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Abstract—Due to the scarcity of labeled faulty data, Unsu-
pervised Learning (UL) methods have gained great traction for
anomaly detection and localization in Network Functions Virtu-
alization (NFV) systems. In a UL approach, training is performed
on only normal data for learning normal data patterns, and devi-
ation from the norm is considered as an anomaly. However, it has
been shown that even small percentages of anomalous samples in
the training data (referred to as contamination) can significantly
degrade the performance of UL methods. To address this issue,
we propose an anomaly-detection approach based on the Noisy-
Student technique, which was originally introduced for leveraging
unlabeled datasets in computer-vision classification problems.
Our approach not only provides robustness against training-
data contamination, but also can leverage this contamination to
improve anomaly-detection accuracy. Moreover, after an anomaly
is detected, localization of the anomalous virtualized network
functions in an unsupervised manner is a challenging task in
the absence of labeled data. For anomaly localization in NFV
systems, we propose to exploit existing local Al-explainability
methods to achieve a high localization performance and propose
our own novel Al-explainability method, specifically designed
for the anomaly-localization problem in NFV, to improve the
performance further. We perform a comprehensive experimental
analysis on two datasets collected on different NFV testbeds
and show that our proposed solutions outperform the existing
methods by up to 22% in anomaly detection and up to 19% in
anomaly localization in terms of F1-score.

I. INTRODUCTION

Virtualization represents a revolutionary change in the net-
working industry, similar to the change brought in the com-
puter industry in the 80’s. A prolific application of virtualiza-
tion in networking is Network Functions Virtualization (NFV).
NFV allows decoupling network or service functions from the
underlying hardware by implementing them as software ap-
pliances, called Virtual Network Functions (VNFs), on virtu-
alized commodity hardware. Numerous existing deployments
of VNFs have already shown the potential to achieve near-
hardware performance and to provide ample opportunities for
network optimization and cost reduction [1,2]. Nonetheless,
provisioning and managing VNF-based services introduce ad-
ditional complexity due to dynamic network topologies, mul-
tiple layering, and lack of network visibility. This increased
complexity makes VNFs more failure-prone than dedicated
hardware-based solutions [3], [4], [5]. Therefore, detecting
anomalous behavior in an NFV system and localizing its
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origin is of paramount importance to ensure high reliability
for virtualized services.

The complex inter-dependencies and multi-faceted fault
characteristics in NFV systems render traditional anomaly-
detection and localization approaches inefficient as they rely
mostly on expert-based fixed thresholds [6], [7]. On the other
hand, Machine Learning (ML) methods, in particular Deep
Learning (DL) methods, have shown promising results in
developing adaptive and efficient mechanisms to detect and
localize potential anomalies in a dynamic NFV system by
capturing hidden dependencies among a variety of perfor-
mance metrics. However, most of these existing ML-based
approaches utilize Supervised Learning (SL) algorithms that
require abundant labeled faulty instances to achieve satisfac-
tory performance, while labeled network faulty data is a scarce
resource and generally unavailable in sufficient volumes for
two main reasons: i) labeling data requires domain experts to
annotate logs of anomalous scenarios, and ii) only a small
amount of the monitored data from the NFV system is related
to faulty scenarios [7].

UL-based anomaly detection on multi-dimensional data can
help to circumvent the requirement of abundant labeled faulty
instances. Other than reducing the reliance on labeled data and
domain experts’ knowledge, another benefit of a UL approach
from an operational point of view is that it would not be
biased on some specific failure scenarios and can provide a
more generalized protection against many sorts of anomalous
behavior in the NFV system. For example, UL methods based
on Recurrent Neural Networks (RNNs) are well-known for
anomaly detection on temporal data, however, training RNNs
generally is a long and computationally expensive process
that requires a large volume of training data [8]. Therefore,
RNNSs are not suitable for NFV environments with dynamic
topologies where periodic software updates often change the
system functionality, with the consequence that the ML models
need to be often re-tuned with newly collected data [8].

Autoencoder is another popular UL method that generally
trains faster and requires much less training data than RNNs
to reach a satisfactory performance [8]. Autoencoders have
been utilized for unsupervised anomaly detection in many
network management tasks, including anomaly detection in
NFV architectures [6], [9]. These methods assume the avail-
ability of a training dataset that purely consists of normal
instances. However, it is often unavoidable that the historical



data collected from the NFV architecture includes a few
anomalous samples, i.e., we expect our historical data to
have some degree of contamination. Different studies have
shown that even small percentages of contamination in the
training data can significantly degrade the performance of
Autoencoders in UL anomaly-detection methods [10], [11].

