(u) then

19 L continue;

50 Cnew 4 Clink(P; @) + Cnode(P);

51 if 10 Ty, violatation for any UE then

52 L ceurr < min(Ceurrs Cnew);

53 me(q) < Ceurr;

54 q < argmin(m.(s));

55 mapped(s) < q;

56 o Allocate path P, q;

57 o Allocate and update network resources;

58 L e Recompute T};y, for all UEs ;

In the second step, the algorithm considers all VSFs’
demand on each DU, and the VSF instantiation starts from
the VSFs that belong to the SFCs with the strict latency class
towards the ones with the loose latency class. Specifically,
for each VSF from the strict service latency class, the al-
gorithm first checks if a VSF is already available on the
DU. If it is not available or is available but does not have
enough capacity to support the UEs” demand, it instantiates
a new VSF on that DU. This process is repeated on the CU
connected to the DU and then on the 5GC that is connected



to the CU, which in turn is connected to the host DU until
the VSF is instantiated on one of these DC. Once it has been
instantiated, the s fc_cls matrix is updated subtracting those
UEs” VSF demand that are under the coverage of the DU
that hosted the VSF or is connected to the DC hosting the
VSE. A similar process is performed for the medium latency
class and the loose latency class VSFs with the order of,
respectively, CU, 5GC, DU and 5GC, CU, DU, resulting in
fewer VSF migrations due to latency-aware VSF placement.
At the end of this process, sfc_cls becomes a matrix of
zeros for all latency classes, indicating that all VSFs of the
requested SFCs have been instantiated, and map_cand_vs f
matrix is derived containing VSF instances on all the DCs.

In the third step, the algorithm performs UEs’ associa-
tion in the following manner. For each UE, the algorithm
traverses all its candidate DUs for each considering every
VSF of the SFC requested by the UE and computing its
placement cost on its those candidate DCs that already have
the VSF instance. The UE association and its SFC placement
cost encompass both the link ¢, and the node cpode
resource usage costs. Additionally, it takes into account the
discount ¢y, if the UE is to be associated with a DU that
is under the support of the same CU of the current DU. At
the end of this step, the heuristic picks the DU for the UE
association that would result in the cheapest cost for the UE
association and its SFC placement.

Finally, in the last step, the heuristic maps the SFC
requested by the UE and allocates the required resources.
Specifically, for each VSF of the UE’s SFC, the heuristic
computes the E2E latency on each VSF instance of each
candidate DC that has the requested VSE. This is followed by
checking if the VSF placement on the candidate DC violates
the latency class limit of the UE. If the VSF placement does
not violate any UE’s latency limit then the algorithm will
compute its mapping cost. After repeating this process for
all the VSF candidate DCs, the algorithm will map the VSF
to the DC that would serve the VSF with the minimal cost.
Lastly, the network resources will be allocated and T};,,, time
limit will be re-estimated for all the UEs. Considering that
the number of VSF instances and SFC classes are small,
the overall time complexity of this heuristic algorithm is
O(NyeNys fdeNduNink 108 Nace ), Where e, Ninkss Ndus T f
and n,. are, respectively, the number of substrate DCs,
links, DUs, a UE requested VSFs and the number of UEs.

5 EVALUATION

The goal of this section is to compare the presented MILP-
based and heuristic algorithms. We first describe the simula-
tion setup used in our study. We then discuss the outcomes
of the numerical simulations carried out in Matlab.

5.1 Simulation Environment

The mobile network considered in the simulations is com-
posed of 7 nodes/DCs, similar to the one depicted in Fig-
ure la. The 5GC is connected to the CUs through 20Gbps
fiber BH links, while the CUs are connected to the DUs
employing 10Gbps wireless FH links. The 5GC, CUs, and
DUs have, respectively, 10, 6 and 2 CPUs, and it is as-
sumed that each VSF requires a single CPU in order to be
spawned/instantiated. Once a VSF has been instantiated on
a DC, it can be shared among a maximum of 10 UEs as
long as the E2E latency requirement imposed by the services
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requested by the UEs is not violated due to the aggregated
task execution time of the VSE.

