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Abstract—5G Network slicing is one of the key enabling
technologies that offer dedicated logical resources to different
applications on the same physical network. However, a Denial-
of-Service (DoS) or Distributed Denial-of-Service (DDoS) attack
can severely damage the performance and functionality of net-
work slices. Furthermore, recent DoS/DDoS attack detection
techniques are based on the available data sets which are collected
from simulated 5G networks rather than from 5G network
slices. In this paper, we first show how DoS/DDoS attacks on
network slices can impact slice users’ performance metrics such
as bandwidth and latency. Then, we present a novel DoS/DDoS
attack dataset collected from a simulated 5G network slicing
test bed. Finally, we showed a deep-learning-based bidirectional
LSTM (Long Short Term Memory) model, namely, SliceSecure
can detect DoS/DDoS attacks with an accuracy of 99.99% on the
newly created data sets for 5G network slices.

Index Terms—DoS, DDoS, 5G Network Slicing, Deep Learning,
Bidirectional LSTM.

I. INTRODUCTION

Network slicing, now an important part of 3GPP Release 16,
is a core component of the 5G mobile network architecture.
One of the motivating factors behind the introduction of slicing
is the ability to support wide-variety of applications with
heterogeneous Quality of Service (QoS) requirements using
the same physical infrastructure.

Network slicing security threats are common concerns that
can be divided into life-cycle security, intra-slice security, and
inter-slice security [1]. The 5G communication system ele-
ments including User Equipment (UEs), access networks, and
core networks are all vulnerable to security attacks. In a 5G
network slicing environment, many access and core network
functions (e.g., User Plane Function (UPF)) are expected to be
virtualized on the same physical resources, thus increasing the
attack surface. For example, a UE compromised with malware
can send a large amount of DoS traffic targeting a virtualized
UPF function. In worst cases, multiple compromised UEs can
form a botnet to execute DDoS attacks against a UPF by
manipulating a group of linked UEs [2]. Such attacks can
impact the performance of uncompromised UEs using the
same or different slice that share the attacked UPF. However,
to the best of our knowledge, there is no study that analyzes
performance impact in a network slicing environment. To fill
this gap, this paper presents a study to show the impact of
DDoS attacks on slice users’ performance metrics such as
bandwidth and latency.

Many data sets including CICDoS, CICIDS2017, CSE-
CICIDS2018 [3], and CIC-DDoS2019 [4] are available for
DoS/DDoS attacks. To the best of our knowledge, there is
no available data set specially for DoS/DDoS attacks in 5G
network slices. For this purpose, we generated a new dataset
for benign traffic and DoS/DDoS attacks traffic with the
simulated 5G network slices and made it publicly available.
Then, we implemented a deep learning based SliceSecure
model to detect DoS/DDoS attacks in our dataset using a
Bidirectional Long Short-Term Memory (LSTM) network [5].
Once an attack is detected, the compromised UE can be moved
to a sinkhole slice to mitigate the impact of the attack [6]. This
also shows the benefit of network slicing where some attacks
can be contained within a network slice without impacting
co-existing slices.

The main contributions of this paper are as follows:
• We simulated a 5G network slice testbed using Free5GC 1

and UERANSIM 2 and showed the impact of DoS/DDoS
attacks on performances of 5G network slices.

• We generated novel data sets for benign traffic and DDoS
attack traffic using the 5G network slice testbed.

• Then, we extracted relevant features from .pcap file to
.csv file and implemented the SliceSecure model.

• Lastly, we evaluated the SliceSecure model to detect
DDoS attacks using the newly generated dataset.

The rest of the paper is organized as follows: Section II
discusses the related works, Section III elaborates on the
impact of DoS/DDoS attack, Section IV discusses detection
technique, Section V shows the results and comparison, and
lastly, Section VI concludes the paper.

II. RELATED WORK

The majority of previous work have used statistical, machine
learning, and cryptography-based methods for identifying
DDoS attacks in different networks. A combination of volume-
based detection techniques and entropy methods are discussed
by the authors in [7] to mitigate DDoS attacks. Entropy-
based approach to defending against DDoS attacks in Software
Defined Networking (SDN) is discussed in [8].