In this paper, we propose a novel unsupervised anomaly-
detection approach for NFV systems for the case in which
training data is contaminated. Inspired by the Noisy-Student
[12] concept used in computer vision, we first train a Deep
Autoencoding Gaussian Mixture Model (DAGMM) [11], (i.e.,
a UL anomaly-detection method) on the contaminated training
data as the teacher model, initially treating the training data
as it has no contamination. Then, we use DAGMM to remove
potential anomaly instances (i.e., to clean the training data),
and from these removed instances, we pseudo-label a few
samples that DAGMM has classified as anomalies with very
high confidence (pseudo-labeling [13] is the process of using
a trained ML model to predict labels for unlabelled data). In
this way, we compensate for some of the information that
we potentially lose during the data cleaning process. The
cleaned dataset and pseudo-labeled anomalies are then fed to
the student model, which is our novel architecture consisting of
an Autoencoder cascaded with a a semi-supervised anomaly-
detection model called Deviation Network [14]. We also use
data augmentation in feature space [15], a data augmentation
method proposed for non-image data, to add noise to the
extracted pseudo-labeled anomalies to improve the model’s
generalization.

Once anomaly detection is successfully achieved with the
approach described above, we focus on developing an unsu-
pervised approach for anomaly localization, i.e., localizing the
anomalous VNF after an anomaly is detected. Localization
is also a challenging task in a UL approach, as there might
be no labeled anomalous instances in the training data, and
distinguishing between different failure scenarios can only
be done by comparing the detected anomaly with normal
instances. In our paper, we utilize SHapley Additive exPlana-
tions (SHAP) [16], a local Al-explainability method, to reach
a high localization performance.

To summarize, the main paper contributions are:

e We propose a novel Noisy-Student-based unsupervised
anomaly-detection approach that is robust against con-
tamination (some anomalous samples) in the training
data and can leverage this contamination to improve the
anomaly-detection performance.

e We exploit SHAP, a local Al-explainability method,
to achieve a high performance in the unsupervised
anomaly-localization task. We also propose our novel
Al-explainability method, specifically designed for the
localization problem, to further improve the performance.

« We show the effectiveness of our proposed solutions by
comprehensive experimental evaluation on two datasets
from two different NFV testbeds.

The rest of the paper is organized as follows. Section II dis-

cusses the related work. Section III is a detailed description of

our anomaly-detection and localization approaches. In Section
IV, experimental analysis is presented based on datasets from
two different NFV testbeds. Section V concludes the paper.

II. RELATED WORK
A. ML-based Fault Detection and Diagnosis

Many works leveraged SL for fault detection and diagnosis,
including fault management of NFV environments [7], [17],
[18]. However, as discussed, SL methods require abundant
labeled network faulty data that usually is unavailable in
sufficient volumes. Some existing works addressed the issue
of lack of labeled data by investigating unsupervised ML
techniques. The most common UL approach in these works
consists in training an Autoencoder on a dataset consisting of
only normal samples and performing anomaly detection based
on the overall reconstruction error of the Autoencoder. This
type of Autoencoder-based UL method has been used in [6]
and [19] for anomaly detection in an NFV architecture, in [9]
for anomaly detection in Radio Access Network (RAN) cell
trace data collected from multiple Evolved NodeBs, and in
[20] for detecting anomalous symptoms in 5G RAN. However,
all these works assume the availability of a training dataset that
consists only of normal samples with no contamination.

B. Unsupervised Anomaly Detection with Contamination

Some existing studies from the ML field (e.g., [10], [11])
addressed the issue of training-data contamination for unsuper-
vised anomaly detection on multi-variant data. Authors in [10]
and [11] try to increase robustness against contamination by
performing density estimation on the features extracted by the
Autoencoder prior to anomaly detection. But, their robustness
against contamination is partial, while our approach even
leverages the contamination to improve anomaly-detection
performance ([11] is one of our compared approaches).

C. Anomaly Localization

Different types of anomaly-localization techniques were
proposed for fault diagnosis in network management. Model-
based localization methods leverage the knowledge of network
topology to build abstraction models, such as dependency
graphs, to represent correlations among different metrics and
events of the network that can be used for fault localization
[21], [22], [23], [24]. However, these techniques are not suit-
able for NFV architectures that have dynamic topologies [7].
Some data-driven fault localization approaches label different
anomalous instances based on the type and location of the
fault and turn the problem into a multi-classification one [7],
[25], but these methods require abundant labeled anomalous
samples to reach good performances. When anomaly detection
is performed by an Autoencoder, most existing unsupervised
localization approaches try to localize the anomalous VNF
by analyzing reconstruction errors of different features in the
Autoencoder [26], [27]. However, it is shown that these ap-
proaches usually lead to poor localization performances [26].
More recently, Al-explainability methods have been utilized
for anomaly localization [9], [28]; however, the methods in



these works only provide some basic information to facilitate
the procedure for the domain experts, whereas in our paper,
we use Al-explainability algorithms to perform the anomaly-
localization task in a fully automated manner.