In the simulations, the SFC requests arrive sequentially
(i.e., one batch per minute, which corresponds to a timeslot
that can be changed based on several parameters such as the
number of requests, their resource demand, etc.) in batches
each of which is composed of 4 UEs making SFC requests.
With each batch, the algorithms try to associate all UEs (also
from the previous timeslots) and serve their SFC requests.
Due to the scalability issue of the MILP-based algorithms,
the number of SFC batch requests is restricted to 20 (80
UESs) in each simulation run. With the arrival of a new batch
of UEs making SFC requests, the UEs from the previous
batches change their locations by moving in random direc-
tion with the speed selected from the set of {5, 25, 50 }km /h,
mimicking pedestrians, cyclist, and cars, while still keeping
their SFC requirements. Each SFC consists of VSFs, whose
quantity is randomly picked from the set of {2, 3,4}, while
their types are then randomly picked within 10 VSF types.
VSFs in an SFC are sequentially connected, similar to the
one depicted in Figure 1b. Depending on the service class,
the network provider has to guarantee a certain maximum
acceptable E2E latency and data rate requirements. Specifi-
cally, we consider three service classes having, respectively,
[15,50,100]ms E2E latency, [400,200,150]Mbps data rate
requirements, generating [1, 5, 9]Mbit data per second to be
processed by the SFC.

Note that like in [45], we assume that sufficient PRBs are
always allocated to the UEs in order to keep high QoS and
make sure that the data rate requirement of their requested
SFC is always satisfied. Moreover, since the focus of this
work is mostly on the SFC placement problem, the selection
of a particular UE channel model, although important, takes
a secondary role. As a result, in the numerical evaluation, we
leverage on a simple modulation and coding scheme (MCS)
estimation model which is based on the distance between
the UE and the host DU. Finally, for the sake of simplicity,
it is assumed that the data size and data rate both in DL
and UL remain the same. We consider 7" = 1ms as a
fixed transmission time interval (TTI), which corresponds to
a single subframe in LTE, though TTI value can be flexibly
changed in 5G [46]. Tt]:‘h’bh and T2/¢ are computed for all
UEs employing, respectively, the same FH/BH link and VSF
since FH/BH links and VSFs are shared resources. Specifi-
cally, T, t’;h’bh for the UEs using the same FH/BH link at the
considered moment is obtained by dividin% the aggregated
data size by the FH/BH link rate. Thus, Tt,.h’bh is the same
for all the UEs using the same FH/BH link. Whereas, T35/, is
the ratio between the product of the aggregated data size to
be processed by the VSF and the number of CPU cycles
for processing a single bit of data, and the clock rate of
the CPU. 777" is computed in a similar fashion for each
UE. A single CPU’s clock rate for a network node and a
UE is, respectively, 3.5 GHz and 1.5 GHz. Lastly, baseband

processing time T;ZT“C at DUs is computed according to [47].

5.2 Simulation Results

The reported results are the average of 10 simulations with
95% confidence intervals.

CPU utilization. Since VSFs can be shared among sev-
eral UEs, and a single VSF requires one CPU to be instan-
tiated, the CPU capacity of a DC is expressed in terms of
the number of UEs that can employ VSFs/CPUs on that DC
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and is equal to the number of CPUs available at the DC
times the number of UEs that can share a single VSF/CPU.
Consequently, the CPU utilization of a DC is computed
dividing the number of UEs using VSFs of that DC by the
CPU capacity of that DC.

