Enhancing Large Language Models for Telecom
Networks Using Retrieval-Augmented Generation

Nasik Sami Khan, Md Mahibul Hasan, Md. Shamim Towhid, Saroj Basnet, Nashid Shahriar
Department of Computer Science, University of Regina
{nku618 , mhr993, mty754, skb976, nashid. shahriar}@uregina .ca

Abstract—This paper presents a comprehensive approach for
fine-tuning large language models (LLMs) for domain-specific
tasks in the telecommunications field. We utilize a dataset with
1,827 multiple-choice questions (MCQs) from 3GPP standard
documents. A publicly available LLM named ‘Phi-2” is used to
answer the MCQs correctly. We develop a Retrieval-Augmented
Generation (RAG) pipeline to improve Phi-2 model’s perfor-
mance. The RAG pipeline comprises document segmentation,
synthetic question-answer (QA) generation, custom fine-tuning
of the embedding model, and incremental fine-tuning of Phi-
2. Our experiments show that accuracy greatly increased by
combining all the above-mentioned steps in the RAG pipeline.
The proposed approach outperforms the baseline Phi-2 model by
45.20% in terms of accuracy. This study identifies the limitations
of instruction fine-tuning in specialized fields and explores the
possibility of using sophisticated data processing with fine-tuned
models to improve performance even more.

Index Terms—retrieval-augmented generation, fine-tuning, em-
beddings, large language models, Telecom, LoRA

I. INTRODUCTION

Large language models’ (LLMs) rapid evolution has rev-
olutionized natural language processing (NLP) in numerous
domains. However, the use of LLMs in the telecommunica-
tions sector has not been extensively implemented, especially
in tasks that require specific domain knowledge, such as
providing answers to technical questions based on 3GPP
standards. Using the TeleQnA [12] dataset, the ITU AI/ML
in 5G Challenge brings an opportunity to address this gap by
emphasizing on optimizing LLMs for telecom-specific tasks.
In this challenge, the task is to utilize either “Phi-2” [1] or
“Falcon” [2] to answer the MCQs in the TeleQnA dataset.
We design an RAG pipeline that utilizes the “Phi-2” model
to generate the answers to the MCQs. The reason behind
selecting “Phi-2” is that, it is less resource intensive compared
to Falcon. Falcon has seven billion parameters whereas Phi-
2 has two billion. The training and test sets are provided on
TeleQnA dataset. One restriction on using “Phi-2” is that we
cannot fine-tune the model using the options of the MCQs in
the training set. A set of 3GPP specifications is shared with
us that can be utilized as necessary. These documents contain
information that is necessary to answer the MCQs correctly.

The TeleQnA dataset is created by collecting documents
from 3GPP standards, research publications, and overview
[12]. OpenAI’s GPT-3.5 API is utilized to generate synthetic
questions from the collected and processed documents. The
generated questions go through a human validation process
to refine them. Therefore, the generated questions are valid

and, at the same time, challenging to answer. To answer the
questions, any model must have the domain knowledge. The
presence of domain-specific acronyms in the questions and
questions with “All of the above” or “None of the above” as
options makes the task more practical and challenging.

In this paper, we propose a RAG pipeline to enhance
the Phi-2 model’s accuracy in answering MCQs. The RAG
pipeline is an approach to combining the strengths of the
retrieval-based model and the generation-based model to en-
hance the overall performance of any NLP task [3]. The
retrieval model provides context for the generative model. By
utilizing the context, the generative model generates the correct
output. This RAG approach also helps the generative model
to address the well-known hallucination problem [4]. Because
of all these advantages of the RAG approach, we design an
RAG pipeline to solve this challenge. Any RAG pipeline can
be divided into three components: retrieval, augmentation, and
generation. We contribute to each of these components in our
proposed RAG pipeline. Our main contributions are discussed
below.

o We generate QA pairs using the segmented chunks from
3GPP documents and fine-tune the pre-trained embedding
model on the generated QA pairs to improve the retrieval
process. With this fine-tuning, the embedding model
can retrieve related context by which the MCQ can be
answered.

e A prompt is carefully designed considering how the
“Phi-2” model was originally trained. We augment the
prompt with the retrieved chunked documents during the
inference.

o To improve the generation process, we fine-tune the “Phi-
2” model incrementally on the shared 3GPP documents.
This fine-tuned model performs better than the originally
trained “Phi-2” which indicates the effectiveness of our
incremental fine-tuning process.