III. ANOMALY-DETECTION AND LOCALIZATION
APPROACH

A. Problem Formulation

We are monitoring the health state of an NFV system
that consists of a network of k& VNFs: vnf!,vnf?,...,vnfk.
In each time step t, we coll@ct n; metrics from vn fj and
denote these metrics as vnf] € R'*". Examples of these
metrics could be the general performance metrics shared by
all the VNFs, such as CPU utilization and incoming/outgoing
packet rates, or more exclusive performance metrics related
to the functionality of each individual VNF that can vary
from one VNF to another (e.g., call success ratio). There-
fore, x;, our data sample for time step t that represents
the status of the entire NFV system consists of the com-
bination of all the collected metrics from all the VNFs:
zy = {onflonf?,...,onfF} € R4, where d = Z?Zl n;
is the total number of metrics collected from the NFV system.
We have the historical data of the first n time steps: X =
{x1, 22, ...}, X € R"*?, We assume the system works in
normal circumstances for most of this period; however, the
historical data also includes some anomalous samples and is
not entirely made of normal instances. Similar to [11], we
assume up to 5 percent of the training data might consist
of anomalous samples (i.e., up to 5% contamination in the
training data). Given this historical data of the NFV system
for the first n time steps as the training data, we have two
objectives in this problem:

« Anomaly Detection: Detecting anomalous behavior of the
system after time step n, i.e., determining the behavior
of the system y,,+; € {0, 1} (0: normal, 1: anomaly), for
samples z!¢t € R4, i > 0.

o Anomaly Localization: Localizing the VNF responsible
for the anomalous behavior of the system after the
detection of an anomaly, i.e., determining r such that
vnf" is the location of the anomaly.

B. Noisy-Student-based ~ Unsupervised Anomaly-Detection
(NSUAD) Approach

To overcome the issue of contamination in the training
data, we propose an unsupervised anomaly-detection approach
based on the Noisy-Student method and call it NSUAD. The
Noisy-Student method was introduced in [12] for leveraging
unlabeled datasets in computer vision classification problems.
In this method, a neural network is trained on the available
labeled dataset to reach an initial good performance. Then,
this neural network is used as the teacher model to generate
pseudo-labels on the unlabeled dataset. Afterward, a larger
neural network is trained on the combination of labeled and
pseudo-labeled data, and it is called the student model. The key
idea in this method that makes the student model have a better
performance than the teacher model is that by injecting noise

to input data through data augmentation during the learning of
the student model, the student achieves better generalization.
1) Teacher Model

In a Noisy-Student approach, we need a teacher model
that achieves an initial good performance in the anomaly-
detection task, and its predictions are utilized for training a
student model that outperforms the teacher. In our problem,
we do not have a labeled dataset to train the teacher with;
instead, for the teacher model to achieve an initial good per-
formance in anomaly detection, we train a Deep Autoencoding
Gaussian Mixture Model (DAGMM) [11], an unsupervised
anomaly-detection method, on a fraction (e.g., 40%) of the
training data, initially treating the training data as it has no
contamination. We train DAGMM on a fraction (e.g., 40%
in our experiments) of the training data instead of the whole
training data to avoid overfitting on the anomalous samples.
In other words, DAGMM treats its training samples as normal
instances, therefore, training it on a fraction of data (instead
of all of it) would lead to fewer false negatives when we are
observing the teacher’s prediction on the training data. Since
we are interested in extracting pseudo-labeled anomalies from
the training samples, having fewer false negatives is more
desirable to us than having fewer false positives in this stage.

As we mentioned earlier, DAGMM is shown to be robust
against contamination in the training data to some extent [11];
therefore, it is a good choice for our teacher model. The output
of DAGMM for a sample is an energy value representing the
sample’s potential to be an anomaly. The higher the energy
of a sample is, the higher is the probability that the sample is
an anomaly. After training DAGMM on a fraction of training
data, we observe its prediction (energy) of the whole training
samples and denote it as Ex:

Ex = DAGMM (X), Ex € R™!

2) Cleaning Training Data and Extracting Pseudo-labeled
Anomalies

We consider p1 % of training samples with the lowest energy
as a cleaned training dataset (X.) that is expected to be
much less contaminated than the original training data (thry
is defined as the p" percentile of the energy values in Ex):

thry = percentile’* (Ex)
X, = X[Ex < thr], X. € R4

In our experiments, we chose p; = 93% to disregard a slightly
more percentage than the highest considered contamination
percentage (5%) in the training data. However, X, still is
contaminated (to a lesser degree, though), and we poten-
tially would lose some valuable information by disregarding
(100 — p1)% of the training data. To compensate for this lost
information, we try to extract some pseudo-labeled anomalies
from the training samples that have the highest energy in the
DAGMM method. If ug and o are the average and standard
deviation of the energy values of samples in X, then we define
thry as:
th’l“g :/.LE—FbX O'E',bZ 1



In our experimental analysis, we chose b = 2, but its value
does not have a big impact on the approach performance as
long as it is not too large. By this definition, most of the
samples in X, would have a lower energy value than thry, and
a considerable number of anomalous samples in the training
data would have a higher energy value than thry; therefore, we
also separate all the training samples with higher energy value
than thry as the potential contamination data, and denote it as
Xeont:

Xeont = X[Ex > thro]

Now, we choose the top p2% samples with the highest energy
values (e.g., top 20%) in X o, as pseudo-labeled anomalies,
and denote as Xgpom (training samples that DAGMM has
classified as anomalies with very high confidence):

Econt = DAGMM(Xvont)
thrs = pev'centile(loof’”) (Eecont)

Xanom = Xcont [Econt > th’f’g]

In a Noisy-Student method, the key idea for achieving
a better performing student model is to add noise to the
pseudo-labeled data through data augmentation to improve
the generalization of the student model. Therefore, we utilize
the data augmentation method for non-image data proposed
in [15], called “data augmentation in feature space (DAIFS),”
to add noise to the extracted pseudo-labeled anomalies, and
denote the obtained noisy anomalous pseudo-label samples as

Xanom:

Xanom = DAZFS(Xanom)

Then, our new training data that the student model pf NSUAD
will be trained on is the combination of X, and X ,0m:

Xnew = {Xc;Xanom}; Xnew S Rde

3) Student Model

For the student model, we propose a novel architecture,
consisting of an Autoencoder and a Deviation Network (De-
vNet), to be trained on X,.,. The proposed student model
is presented in Fig. 1. DevNet [14] is a semi-supervised
learning anomaly-detection approach that is designed to utilize
a few available labeled anomalies to improve the anomaly-
detection performance; therefore, it is a well-suited approach
to take advantage of the extracted pseudo-labeled anomalies
in our problem. In DevNet, a single anomaly score value is
directly learned from the input sample, and this anomaly score
would be the anomaly-detection criterion. However, since the
anomaly score is a direct mapping from the input space to
a single scalar value, DevNet might not perform well when
dealing with high-dimensional data. To address this issue, for
the student model, we integrate DevNet with an Autoencoder
in a novel architecture, where Devnet learns the anomaly
score from low-dimensional features extracted from the input
data by the Autoencoder, instead of learning it directly from
the input samples. These low-dimensional features contain
valuable information regarding the anomalous behavior of the

input samples, thus, can improve the performance of DevNet
and the scalability of the student model for large NFV systems.

Autoencoder has two parts, an encoder and a decoder.
The encoder is a Feed-Forward Neural Network (FNN) that
maps the input sample z to a low-dimensional representation,
and the decoder is another FNN that tries to reconstruct
the input sample from this low-dimensional representation.
Reconstruction error (rece,»(x)) of the Autoencoder would
be defined as the difference between the reconstructed input
sample and the actual input sample:

encoder = FN N (input_shape = d, output_shape = dy)
dy << d
decoder = F'N N (input_shape = dy, output_shape = d)

Autoencoder : .. = decoder(encoder(z))

reCerr () =< ||Trec — 2|, _ Tree T

[|Zreel| > |||
Accordingly, we can define the overall latent features (denoted
as z(x)) extracted from the input by the Autoencoder as the
combination of the decoder’s output and the reconstruction
error features:

2(z) = {encoder(z), recer ()}, z(z) € RM*(@1F2)

Now, in NSUAD, these latent features extracted by the
Autoencoder are fed to the DevNet model for anomaly
detection. DevNet is a simple neural network that learns
a scalar anomaly score ®(z) value from its input z. In
the training of DevNet, anomaly scores of normal samples
(samples in X.) are forced to be close to a reference average,
and anomaly scores of anomalous samples (X' anom) are forced
to deviate significantly from this average. To achieve this goal
while simultaneously minimizing the reconstruction error of
the Autoencoder, we define the following loss function for
end-to-end training of the whole proposed student model
(Autoencoder + DevNet) on X,,c:

allzre — || + [2EL=E | 5 e X,

L(z) =
max(0,a — W),x € Xunom

Where o > 0 determines the effect of the two components
of loss function for normal samples (we chose @ = 5 in our
experiments). Same as in [14], we assume that anomaly scores
of normal samples have a standard normal distribution F' :
N(0,1), and for training a batch of training samples, we draw
[ observations from this distribution: (rq1,72,...,7;). Then,
the reference average is calculated based on these ! drawn
observations: jp = %Eizl r; and o = %22:1 (ri — pgr)°.
Similar to the loss function in [14], our loss function pushes
anomaly scores of normal samples in X, to be near pp and
requires anomaly scores of samples in Xanom to deviate from
pr with at least @ > 0 confidence level. We chose a = 5
to ensure significant deviation from ppr for our anomalous
samples. Moreover, in NSUAD, we are also considering the
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Fig. 1. The proposed student model to be trained on Xjeq. The latent
features (low-dimensional representation and reconstruction error features)
are extracted from the input by the Autoencoder and are fed to the Deviation
Network. Then, the anomaly score output of the Deviation Network alongside
average anomaly score of some normal samples (pg) that is calculated
according to a prior distribution F are fed to the loss function for end-to-
end training of the whole model.

minimization of reconstruction error of the Autoenncoder for
our normal samples in the loss function. Moreover, same as
in [14], for creating a batch of training samples with size
B, we select /2 samples from X. and 3/2 samples from
Xanom- In the end, based on the loss function, parameters of
the Autoencoder and the DevNet are optimized by performing
a gradient descent step. In the evaluation phase, a test sample
is considered as an anomaly if its anomaly score exceeds a
predefined threshold (e.g., a/2).