Let us now analyze the CPU utilization of DU, CU,
and 5GC DCs for presented algorithms (Fig. 2) in a single
simulation run. In Fig. 2a, we can observe that the CPU
utilization at the DUs is the highest for the MILP-Lat al-
gorithm due to the fact that, regardless of the E2E latency
requirement of the requested service, MILP-Lat algorithm
tends to instantiate VSFs at the DUs as long as they have
enough CPU capacity. Conversely, the CPU utilization at the
DU s is the lowest for the MILP-Cost. Indeed, we can observe
that MILP-Cost starts placing VSFs at the DUs when the
number of UEs in the network is 60. This can be justified
by the fact that up to 56 UEs, MILP-Cost provisions the
requested VSFs from the CUs and the 5GC. When the VSF
demand increases, however, some of the VSFs are placed at
DUs in order to meet the UEs” E2E latency requirements.
As for MILP-Mig, MILP-HO, and HEU-HO algorithms, they
perform a latency-aware SFC placement, as opposed to
MILP-Lat, MILP-Cost, ultimately achieving similar CPU uti-
lization that lies between the ones achieved by MILP-Lat
and MILP-Cost. Thus, they do not initially tend to consume
the computational resources of only DUs or the 5GC, like
MILP-Lat and MILP-Lat, respectively, neglecting the latency
class of the requested SFC. Note that the CPU utilization of
HEU-HO at some DCs is lower than that of MILP-HO due
to its lower acceptance ratio, as shown in Fig. 6b.

Figure 2b displays the CPU utilization at the CUs for
all algorithms. It can be seen that the gap between CPU
utilization achieved by the algorithms is narrowed. This
stems from the fact that apart from MILP-Mig MILP-HO,
and HEU-HO, also MILP-Lat and MILP-Cost start serving
VSFs from CUs. Specifically, MILP-Lat starts placing VSFs
at CUs because of the lack of CPU resources at the DUs,
while MILP-Cost, at some point, starts placing VSFs at CUs

CUs. With more UEs, the CPU utilization at the 5GC demon-
strates an increasing trend for MILP-Lat algorithm, while
its fluctuating behavior is due to UEs” mobility. In contrast
to MILP-Lat, MILP-Cost, due to its cheap SFC provisioning
cost, starts using the CPU resources of the 5GC right from
the first batch request. Like in Fig. 2a, we can observe that
the CPU utilization by MILP-Mig, MILP-HO and HEU-HO
algorithms resembles being in between the ones achieved
by MILP-Lat and MILP-Cost.

Link utilization. Figure 3 illustrates the FH and BH
link utilization as a function of the number UEs for the
same single simulation run. We can observe that MILP-Cost
algorithm achieves the highest level of FH and BH utiliza-
tion. This is due to the fact that MILP-Cost strives to place
VSFs at the 5GC as long as the E2E latency requirements of
the SFC requested by UEs are not violated. While the FH
utilization for MILP-Cost keeps its steady increase, the BH
utilization for the same algorithm starts oscillating when
more than 60 UEs are making SFC requests. As we will
see in Fig. 5b, this is because of the VSF migrations from
the 5GC towards the CUs, which take place in order to
satisfy the E2E latency demand of all the UEs. As for MILP-
Lat algorithm, it achieves the lowest FH and BH utilization
due to its optimization objective. It is interesting to notice
in Fig. 3b that up to 40 UEs, the requested VSFs are
provisioned from DUs and CUs since no BH link is used.
For what concerns the rest of the algorithms, like the CPU
utilization at the DU, the FH and the BH utilization for
all UEs in the cases of MILP-Mig, MILP-HO and HEU-HO
algorithms lies between the ones achieved by MILP-Lat and
MILP-Cost algorithms. Thus, compared to MILP-Lat and
MILP-Cost algorithms, the latency-aware MILP-based and
heuristic migration algorithms find a better compromise
between the CPU utilization and the FH/BH utilization.

Number of handovers. One of the key differences of
this study compared to our previous study [10] is that here
we consider mobile UEs and propose an MILP-based and
heuristic algorithms (MILP-HO and HEU-HO) that apart
from minimizing the number of VSF migrations and their
impact on the QoE of UEs, also minimize the number of
inter-CU handovers. Let us analyze Fig. 4, which displays
the aggregated number of both the intra-CU and the inter-
CU handovers. As expected, the best performance in terms
of the highest number intra-CU handovers and the lowest
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number inter-CU handovers is achieved by MILP-HO, fol-
lowed by its heuristic counterpart, which triggers a similar
quantity of handovers. The rest of the algorithms achieve a
lower performance due to the fact that they do not aim at
minimizing the number of handovers. Among these algo-
rithms, however, MILP-Mig exhibits the best performance
since its goal is to minimize the number of VSF migrations,
which is partially achieved by trying to keep associating
UEs to the DUs that are under the control of the same CU.