Several recent work have focused on addressing DDoS
attacks in 5G and beyond mobile networks. For example,

1“free5GC.” https://www.free5gc.org/ (accessed May 27, 2022)
2”aligungr/UERANSIM”, https://github.com/aligungr/UERANSIM/ (ac-

cessed May 27, 2022)



the authors in [9] described a mathematical model based
on slice isolation to mitigate DDoS attacks in 5G network
slicing. The work in [10] demonstrates how volume and botnet
based DDoS attack can be performed in 5G network slices.
In [11], the authors suggested a method for detecting DDoS
attacks in 5G networks based on the bidirectional LSTM
model. In [12], the authors introduced DeepSecure model, a
deep learning framework, to detect and mitigate DDoS attacks
using existing datasets. A 5G prototype is demonstrated in
[6] to mitigate DDoS attack by moving malicious UEs to
a sinkhole-type quarantined slice. However, existing works,
unlike this paper, neither analyze the impact of DDoS attacks
on slice performance nor consider attack data sets collected
from network slices.

III. IMPACT OF DOS/DDOS ATTACK

This section provides an overview of components deployed
in the 5G testbed for network slicing. The main components
are as follows:

Virtual Machine (VM): All the network functions used in
this document are deployed as virtual machines with different
Internet Protocols (IPs).

Server: We used two VMs as servers in this paper. One
server is used for measuring performance and another server
is used to do DDoS attacks from UEs.

Mobile Core: To implement 5G mobile core networks,
Free5GC is used. The 5G core network (5GC) defined in
3GPP Release 15 (R15) and beyond can be implemented using
Free5GC which includes : Core Access and Mobility Man-
agement Function (AMF), NF Repository Function (NRF),
Session Management function (SMF), and UPF.

RAN Emulation: It is used to simulate 5G network UE
and RAN (gNodeB). In basic terms, it is used as a 5G mobile
phone and a base station.

5G allows UEs to access several slices simultaneously, but
only one AMF will be used for all slices. In our paper, we
considered four experiment phases as follows: (1) Network
slice implementation. (2) Network slice performance measur-
ing before DDoS attacks. (3) Doing DDoS attacks in server2.
(4) Network slice performance measuring after DDoS attacks.

The experimental setup for 5G network slicing is displayed
in Fig 1 that consists of two network slices called slice1
and slice2. To experiment with DDoS attacks in network
slicing, we implement network slicing using 12 VMs. For
each VM, RAM is 2048 MB and two processors are used.
We used Ubuntu 20.04.3 LTS (5.4.0-104-generic) operating
system, Free5GC version v3.0.5, and UERANSIM version
v3.1.0. The 5G network core function is deployed in 5GC
VM, and User Plane Functions (UPF1 and UPF2) are deployed
in UPF1 VM, and UPF2 VM consecutively. In addition, we
used two servers, including server1 for measuring performance
and server2 to do DDoS attacks. The main idea behind is to
overload UPF1 with lots of attack traffic destined for server2
and show the performance. Furthermore, UEs (UE1-UE6) are
deployed in six different VMs. Lastly, gNB is deployed in
gNB1 VM. To simulate all UEs and gNB, UERANSIM is

Fig. 1. The experimental setup for 5G Network Slicing
used. The UE1-UE5 are connected to slice1 via UPF1, and
UE6 is connected to slice2 via UPF2. First, we measure
the performance from UE1 to server1. That is the normal
performance measurement before the DDoS attack. Then, we
will conduct the DDoS attack from UE2-UE5 to server2
using UPF1, and simultaneously, we measure the performance
during the DDoS attack from UE1 to server1.

A. Experiments Scenarios

We implemented two 5G network slices which are con-
nected to Network1 (IP= 60.61.0.0/16) and Network2 (IP=
60.62.0.0/16). We connected five UEs (UE1-UE5) to UPF1
which has five Protocol Data Unit (PDU) sessions named PDU
Session1 to PDU Session5, respectively. Then, UE6 is con-
nected with UPF2 using PDU Session6. We performed DDoS
attack scenarios using hping3 from UE2 to Server2 using two
parameters namely i and d where i is the interval between
sending each packet in microseconds and d refers to packet
body size in bytes. Furthermore, the network performance in
terms of bandwidth and latency is measured using qperf tool
in the 5G network slice from UE1 to server1. On server1,
qperf runs without arguments. On the other hand, on a client,
we run qperf to obtain measurements in terms of bandwidth
and latency.