The rest of the paper is organized as follows. Our literature
survey is discussed in Section II. Section III provides a detailed
description of our methodology. All the components of our
proposed RAG pipeline are discussed in this section. The
results of our proposed approach compared with the selected
baseline are presented in Section IV. Continuing our work,
the conclusion with our key findings and some future research
directions are discussed in Section V.

II. RELATED WORKS

Document loading and segmentation are two crucial pro-
cesses for NLP tasks. Lai et al. introduced a system named
LISA which can handle complex, implicit queries by segment-
ing documents based on user instructions. One of the main
capabilities of the tool is that it can produce segmentation
from embedding directly. This system demonstrates its zero-
shot abilities and robust performance even with limited data
for fine-tuning. [5]

Karapantelakis et al. explored the use of LLM for under-
standing telecommunication standards. They fine-tuned LLMs
to handle large and complex documents by providing faster
access to relevant information. They also demonstrate how pre-
processing as well as segmentation can contribute to increasing
the accuracy of a fine-tuned model. [6]

To improve performance of question-answer (QA) models,
Alberti et al. developed a technique to generate synthetic QA
pairs. The overall process involves generating questions based
on segmented text and validating through answer consistency
checks. The authors demonstrate how utilizing these synthetic
datasets significantly improves the performance of QA models
on benchmarks like SQuAD?2 and Natural Questions (NQ). [7]

Harris et al. also followed a similar approach of generating
synthetic QA pairs to improve the performance of the embed-
ding model. To address the limitation of vocabulary and lack
of context, authors use LLMs to rewrite input texts which
showed significant improvement in embedding performances
on various datasets for embedding model’s fine tune. [8]

Zou et al. proposed TelecomGPT, a telecom-specific LLM
framework [10]. Authors gathered and prepared pre-training,
instruction, and alignment datasets as well as created Telecom
Math Modelling, Telecom Open QnA, and Telecom Code
benchmarks for evaluation. TelecomGPT surpassed GPT-4,
Llama-3, and Mistral in these benchmarks for 3GPP document
categorization, telecom code generation, and math modelling
in telecommunications.

Zhou et al. surveyed LLMs in telecom and highlighted
parameter-efficient fine-tuning (PEFT) methods including low-
rank adaptation for fine-tuning big models [9]. The models can
be deployed to resource constraint telecom systems to improve
efficiency and accuracy of configuration and troubleshooting.
Along with PEFT, we needed to follow an incremental learning
approach to address resource limits in our training environ-
ment.

The authors in [15] proposed a framework RAG called
TelecomRAG by combining LLMs with. It was trained with
3GPP Release 16 and 18 documents. The method outperforms
general-purpose large language models by providing contex-
tually relevant and descriptive answers for queries related
to the telecommunication domain. The paper improves the
query processing method by utilizing candidate responses and
a neural network router, hence optimizing the accuracy of
document retrieval and decreasing memory requirements by
up to 45% in RAM consumption relative to baseline RAG
models.

Yilma et al. also developed a RAG pipeline using telecom-
munication knowledgebase similar to [16]. One of the key
differences is that the study in [15] uses role-playing prompt-
ing techniques. It can adapt answers in various contexts
and provide a comprehensive response to user queries. They
implemented multiple hyperparameter optimization techniques
to improve model performance. The authors used text-
embedding-3-large as an embedding model, which provided
better performance along with the GPT 3.5 as the large
language model.

Our RAG pipeline shares similarities with Josi et al.’s one
[14], particularly addressing multimodal data. Unlike their
method of converting text, tables, and images into images,
we chose to skip the images in both the embedding and fine-
tuning. We included the tables only at fine-tuning phase. Our
technique ensures predominant behavior of both textual and
tabular data and avoids complexity of image processing.