Number of VSF migrations per DC. Figure 5a illustrates
the average number of aggregated VSFs migrated from each
node/DC for 10 simulation runs. As expected, the highest
number of VSF migrations takes place when MILP-Lat al-
gorithm is used. This stems from the fact that MILP-Lat,
regardless of the E2E latency demand of the SFCs requested
by the UEs, starts instantiating VSFs as close to the UEs
as possible (i.e. starting from DUs towards the 5GC), and
since the CPU capacity of the DUs is much more limited
compared to the CUs and the 5GC, this results in a number
of migrations of those VSFs that have loose latency require-
ments in order to accommodate the new SFC requests with
stricter latency requirements. The second-highest number of
VSFs are migrated by MILP-Cost algorithm. This is because
the migration of VSFs is triggered due to the E2E latency
requirement of the requested SFC since MILP-Cost starts
placing VSFs starting from the 5GC towards DUs, entailing
high transmission delay over FH/BH links, which might
result in a rejection of UEs SFC requests unless VSFs are
migrated from the 5GC towards the CUs or DUs.

As for MILP-Mig, MILP-HO and HEU-HO algorithms,
they all aim at minimizing the number of VSF migrations
and their effect onto the UEs QoE, while the last two
algorithms, apart from this objective also aim at minimizing
the number of inter-CU handovers. We can observe that
these algorithms result in more uniform VSF migrations at
the DCs in contrast to MILP-Lat and MILP-Cost. We can also
observe that among these algorithms, MILP-HO achieves
the lowest amount of total VSF migrations, followed by
its HEU-HO heuristic counterpart. This is due to the fact
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that these algorithms give more priority to minimizing the
number of inter-CU handovers, which yields different em-
bedding solutions from the one found by MILP-Mig, which,
in turn, results in a lower number of VSF migrations than
the one achieved by MILP-Mig.

VSF provisioning DC change. In order to get an in-
sight into how the migration of VSFs takes place between
different DCs, let us analyze Fig. 5b, which shows the
aggregated number of UEs whose VSF provisioning DC
has been changed. As expected, the highest number of host
VSF changes took place when using MILP-Lat algorithm
since this objective triggered the highest number of VSF
migrations. Most of the UEs, in this case, changed their host
DCs from DUs to CUs and vice versa. While the former host
DC change happens due to limited CPU capacity of DUs, the
latter happens mostly because of the UEs mobility whose
VSFs tend to be served by the DUs in order to achieve the
goal of minimizing the E2E SFC processing latency. Like in
Fig. 5a, MILP-Cost is the second also in terms triggering the
highest number of UEs host DC change with the majority of
this change happening from the 5GC to CU and vice versa.
While the former is the expected behavior for MILP-Cost,
the latter occurs due to the fact that MILP-Cost, regardless
of the SFC latency class, tends to instantiate all VSFs at 5GC
ultimately saturating its CPU resources. As a consequence,
some SFCs with a loose E2E latency requirement end up
being instantiated at the CUs. With the arrival of more SFC
requests, this results in UEs changing their host VSFs from
CUs to 5GC. This can also be observed in Fig. 5a, which
shows a significant number of VSF migrations by MILP-Cost
from the CUs. As for the rest of the algorithms, compared
to MILP-Lat and MILP-Cost, we can observe that they trig-
ger much less and more uniform host DC changes across
different DCs (e.g.,, DU-CU, CU-5GC, 5GC-CU, CU-DU).
As expected, among these algorithms, the lowest number
of host VSFs are triggered by MILP-HO, while its heuristic
counterpart achieves comparable results.