To calculate the results for different scenarios, each scenario
is repeated 5 times, and after 5 repetitions, the average results
are taken.

Scenario-I: First, we measure performance from UE1 to
server1 in terms of bandwidth and latency for the normal state
of the network. The average values in the normal state for
bandwidth and latency are 50.5 MB/sec and 178 microseconds,
respectively.

Scenario-II: In Fig 2, we demonstrate the DDoS attack
from UE2-UE5 to server2 and measure the performance be-
tween UE1 and server1. We considered increasing the interval
(i) between sending each packet with various packet sizes
(d). Fig 2 shows that by sending more DDoS packets (by
decreasing intervals between DDoS packets from 600 to 150
microseconds and using varying packet sizes in the same
range), the bandwidth between UE1 to server1 is decreased
substantially, and the corresponding latency has increased.



Fig. 2. TCP Bandwidth and Latency after attack with i (interval time) in
range of 150 to 600 microseconds and d (packet size) in range of 150 to 600
bytes

Fig. 3. TCP Bandwidth and Latency after attack with i in range of 150 to
750 microseconds and fixed d=150 bytes

Scenario-III: In this scenario, the performance is measured
from UE1 to server1 while the attack is going on between
UE2-UE5 to server2. We assigned a fixed packet size of 150
bytes and varied the interval between sending the packet in the
range of 150 to 750 microseconds. In Fig 3, the result shows
that the bandwidth is decreasing and latency is increasing as
we increase DDoS attack traffic by reducing interval i.

IV. DOS/DDOS ATTACK DETECTION USING SLICESECURE

A. Creating Data sets

Publicly available datasets for DDoS attacks are CICDoS,
CICIDS2017, CSECICIDS2018 [3], and CIC-DDoS2019 [4]
which are not for 5G network slices. That’s why we have im-
plemented 5G network slices using Free5GC and UERANSIM
simulator to create our new data sets. After implementing the
5G network slices, we send different types of traffic mentioned
in Table I. We send benign traffic in both slice1(between UE1-
UE5 and server1 via UPF1) and slice2(between UE6 and
server1 via UPF2).Lastly, We used hping3 tool to generate
DoS/DDoS attacks as shown in Table I. We captured the .pcap
file using Wireshark [13] and made those publicly accessible
for researchers and industry3.

TABLE I
LIST OF EXPERIMENT TRAFFIC THAT SENDS THROUGH NETWORK SLICES

Serial Benign Traffic Dos/DDoS Traffic
1 ICMP ping UDP flooding
2 ACK scan TCP sync attack
3 UDP scan TCP push
4 Collecting Initial Sequence Number TCP fin
5 Firewalls and Time Stamps TCP srt
6 SYN scan
7 FIN, PUSH AND URG scan
8 Determine number of pings
9 Copy files between UEs and server

10 Sending emails between user and server

3https://gitlab.com/sajidkhan382067/ddos-data-sets-2022

B. Extracting Features from data sets

We converted the .pcap files into a .csv that consists of
84 features of the traffic using CICFlowMeter [14]. We used
11 features (Flow duration, Destination IP, Destination Port,
Fwd Packet Length Std, Source IP, Source Port, ACK Flag
Count, Protocol, Total Fwd Packet, MinSegSizeForward, and
Slice) following the paper [4] except the feature called “Slice”
which we inserted for slice.