III. METHODOLOGY

In this section, we discuss our proposed approaches for
answering telecom-specific questions using the RAG pipeline
in detail. We divided the main task into six sub-tasks for better
understanding. The phases are as follows: (1) Documents
Load and Segmentation, (2) Synthetic QA pair Generation,
(3) Custom embedding model fine-tuning, (4) Fine-Tuning of
the Phi-2 Model, (5) Implementation of the RAG Pipeline,
and (6) Answer extraction & post-processing step for result
evaluation.

A. Documents Loading and Segmenting

In the first step of the RAG pipeline, we load and segment
the raw documents from the 3GPP Release 18 dataset. It
contains technical standards related to the telecommunications
domain, and the 554 documents were provided in .docx format.
We segregate them into more manageable chunks to properly
fit into the vector database.

We used the open-source Unstructured library to extract
various text elements, such as narrative text, paragraphs, &
list items, from the source files. This library helped us parse
the documents and relevant metadata, such as the 3GPP release
number, which was extracted using regular expressions. Then
the documents were loaded and the text divided into smaller,
manageable chunks. Each chunk was 100 words in length, a
size chosen to ensure that the text segments were compact
enough for efficient processing in subsequent stages of our
pipeline. For the document chunking, we appended the text to
an existing segment or started a new one, depending on the
length of the current segment. We also experimented with a
500-token chunk size with the assumption that more context
would result in better accuracy in extracting answers for MCQ
questions. However, our experiments revealed that the token
limit of the Phi-2 model is 2048 tokens. If we provide a
larger chunk size for better context, the model fails to generate
correct answers during the inference phase. This step for
loading documents and separating them into groups made sure
that the raw data was handled efficiently and prepared for the

next steps in our pipeline. In our data chunking, we skipped
the tables and images from the documents.

B. Synthetic QA Generation

We generate synthetic QA pairs with the segmented data
from the previous step of our pipeline. These pairs are crucial
for fine-tuning the embedding model and for enhancing its
ability to accurately process the telecom-specific questions.
Each segment from the previous chunks is provided as the
context for generating relevant questions. To generate the
QA pairs, we designed a prompt template to ensure that
each document chunk is provided as an input and the LLM
generates a synthetic question from that document chunk. We
used the pre-trained Phi-2 model for this task. As the TeleQna
[12] dataset was synthetically generated using an LLM, we
also generated the QA pairs using it, as the embedding would
have better understanding of the patterns of training data.
We generated a total of 10,000 synthetic QA pairs from the
segmented data, instead of creating QA pairs for the whole
dataset. Our intuition is that, in the next step of our pipeline,
the embedding model will be well-trained with the vocabulary
that exists in these 10,000 data rows as they cover a large
number of telecom-specific vocabulary. Also, the synthetic
QA generation process is computationally expensive and time-
consuming to perform on the whole dataset.

C. Embedding Model Fine-Tuning

In this step, we focus on fine-tuning a pre-trained embed-
ding model with synthetically generated QA pairs produced
in the earlier phase. The main goal is to maximize the
performance of the embedding model, especially by adapting
vocabularies related to the telecommunication domain so that it
manages the domain-specific complexity and nuances robustly.

We divided the 10000 synthetically generated QA data with
a 90:10 ratio into training and testing sets to evaluate the
model’s performance both during and after the fine-tuning pro-
cess. We used Hugging Face datasets and sentence-transformer
libraries for this task. Before the fine-tuning process, we
created a baseline result using a pre-trained model, BAAI/bge-
base-en-v1.5. This baseline served as a reference point to mea-
sure the effectiveness of our fine-tuning results. We evaluated
the model using the Normalized Discounted Cumulative Gain
(NDCG) metric, which is useful in assessing the quality of
retrieval systems. The baseline model was evaluated across
multiple embedding dimensions (768, 512, 256, 128, and 64)
to provide a comprehensive understanding of its performance
at different levels of embedding truncation. This step was
vital in assessing the model’s ability to execute dimensionality
reduction without a substantial decrease in performance.

We used the Matryoshka Representation Learning (MRL)
technique [11] to optimize embeddings across various dimen-
sions. The technique is named after the famous Russian toy
“Matryoshka dolls” in which small dolls are nested within
bigger ones. The concept brings a change in the understanding
of data representation in the field of Al. This method allows the

model to reduce the size of embeddings while retaining crucial
information, thus ensuring both accuracy and efficiency.