C. Anomaly Localization

After an anomaly is detected, localizing the VNF that is
responsible for the anomalous behavior of the system is the
next important step in fault management of NFV systems.
In this paper, we have utilized the local Al-explainability
method SHAP [16] to perform the localization task in a fully
automated manner and achieve high localization accuracy. Af-
terward, we propose our own novel Al-explainability method,
called “Cluster Permutation”, customized specifically for our
problem to further improve the localization performance. In
the end, we show how cascading Cluster Permutation with
SHAP can help us to reach an even higher performance.

1) Localization with SHAP

The complete procedure of anomaly localization with the
SHAP method [16] is presented in Algorithm 1. To determine
the contribution of each feature for the anomalous behavior of

a detected anomaly sample, SHAP gets the detected anomaly
xtest the detection model NSUAD, and a set of background
input samples to explore the input space with. Giving the entire
training samples as the background data to the SHAP method
would result in a high impractical execution time. A possible
solution is to apply k-means on the training data and give the
obtained centroids, as representatives of the training data, to
the SHAP method. In our experiments, we applied k-means
on X with 50 clusters and gave the corresponding centroids
Cents to the SHAP method as background data to achieve
a reasonable execution time. shap_valuest®* € R4, the
output of the SHAP method for the detected anomaly x!®st,
has a value for each feature that represents the effect of
the feature on the detection model’s output for this detected
anomaly. In the next step, for each vn f7, we separate elements
of shap_valuest®*® corresponding to the features of vnf’
and denote it as shap_valuest®**(j). Finally, the anomaly
location is chosen to be the VNF whose SHAP values have the
highest first norm. We have also considered a scaling factor
¢; € C for each shap_valuesi®*'(j) to avoid any potential
biases towards/against some specific VNFs. For example, in
our experiments, we chose c¢; = % to avoid being biased
towards the VNFs from which we collect a higher number of
features (n; was the number of features collected from vn f;).
Moreover, it is important to note that we chose the first norm
instead of the second norm because it allows the algorithm
to consider a higher number of features in localizing the
anomaly, where the second norm might focus the algorithm on
a few specific features (i.e., features with large SHAP values
become too dominant in determining the anomaly location)
and degrade the localization performance.

Algorithm 1 Anomaly Localization with SHAP
1: function SHAPLOCAL(z!***, NSUAD, Cents, C)
2: shap_valuest®*t « SHAP(z***, USUAD, Cents)

3: shap_valuest®*'(j) < elements of shap_valuest®®*

related to vn f7

4: location < argmaz;(c;||shap_valuest®**(5)||1)

return [ocation

2) Localization with Cluster Permutation

SHAP is a general model-agnostic Al-explainability method
that can explain the output of all types of ML methods
and is not specific to our problem. To achieve a higher
localization performance, we propose our own novel local Al-
explainability method, “Cluster Permutation,” customized for
the specific task of anomaly localization in NFV systems. The
overall procedure of Cluster Permutation is presented in Algo-
rithm 2. In this algorithm, to check whether vn f7 is the loca-
tion of the detected anomaly z!*** = {vnf}, onf?, ..., onfF},
we first define the metrics related to vn f7 iﬁx\ﬁe“ as ztest(y),

i
and the remaining metrics in x5 as x!°*'(j). We do the

same separation on all the samples in X, to obtain X,(j) and
Xc(j). Then, by the K-Nearest Neighbors (KNN) algorithm,

we find the indices of the nearest neighbors of x¢%!(;) in the

i




m dataset. These neighbors would be normal samples that
resemble our detected anomaly sample when we are excluding
metrics of vnf7. Our intuition is that if vnf/ is the location
of the anomaly, by replacing the current metrics of vnf’ in
the detected anomaly with metrics related to vnf7 in normal
neighbors, the new created sample would have a lower degree
of anomalous behavior, and its anomaly score would be lower
and closer to pg. For each vnf’, we measure the average
change in the anomaly score for all the neighbor samples,
and the vnf7 that has the highest decrease in anomaly score
when its metrics are replaced by normal neighbors’ metrics
is chosen as the location of the anomaly. However, if there is
no decrease in the anomaly score for any of the VNFs or the
decrease in the anomaly score is less than a threshold (T'hr)
that is given to the algorithm, the output of the algorithm is
“undecided”. One important point is that even though X, is
much less contaminated than the original training data, it still
has some degree of contamination, but in this algorithm, we
are treating X, as it only includes normal samples. However,
this issue would not be problematic if we choose K in the KNN
algorithm large enough so that the obtained neighbors include
enough normal samples for the algorithm to work properly.
Another important point is that the first for loop in Algorithm
2 can be executed in parallel, therefore, in terms of execution
time, it will be scalable for large NFV systems as well.
3) Localization with Cluster Permutation + SHAP