C. Detection and Evaluation

Our proposed SliceSecure model is a bidirectional long-
term memory network - commonly referred to as ”LSTM” -
which is a special type of Recurrent Neural Network (RNN)
based on deep learning and efficient enough to learn the
long-term dependencies. It was developed by Hochreiter and
Schmidhuber (1997) and has been improved and familiarized
by many people. It has been developed explicitly to skip the
problem of long-term dependency. Memorizing information
for a long time is their normal behavior, not something they
struggle to learn. All cyclic neural networks take the form of
a sequence of repeating modules of the neural network. In
standard RNNs, this iterative module will have a very simple
structure, such as a ’tanh’ layer [15]. We used the Bidirectional
LSTM model to detect DoS/DDoS attacks with the previously
mentioned 11 features from the collected data sets. In our first
evaluation, we used 20000 rows benign and attack traffic from
the newly created data sets. In another evaluation, we combine
20000 rows of benign traffic with varying number of attack
traffic(between 4000 to 20000 rows). In both evaluations,
we split the whole dataset into 80/20 manner for training
and testing purposes. Our activation function is ‘tanh’ and
epochs = 40. We evaluated our model based on well-known
metrics including Accuracy, Precision, Recall, F1 Score, Mean
Squared Error (MSE) and Area under the curve of ROC (AUC)
[16], [8].

V. RESULT AND DISCUSSION

Our proposed SliceSecure model can detect attack with an
Accuracy of 99.99% for new data sets as shown in TABLE
II. Its Recall is 99.98%, Precision 99.99%, F1 score 99.99%,
MSE is 0.000123, and AUC is 99.99%. Our approach con-
verges within 40 epochs, unlike the DeepSecure [12] model.

In Fig 4, Epoch versus Accuracy graph is plotted for training
and validation. The test accuracy and the validation accuracy
are more than 99% from the first epoch of the experiment.
In some of the epochs, there are some fluctuations. As the
accuracy in every epoch is more than 0.99, the value of the
fluctuations is not so high in terms of the values. Other than
that, most of the time the graph is stable.

In Fig 5, Epoch versus Loss graph is plotted. The loss in
training and validation time is quite linear. But, some of the
time there are a few differences that can be negligible. We used
this Bidirectional LSTM model because in [11], the authors
used a Bidirectional LSTM model with an accuracy of about
97.99%, and in [12], the authors used the LSTM model with



TABLE II
COMPARISON OF VARIOUS METRICS OF VARIOUS DETECTION MODELS

Model Name Data set Used Number of Epochs Accuracy (%) AUC (%) Precision (%) Recall (%) F1 Score (%)
DeepDefence [11] ISCX2012 [17] 40 97.99 99.28 98.10 97.88 97.99
DeepSecure [12] CICDDoS 2019 [4] 100 99.97 99.85 99.95 99.98 99.97

SliceSecure Our data set 40 99.99 99.99 99.99 99.98 99.99

TABLE III
IMPACT ON ACCURACY WITH THE INCREASE OF ATTACK TRAFFIC

Attack Traffic(%) 20% 40% 60% 80% 100%
Accuracy(%) 99.87% 99.91% 99.97% 99.99% 99.99%

Fig. 4. Epoch versus Accuracy of Training and Validation

an accuracy of 99.97% on different data sets. The performance
metrics of those three models are given in the Table II.

Lastly, we did another experiment by changing the attack
traffic volume in different percentages of normal traffic in our
training data set. We took 20% to 100% of attacking traffic in
terms of benign traffic every time by varying 20% in each test
set. Suppose, the number of rows of benign traffic is 20000,
So 20% of attack traffic is 4000 rows used in the first test set.
As the attack traffic volume is increased the detection accuracy
becomes higher slowly and it is shown in Table III.

VI. CONCLUSION

In this paper, we simulated a 5G network slice testbed
using Free5GC and UERANSIM and showed the impact of
DoS/DDoS attacks on performances of 5G network slices. We
also generated a new dataset by injecting variety of benign and
DoS/DDoS attacks traffic on different network slices. The new
data set is used to evaluate our SliceSecure model that can
classify benign and DoS/DDoS attack traffic with a success
rate of 99.99%. Additionally, the malicious UE can also be
detected from that model.

In the future, more slices can be created rather than two
slices in the 5G network which will make the network more
realistic. Except for the mentioned DoS/DDoS attacks traffic,
different types of attack traffic can be added to the data set to
make it more robust.
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