We implemented a custom loss function, called Ma-
tryoshkaloss, that aggregates loss values across different
embedding dimensions. It ensures that the model learns to
frontload essential information into the earlier dimensions of
the embedding vector. The model produces embeddings at
multiple dimensions, and a loss function is applied to both
the full-size embeddings and the truncated ones. The loss
values from each dimension are combined to create a final
loss, which the model minimizes. The model was fine-tuned
for 25 epochs on the base model BAAI/bge-base-en-vl1, and
evaluated on the baseline score to quantify the improvements
using the same NDCG score metrics. The fine-tuned model
significantly improved retrieval, especially at dealing with
complex, domain-specific questions. It demonstrated the ad-
vantages of Matryoshka embeddings in balancing performance
with storage efficiency. By utilizing truncated embeddings
during the initial retrieval phase, the system can quickly
narrow down relevant documents or contexts from a large
corpus.

D. Fine-Tuning of the Phi-2 Model

In this phase, the focus was on fine-tuning the pre-trained
Phi-2 model to enhance its performance, specifically for
answering telecom-related questions. The unsupervised fine-
tuning process involved several sub-steps, including data
preparation, tokenization, model initialization, and the applica-
tion of advanced fine-tuning techniques to achieve optimal re-
sults. We prepared the dataset, ensuring compatibility with the
model’s architecture. The text data from 554 source documents
was first cleaned by removing HTML tags, extra spaces, and
other irrelevant characters. Tokenization is performed using
a sliding window technique, which is efficient when dealing
with larger documents. This approach maintained the inclusion
of all important sections of the text during the training
process, even if they surpassed the maximum token length.
The tokenizer was precisely configured to accommodate the
specifications of the Phi-2 model, establishing suitable token
lengths and strides to enhance the process. We employed
a parameter-efficient fine-tuning method, particularly Low-
Rank Adaptation (LoRA). The model was initialized with
quantization, which reduces the precision of model parame-
ters, allowing the model to operate more efficiently without
sacrificing performance. LoRA is a technique that allows for
fine-tuning with a smaller set of parameters, resulting in a sub-
stantial reduction in computing expenses while maintaining or
improving the model’s performance. This technique modifies
only a subset of the model’s parameters, allowing the model
to adapt to the specific requirements of the telecom domain
without the need for extensive retraining of the entire model.
We used gradient checkpointing and warmup ratios, which are
techniques that help stabilize the training process.

Given the computational limitations of our initial servers
equipped with NVIDIA RTX A5000 and NVIDIA RTX 3090
GPUs, both having 24 GB of GPU memory, we significant-

01. Documents Loading and
Segmenting

Extract Text Elements

Parse Metadata

A4
02. Synthetic QA

Generation

Design Prompt
Template

Generate Q/A pairs
using Phi-2

Telecom Question Answering RAG Pipeline

A 4
03. Embedding Model

Fine-Tuning

Baseline Model Evaluation

Finetune with Matryoshka
Embeddings

v

04. Fine-Tuning of the Phi-2
Model

Tokenization & Sliding
Window Technique

Low-Rank Adaptation &
other PEFT Methods

v

05. Implementation of the

RAG Pipeline

Document Retrieval

Embedding Integration
of retrieved documents

Question-Answering

v

06. Post-Processing and
Manual Feedback Loop

Clean Responses with
regular expressions

Manual review and
answer correction

Chunk Documents into

Store and export QA

token segments
g pairs for step 3

(1007500 etc.) for step
285

Evaluate using NDCG

& save model for step 5

Pipeline with Phi-2
Answer mapping and

Custom Prompt format processing

Incremental Fine-Tuning in Formation

Subsets & final model for

Final submission and

Answer Generation for -
evaluation

step 6

step 5

Fig. 1. An overview of the proposed RAG pipeline

faced delays during the fine-tuning process on the full dataset.
Due to the significant duration of the training, we decided to
use alternate methods to enhance the efficiency of the proce-
dure. First, we tried with the paid Google Colab Pro platform
for the computation, but the session was timed out multiple
times. Then finally, we ran our experiments on the Compute
Canada server, which is equipped with an NVIDIA A100
GPU featuring 40 GB of GPU memory. Despite the enhanced
resources, the amount of the dataset and the complexity of
the model still required a more efficient strategy in terms of
resource usage. As a result, we adopted an incremental fine-
tuning strategy.