PRB utilization. So far, the handover minimization al-
gorithms (i.e., MILP-HO, HEU-HO) have demonstrated the
most optimal performance in terms of CPU utilization at the
DCs, FH/BH utilization, the number of both inter-CU and
intra-CU handovers, and the number of VSF migrations.
This performance, however, comes at the expense of the
highest PRB utilization by MILP-HO, as can be seen in
Fig. 6a, which shows the average PRB utilization for all
the algorithms. This is because, in order to avoid triggering
inter-CU handover for the UEs, MILP-HO and HEU-HO
prefer to consume more PRBs. We can also see that the
lowest PRB utilization is achieved by HEU-HO, which, due
to its suboptimal embedding solutions, has accepted around
10% fewer requests, as shown in Fig. 6b. Among the MILP-
based algorithms, the lowest PRB utilization is achieved by
MILP-Cost since it takes into account also the cost of using
PRB resources in the objective function, as opposed to MILP-
Lat, for example, which prefers consuming more PRBs while
keeping low the E2E latency experienced by the users.

Acceptance ratio. Since all constraints defined in Sec-
tion 4.1 are imposed on all the MILP-based algorithms,
although with different SFC placements due to different ob-
jective functions, they eventually accepted all the UEs with
their SFC requests as shown in Fig. 6b. As opposed to the
MILP-based algorithms that have always been able to find
an optimal placement solution, HEU-HO accepted around
90% of the requests due to suboptimal SFC placements.
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Fig. 6: PRB utilization, acceptance ratio, and execution time for all algorithms.

Execution time. The main motivation for proposing the
heuristic is to address the scalability issue of the MILP-
based algorithms. Fig. 6b shows the average execution time
of associating a single SFC request for all the algorithms.
It can be observed that the execution time of HEU-HO
heuristic is three orders of magnitude less than that of
the MILP-based algorithms. Thus, the heuristic algorithm
proves to be much more scalable compared to the MILP-
based algorithm. This scalability of the heuristic, however,
comes at the expense of a lower acceptance ratio that is a
consequence of suboptimal mapping solutions. Note both
the heuristic and the MILP-based algorithms are central-
ized and, therefore, cannot be directly applied to large-
scale mobile networks. Nonetheless, such networks can be
divided into small clusters each of which can employ these
algorithms in a centralized location (e.g., a CU).

6 CONCLUSIONS

In this study, we compared four strategies for solving a
joint UE association, SFC placement, and resource allocation
problem. Based on that reported results, we can conclude
that MILP-Lat, although saves the transport network re-
sources, is not efficient in utilizing computational resources
of DUs, which are much less compared to the ones at CUs
and 5GC. Seeking to minimize the E2E latency experienced
by all the UEs, MILP-Lat tries to serve all SFC requests
from the DUs, triggering the highest number of VSF mi-
grations. Conversely, although MILP-Cost better utilized the
computational resources of the DUs, resulting in a reduced
service provisioning cost for the network provider, it has
significantly increased the FH/BH link utilization. More-
over, performing a service-unaware SFC placement, due to
increased transport network transmission time, it yielded
many VFS migrations, especially for the UEs that have
strict E2E latency requirements. While MILP-Lat could be
an appropriate choice to be used in the network segment
where the transport network lacks capacity and the edge
DCs have a high processing capacity, MILP-Cost would
be a more optimal choice in the areas where there are
abundant transport network resources and the edge DCs
have a limited amount of computational capacity.

As for MILP-Mig, it demonstrated to achieve a bet-
ter performance across all evaluation metrics compared to
MILP-Lat and MILP-Cost algorithms, which are two ex-
tremes in terms of employing the edge DC resources and
the transport network resources. Thus, performing a service-
aware SFC placement, MILP-Mig found a better trade-off
between the computational capacity of the DCs and the
FH/BH bandwidth, resulting in a much less number of

VSF migrations. Among all the MILP-based algorithms,
MILP-HO exhibited the highest performance, followed by its
heuristic counterpart. Specifically, consuming slightly more
PRB resources, it triggered the lowest number of inter-CU
handovers and VSF migrations by optimally selecting the
host DCs for the SFC requests with diverse requirements.
Finally, at the expense of suboptimal UE associations and
SFC placements, HEU-HO demonstrated the fastest execu-
tion time, making it suitable for larger-scale problems.
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