As mentioned earlier, Cluster Permutation’s output might
be “undecided” if there is no decrease in the anomaly score
for any of the VNFs in the procedure. In our experiments, we
observed that Cluster Permutation is very accurate when it has
a valid output, but its output becomes “undecided” for some
detected anomalies. To overcome this issue, in a combined
approach, we first run the Cluster Permutation algorithm for a
detected anomaly, and then if its output was “undecided,” we
run the SHAP method to find the location of the anomaly;
otherwise, we choose Cluster Permutation’s output as the
location of the anomaly. Our experimental results showed
that this combined approach outperforms SHAP since Cluster
Permutation is very accurate when it has a valid output.

IV. EXPERIMENTAL RESULTS
A. Datasets

1) Public Dataset

Our first dataset is from the “ITU AI/ML in 5G” challenge
[29]. It was generated in an NFV-based test environment that
simulates a 5G IP core network. The target topology of the
NFV testbed is shown in Fig. 2a and consists of 5 VNFs:
two IP core nodes (TR-01 and TR-02), two internet gateway
routers (IntGW-01 and IntGW-01), and a router reflector
(RR-01), each hosted on a different Virtual Machine (VM).
Various performance metrics, such as CPU utilization and
network incoming/outgoing packet rates, are collected from
each VNF per minute. For evaluation of the anomaly-detection
mechanisms, the following fault scenarios are injected to one
of the VNFs periodically: 1) node failure, i.e., an unplanned
reboot of a VNF. 2) interface failure, i.e., a failure that causes

Algorithm 2 Anomaly Localization with Cluster Permutation

1: function CLUSTERPER(x***, X, NSUAD, Thr)
2 AD + {}

3: for j =1 to k do

4

mﬁest(j) — {vnflj} c RlX’VLj

50 al) = (@l @) € R
6: XC(]) :{x51(j)7x52(j)7“'7x65(j)}

7: XC(j) = {l’cl(j)axd(j)v 7x09(J)}

8: Run KNN in m for xz/”_@)

9: Find neighbors: )gp(\j ),p € NEIGHB

10: Ap<+—0,c+0

11: for p € NEIGHB do

12: x_mod!** «— {onf}, ...onf! ™" xep(5), .., vnflF}
13: 2hest  z(xlest)

14: z_mod.®*" « z(x_mod:®*")

15: A |2 Iq)(z'miiﬂ)_m\
16: if A > 0 then

17: Ad — A+ A

18: c+—c+1

19: if ¢ > 0 then
20: Ad.append( A:I))
21: else

22: Ad.append(0)

23: location < argmaz(Ad)
24: AD_maz < mazx(AD)
25: if (A®_max > Thr) then

26: output < location

27: else

28: output < “undecided”
29: return output

an interface to be down, and 3) packet loss/delay, i.e., an event
that causes packet loss/delay on an interface. We label each
faulty instance according to the location of the fault (1:5, the
VNF to which the fault is injected), and that would be the
target that our localization algorithms should predict. A well-
structured version of this dataset can be found in [30]. For
this dataset, the training data includes 3870 normal samples,
and the test data includes 3505 normal samples and 1122
anomalies. For creating a certain level of contamination in the
training data, we choose some anomalous samples at random
from a set that includes an equal number of different types of
anomalies and add those anomalies to the training data.
2) Synthetic Dataset

Our second dataset is from our experimental NFV testbed
depicted in Fig. 2b, and consists of 4 open-source VNFs: a
Firewall (iptables [31]), an intrusion detection System (Suri-
cata [32]), a deep packet inspector (nDPI [33]), and a flow
monitor (ntopng [34]). We have adopted this topology from
[17] and implemented it on the SAVI testbed [35], where
each of the VNFs is hosted on a different (VM). We used
Apache Bench for traffic generation in the testbed. We have
collected 61 resource-related metrics (CPU, Disk, memory,
and network) from all the VNFs every 5 seconds (see [17]
for a complete list of collected metrics). We injected one of
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Fig. 2. NFV system of (a) Public Dataset and (b) Synthetic Dataset.
the flowing faults to one of the VNFs periodically to generate
faulty instances to evaluate our anomaly-detection techniques:
1) CPU stress by the stress-ng [36] tool that increases the CPU
usage in the VM, 2) disk stress by the stress-ng [36] tool that
increases the disk usage in the VM, and 3) network stress by
the tc [37] tool where network delay of one of the interfaces
in a VM increases. For this dataset, the training data includes
3500 normal samples, and the test data includes 1500 normal
samples and 1500 anomalous samples.