This approach involved splitting the training dataset into
three subsets and incrementally fine-tuning the model on each
subset. Initially, the base Phi-2 model was fine-tuned on the
first third of the dataset. This updated model was then used
as the starting point for fine-tuning the next third of the
dataset. Finally, the process was repeated for the last subset.
This stepwise fine-tuning allowed us to manage the large
corpus and computational demands effectively. Each phase
of fine-tuning on 33% of the dataset took approximately
one day to complete. This incremental fine-tuning approach
provided a practical solution to the computational challenges
and contributed to the overall efficiency of the fine-tuning
process. We ran our model for 3 epochs, but our experiment
showed that only 1 epoch of training was sufficient to get
the best result in the competition’s evaluation phase, which
we will discuss in the result and evaluation section. We also
implemented instruction fine-tuning on the dataset, but it did
not generate correct answers in most cases, hence resulting in
poor performance. Instruction fine-tuning is highly sensitive to
the quality and quantity of the instruction and data provided.
The use of options of the MCQs for finetuning was restricted.
This resulted in a mismatch between the instructions and the
actual output of the model and it is one major reason why the

model could not generate the output properly.
E. Implementation of the RAG Pipeline

In this step, the fine-tuned Phi-2 model is used to generate
answers for multiple-choice questions within a RAG pipeline.
The inference process is designed to leverage the strengths
of the custom fine-tuned embeddings and the unsupervised
fine-tuned Phi-2 model, ensuring accurate and contextually
relevant responses. The initial step in the pipeline involved
document retrieval and embedding integration. The segmented
documents from step 1 in the pipeline were embedded using
the fine-tuned model, and these embeddings were stored in a
vector database. We used the ChromaDB vector store, which
is integrated with the LangChain library, to handle and retrieve
these embeddings. This ensured that the retrieval process was
highly efficient and capable of rapidly identifying relevant
parts of documents in response to a specific query.

The core of the inference process is the question-answering
pipeline. We processed the input test data, which was provided
in a JSON structure. It contained question ID, question, op-
tions, and category value in an MCQ-like pattern. The pipeline
is configured to retrieve the most relevant document segments
based on the input question. These retrieved documents along
with the questions were then passed to the fine-tuned Phi-
2 model to generate an answer. A custom prompt template
instructed the model to select the correct answer from the
provided multiple-choice options. The prompt is stated below:

Instruction: You are an Al assistant for answering
multiple choice questions from the provided context.
You are given the following extracted parts of a
long document and a question with some options
numbered with capital English letters. Just select the
capital English letter of the option that answers the
question correctly. No need to explain further.

This prompt was effective in generating reliable and con-
sistent output from the model. We explored several other

prompting techniques ranging from straightforward instruction
to answer the question, to prompt with a highly detailed
pattern of expected output to prompt with one-shot sample.
In these cases, the model output was either hallucinating or
repeating the instructions again rather than providing the cor-
rect answers. This pipeline was effective in handling complex
telecom-related queries, as it combined the robust retrieval
capabilities of the vector store with the generative abilities
of the Phi-2 model. The generated answers are then processed
in the next step of the pipeline.

F. Post-Processing and Manual Feedback Loop

The final phase of the pipeline involved post-processing
the previous phase’s generated answers to improve their cor-
rectness and ensure they adhered to the specific format for
result submission. This step is crucial for selecting the model’s
outputs, optimizing overall performance, and preparing the
final dataset for submission. Initially, the fine-tuned Phi-2
model’s responses were retrieved and cleaned using regular
expressions to rigorously refine the answers, while ensuring
that only essential information, especially the single letter
corresponding to the multiple-choice alternatives (A/B/C/D/E),
was preserved. The processes included systematically remov-
ing unnecessary content, which resulted in a more stream-
lined and unified data format. Despite the automated cleaning
process, just a small fraction of answers (0.65% to 0.85%)
had issues that required manual intervention. For example, the
model gave the right responses, but the option number was
not indicated in the generated text. Only one to five questions
were left unanswered by the model. To deal with these
outlier cases, the pipeline includes a manual feedback loop.
It included evaluating the results, identifying any remaining
errors, and manually fixing them to ensure that each answer
followed the expected structure. This iterative method was
critical for maintaining high accuracy in the final dataset,
especially in situations when the model’s output differed from
the correct answer. After the answers had been cleaned and
verified, they were assigned numeric values (1-5), which were
required for the competition’s submission format. The use of
advanced document retrieval, seamless embedding integration,
and rigorous post-processing resulted in the creation of a
highly efficient RAG system for retrieving crucial information
from large documents.

IV. RESULTS AND EVALUATION

In this section, we present the findings of our experiments
conducted as part of the ITU AI/ML in the 5G Challenge
[13]. Our primary focus is to select the appropriate LLM
and embedding model to fine-tune and implement a RAG
pipeline to enhance the model’s performance in answering
telecom- specific MCQs from the TeleQnA dataset [12]. The
dataset contains 1,827 MCQs, and is split into a training
set and test set with 1,461 and 366 questions, respectively.
The competition also provided 554 supporting documents on
3GPP, and the technical standards related to the telecommu-
nications domain. We performed a series of experiments that

involved selecting the most suitable LLM and then applying
various strategies to enhance its performance. We performed
comparisons between multiple open-source pre-trained LLMs
to evaluate their effectiveness in answering MCQ in telecom
domain. We then implemented LLM & embedding model fine-
tuning, document chunk optimization and custom prompting
technique to achieve the best accuracy score for the competi-
tion. Each submission was evaluated on both the public and
private leaderboards, where the public leaderboard measured
the performance of 50% of the test set, and the private
leaderboard represented the full test set. In the following
sections, we discuss benchmarking with open-source LLMs,
experiment settings their respective results.

Performance comparison of Open-Source Pre-Trained
Models:Table I presents the results of several open-source
LLMs in solving the MCQ questions. For all the experiments,
we used the pre-trained BAAI/bge-base-en-v1.5 embedding
model, 100 chunk-size documents, the custom prompt men-
tioned in the previous section, and the topmost matched
retrieved document from database as the context for the LLM.

TABLE I
COMPARISON OF OPEN-SOURCE LLM PERFORMANCE

Model Unexpected | Private Inference| Context| Model
Output Score Time Length | Size
Format

Phi 2 3 0.4185 12.17 2048 27B
mins

Phi 3 mini | O 0.574 14.21 4096 38 B

4k mins

Instruct

Phi 35| 0 0.568 20.20 128k 38 B

mini mins

Instruct

Gemma 22 0.306 13.47 8192 2.6 B

2B mins

Llama 3.2 | 832 NA 6.02 128k 123 B

1B mins

Llama 3.2 | 193 NA 10.44 128k 321 B

3B mins

Llama 3.1 | 17 0.3905 6.53 128k 8B

8B hours

Falcon 7B | 531 NA 5.21 2048 7B
hours

Mistral 704 NA 5.14 8192 7B

7B hours

Instruct

It can be seen that, despite having a smaller model size and
shorter inference time, the pre-trained models from the Phi
series consistently adhere to the prompt and robustly provide
answers in the correct format with higher accuracy compared
to others. In contrast, both the smaller language models from
the Gemma and Llama series, as well as larger models from
the Llama, Mistral, and Falcon series, faced hallucinations
and fabrications. Hence, they struggled to provide answers
in the expected format. In many cases, they were repeating
the same prompt again in the output and in some cases, the

models were not generating any responses at all. We used
the manual human loop from our pipeline to process only the
fewer inconsistent outputs. As we restricted our experiments to
using open-source LL.Ms, we could not verify the performance
of the highly domain-specific TelecomGPT model [10]. For
the model selection, we picked the models between § billion
parameters because of the computational constraints. We can
also see from Table III that the inference time also significantly
increases for the larger models. We used instruction-based
pre-trained models from the Phi series and the Mistral series.
Although the Mistral 7B model size is almost double compared
to the Phi 3 Mini 4K Instruct and Phi 3.5 Mini Instruct models,
it could not follow the prompt instructions properly and
generated a large number of inconsistent outputs. In contrast,
the Phi Instruct models were able to robustly comprehend the
prompt and accurately generate answers in desired formats.
The robustness and consistency in output format motivated us
to use the series, particularly the Phi-2 model as the LLM for
answering MCQs for the competition and further enhancing
its capabilities in the telecom domain. We further improvised
the model’s performance with various methods, as discussed
in the following sections.