3) Data Preprocessing

We perform the necessary data prepossessing tasks before
feeding the data to the ML models, including replacing the
accumulative values (e.g., number of packets sent) with their
numeric difference, data normalization due to the different
dynamic ranges of the collected metrics, metric selection, etc.
The compared approaches were evaluated on a server with
2x20 core Intel Xeon Silver 4114 2.20GHz CPU, 187 GB
memory, and NVIDIA Tesla P40 GPU.

B. Compared Approaches

1) Baseline

The baseline approach used to compare our detection ap-
proach with is the Autoencoder-based anomaly-detection algo-
rithm in [6] and [9], where the Autoencoder is trained on only
normal samples and then based on the overall reconstruction
error of the Autoencoder, anomalies are separated from normal
samples in the test data. The baseline approach for localization
is a conventional approach where the VNF whose features
have been reconstructed more poorly is chosen as the location
of the fault. Since [6] and [9] have worked with different
datasets that are not publicly available, we have designed
the best Autoencoder architecture for our datasets by trying
different architectures, from very shallow to very deep, to
reach the best possible outcome for the Baseline. The final
chosen Autoencoder architecture (number of nodes in each
layer) for the Public Dataset is {116, 90, 60, 30, 10, 30, 60,
90, 116}, and for the Synthetic Dataset is {61, 40, 20, 8, 20,
40, 61}. Moreover, similar to [9], we added L2-regularization
to the Autoencoder network to improve the model’s robustness
against contamination in the training data.

2) DAGMM

Our teacher model, DAGMM [11], trained on the whole
training data, is another compared approach. DAGMM has
shown to be robust against contamination in the training
data to some extent since it performs density estimation on
features extracted from its Autoencoder. Therefore, it is a good
choice to be compared with our approach when dealing with
contaminated training data. The localization task here is the
same as the Baseline.
3) MSCRED

Multi-Scale Convolutional Recurrent Encoder-Decoder
(MSCRED) was proposed in [26] for unsupervised anomaly
detection and localization (diagnosis) in multivariate time se-
ries data. In this approach, inter-correlation between different
metrics is calculated with different temporal window sizes, and
a Recurrent Encoder-Decoder DL model is trained to construct
these inter-correlations for normal instances. Then, anomaly-
detection and localization tasks are performed based on the
reconstruction errors of these inter-correlations values.
4) Our Proposed Methods

NSUAD is our proposed anomaly-detection solution de-
scribed in Section III.B. SHAP (Algorithm 1), ClusterPer
(Algorithm 2), and ClusterPer+SHAP (Section III.C.3) are our
proposed anomaly-localization approaches that utilize NSUAD
as their detection model.

C. Detection Results

The performance metrics for anomaly detection (namely,
Precision, Recall, and Fl-score) of different approaches are
shown in Table I. In the first row of Table I, we report the
detection performance metrics when there is no contamination
in the training data (6 = 0%), so we can clearly observe
the effect of contamination on these approaches in the next
experiments. We can see that when there is no contamination,
DAGMM has higher Precision, Recall, and Fl-score than
Baseline and MSCRED, especially for the Public Dataset, so
it is a good choice for our teacher model. In the next rows
of Table I, we change the contamination percentage (§) in
the training data from 1% to 5% and report the detection
performance. We can see that contamination in the training
data significantly degrades the performance of Baseline, MS-
CRED, and DAGMM, and this degradation becomes more
severe as 0 increases. Also, in both datasets, DAGMM has
a better performance than Baseline and MSCRED (especially
in the Public Dataset), and its performance degrades less
significantly compared to the Baseline and MSCRED as §
increases; therefore, DAGMM is confirmed to be an excellent
choice as the teacher model in our approach.

Moreover, our detection approach NSUAD has a better
performance than DAGMM, MSCRED, and Baseline when ¢
is 1%, and, unlike the other approaches, the detection perfor-
mance of NSUAD improves when ¢ increases up to 5% since
it takes advantage of the extracted pseudo-labeled anomalies
in the contaminated training data. More specifically, increasing
0 (percentage of anomalous samples) in the training data
has one negative effect and one positive effect on NSUAD’s



TABLE I
Anomaly-detection results of different methods on contaminated training data with the contamination percentage () varying from 0% to 5%

Public Dataset Synthetic Dataset
) Baseline DAGMM MSCRED NSUAD (ours) Baseline DAGMM MSCRED NSUAD (ours)
Pr. Re. Fl Pr. Re. Fl Pr. Re. F1 Pr. Re. Fl Pr. Re. Fl Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

0808 466 589|833 821 827|764 622 684 - - - 834 785 809|858 83.7 84.7|762 733 747 - - -

11776 314 448 |80.1 802 80.1|71.5 559 623|827 81.6 821|803 712 755|821 788 804|656 627 640 | 86.1 835 84.8