Evaluation Setting for Phi-2 Model: Table II shows the
different configuration settings we considered for our exper-
iments with varying chunk sizes, fine-tuning techniques, and
embedding methods. In the first experiment, we considered the
pre-trained phi-2 model with the pre-trained BAAI/bge-small-
en-v1l.5 model for generating the answers as a baseline. For
the second setting, we explored the instruction finetuned phi-
2 model with a finetuned BAAI/bge-small-en-v1.5 embedding
model. As the performance improvement was not significant,
we tried the custom embedding model with a pre-trained phi-
2 model. We used the finetuned embedding model that uses
the MRL technique in all our experiments (2-9), except for
the baseline. For all the other compared approaches (4-9),
we used the custom embedding model with an unsupervised
and incremental finetuned phi-2 model subject to different
document chunk sizes and training epochs.

We used two different chunk sizes, respectively 100 and
500 tokens, to provide a balanced context retrieval while
considering the token constraints of the Phi-2 model. The
100-token size provided a suitable amount of context without
exhausting the model limit, whereas with the 500-token level
in many cases, the model could not generate any answers be-
cause of the model limit exhaustion. For the model finetuning,
we implemented an incremental approach and experimented
with the model performance with 1 and 2 epochs. Finetuning
with 1 epoch was sufficient to provide good results in our
experiments. In approach (8), we applied a hybrid search
method that combines both vector-based and BM25 retrieval
approaches to enhance information retrieval through semantic
and lexical matching. The difference between approaches (4)
and (9) is that, in the first experiment, the answers generated by
LLM were directly used to get the accuracy score. Whereas,
in the last experiment, we applied a manual feedback loop
to rectify the few incorrect labels generated by LLM. It

TABLE II
COMPARED APPROACHES
Approach Finetuned LLM Epoch | Chunk| Manual
Embedding | Model Size Feedback
(Phi-2) Loop
1. Baseline X PT NA N/A X
2. Ins. FT v Ins. FT 5 100 X
3. FT Embed- | v PT NA 100 X
ding
with PT Phi-2
4. Inc. FT v Inc. FT 1 100 X
5. Inc. FT v Inc. FT 1 500 X
6. Inc. FT v Inc. FT 2 100 X
7. Inc. FT v Inc. FT 2 500 X
8 Inc. FT | vV Inc. FT 2 100 X
with HS
9. Inc. FT v Inc. FT 1 100 v

Ins. = Instruction, Inc.= Incremental, PT = Pretrained, FT =
Finetuning, HS = Hybrid Search

significantly improved the overall accuracy of the model in
our experiments.

Evaluation Results and Discussion: Table III summarizes
the results of our key experiments, highlighting the combina-
tion of techniques used, and their corresponding performance
on the public and private leaderboards.

TABLE III
EVALUATION ACCURACY OF ALL THE APPROACHES

Approach Public Private
Leaderboard Leaderboard
Accuracy Accuracy

1. Baseline 0.2158 0.218

2. Ins. FT 0.3743 0.409

3. FT Embedding with 0.4645 0.524

PT Phi-2

4. Inc. FT 0.5519 0.603

5. Inc. FT 0.5355 0.561

6. Inc. FT 0.3798 0.384

7. Inc. FT 0.5301 0.586

8. Inc. FT with HS 0.5846 0.6595

9. Inc. FT 0.6092 0.670

From Table III, it can be seen that our best-performing
approach involved incremental fine-tuning of the Phi-2 model
with a 100-token chunk size, which achieved a 67% private
leaderboard accuracy, substantially outperforming the baseline
accuracy by 45.20 %. This configuration allowed the model
to better adapt to the dataset’s pattern. The 100-token chunk
size was ideal for keeping crucial context without exceeding
the model’s token processing capabilities, resulting in better
retrieval and generation accuracy. The use of MRL was pivotal
in improving model performance. By distributing embedding
information across multiple dimensions, this approach enabled
the pre-trained BAAI/bge-small-en-v1.5 model to efficiently
retrieve relevant context and learn the domain-specific vocab-