21769 31.1 445|793 789 79.1|686 493 573|841 83.5 838|789 64.1 707|773 752 762|493 48.8 49.1|90.4 87.1 88.7

3176.1 300 43.0|758 748 753|577 42.1 48.6 | 854 83.8 84.6 | 772 609 68.1|745 73.6 74.1|41.2 387 399|927 905 91.6

4758 295 426|735 726 729|415 326 365|861 844 852|708 595 646|736 71.8 727|339 305 321932 911 921

51745 292 420|718 71.7 71.7|27.8 243 259|865 844 854|667 526 588|703 699 70.1 203 19.7 20.0 |93.1 914 922
performance. The negative effect is that as § increases, the TABLE II
performance of NSUAD’s teacher model (DAGMM) degrades. Anomaly localization results of the compared approaches
The positive effect is that NSUAD extracts more pseudo— Public Dataset
labeled anomalies when ¢ is higher. In our experiments, .

h . 5 up to 5%. the positive effect seems to Method)\ Performance Prec. Recall F1  #Anom. Time(ms)
when we 1ncrease o up o, the p Baseline 624 651 627 516 2
be more important than the negative effect; therefore, the DAGMM 583 582 582 913 13
overall performance of NSUAD becomes better for higher MSCRED 736 734 734 698 17
contamination percentages in the training data. ClusterPer (ours) 686 688 685 933 21

However, we expect that after a certain level of contam- SHAP (ours) 7.7 87.6 874 938 108
L ’ p . . , ClusterPer+SHAP (ours) | 92.4 925 923 938 37
ination, the degradation in the teacher model’s performance -

(the negative effect) becomes significant enough to decrease Synthetic Dataset

NSUAD’s overall performance. For example, in the Public Method\Performance | Prec. Recall F1  #Anom. Time(ms)
Dataset, when we increased § to 7%, the teacher model’s F1- ggséll\‘;& Z)Z'; Zi'i Zi; ig; g
score dech.ned' to 67.5%, and NSUAD’s F1-score degraded to MSCRED 785 786 785 110 12
81.6%, which is lower than the case where § was 5%. For very ClusterPer (ours) 915 914 915 182 19
high contamination levels in the training data, Active Learning SHAP (ours) 845 844 844 182 97
[38] approaches should be utilized to label the data with the ClusterPer+SHAP (ours) | 932 931 931 182 22

help of domain experts.

D. Localization Results

The performance metrics for anomaly localization (namely,
Precision, Recall, F1-score, number of truly detected anoma-
lies in the detection phase, and average execution time) of dif-
ferent approaches for the detected anomalies in both datasets
are shown in Table II. As discussed, the localization methods
use a detection model for their process and localize the
anomalies that are detected by that detection model. NSUAD
is the detection model for SHAP, ClusterPer, and ClusterPer
+ SHAP localization methods (with a training data that is
4% contaminated), and the detection models for the other
localization methods are the same as their names according to
Section IV.B. Therefore, the number of truly detected anoma-
lies is different for different approaches. According to the
results of Table II, our SHAP method outperforms Baseline,
MSCRED, and DAGMM in both datasets despite having more
detected anomalies. In the Public Dataset, SHAP has a better
performance than ClusterPer because ClusterPer’s output was
“undecided” for many of the detected anomalies, but in the
Synthetic Dataset, ClusterPer has a better performance than
SHAP because its output was “undecided” in only a few cases.
Either way, in both datasets, cascading ClusterPer and SHAP
(ClusterPer + SHAP) results in a better Fl-score than only
using SHAP and achieves the highest performance among
the compared approaches. Moreover, Baseline has the lowest
average execution time in both datasets since its procedure
is a simple analysis of the reconstruction error of different
features, while SHAP has the highest execution time due to its

relatively complex calculations. However, our proposed Clus-
terPer localization approach localizes anomalies significantly
faster than SHAP, therefore, ClusterPer + SHAP (the method
with the highest F1-score) leads to a reasonable execution time
that is considerably lower than only using SHAP.

V. CONCLUSION AND FUTURE WORK

We proposed an unsupervised method for anomaly de-
tection in NFV systems that is robust against training-data
contamination up to a certain percentage and can also leverage
the contamination to improve anomaly-detection performance,
unlike state-of-the-art unsupervised approaches whose per-
formances degrade when the training data is contaminated.
Moreover, we described how utilizing SHAP and our proposed
Al-explainability method, called “Cluster Permutation”, can
achieve high performance in the anomaly-localization task.
By a complete experimental analysis on two datasets from
two different NFV systems, we showed that in terms of F1-
score, our proposed solutions outperform other state-of-the-art
unsupervised methods by up to 22% and 19% in anomaly-
detection and localization tasks, respectively.

For future work, we can focus on improving the
generalization of our detection/localization models, evaluating
their applicability on larger and more complex datasets,
and also including identification of the type of faults in an
unsupervised manner in the NFV system.
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