ulary. The instruction fine-tuning did not perform well in our
experiments. The model struggled with telecom-specific in-
structions, leading to poor results. This outcome demonstrates
a limitation in the application of instruction-based fine-tuning
within highly specialized domains. In all our experiments,
given the input question we retrieved the top most matched
document as the context from the vector database. Increasing
the number of documents retrieved led to the exhaustion of
Phi-2’s token limit, hence resulting in no outputs in most cases.

The hybrid search method in our experiment improves
coverage, decreases the risk of retrieving semantically related
but syntactically irrelevant texts, and provides precise word
matching. It is especially useful in specialized sectors where
contextual similarity and relevant terminology are both critical.
Although the hybrid search method addresses the limitations
of standalone vector-based search, in our experiments, the
incremental finetuned Phi-2 model with vector search provided
the best accuracy. Also, one drawback of the hybrid search is
that the inference time was twice as long as that of the vector
search. This is because two different searching methods were
used simultaneously, resulting in a time-inefficient pipeline
given the deadline constraints of the competition.

The baseline results using the pre-trained Phi-2 with the pre-
trained BAAI/bge-small-en-v1.5 model served as a benchmark
for our experiments. The significant difference between our
best result and baseline demonstrates the efficiency of our
pipeline in greatly enhancing the performance of the model.

V. CONCLUSION & FUTURE WORK

LLMs have received significant attention lately due to
their outstanding language understanding and reasoning ca-
pabilities. It has been applied and shown promise across
various domains including healthcare, law, and finance [9].
However, general-purpose LLMs lack specialized knowledge
in reasoning telecommunication protocols and standards. This
gap limits the successful implementation of LLMs in telecom-
munication, and requiring further fine-tuning and adaptation
[10]. In this paper, we have presented a comprehensive ap-
proach for customizing LLMs for domain-specific tasks in the
telecommunications field. The goal of the proposed approach
is to improve the Phi-2 model’s performance in answering
telecom-related queries by implementing a customized RAG
pipeline. Significant improvements in accuracy are achieved
by fine-tuning the pre-trained Phi-2 model and using MRL for
embedding fine-tuning. The incremental fine-tuning technique
strategy proved efficient in managing the computational con-
straints, which resulted in a feasible solution for this task. Our
best-performing model configuration reached a 67% accuracy
on the private leaderboard of the ITU AI/ML in the 5G
Challenge, outperforming the baseline score by 45.20%.

Our proposed methods have the potential to be applied in
other specialized fields such as cybersecurity and network
management where they can enhance general-purpose LLMs
by fine-tuning them to meet the unique demands of each
field. Future work could focus on including diverse document
formats like summaries of tables and image descriptions

through a multi-modal RAG pipeline, which could enhance
the model’s performance. Furthermore, instruction fine-tuning
for telecom-specific tasks, exploring other larger embedding
models, handling complex queries with sophisticated RAG
pipeline frameworks, and employing advanced prompt engi-
neering techniques could be explored.

REFERENCES

[1] Javaheripi, M. and Bubeck, S. (2023) “Phi-2: The surprising power
of small language models, Microsoft Research.” (Accessed: 20 August
2024).

[2] E. Almazrouei et al., “Falcon-40B: an open large language model with
state-of-the-art performance”, 2023.

[3] Gao, Yunfan, et al. “Retrieval-augmented generation for large language
models: A survey.” arXiv preprint arXiv:2312.10997 (2023).

[4] Li, Jiarui, Ye Yuan, and Zehua Zhang. "Enhancing 1lm factual accuracy
with rag to counter hallucinations: A case study on domain-specific
queries in private knowledge-bases.” arXiv preprint arXiv:2403.10446
(2024).

[5] X. Lai et al, “LISA: Reasoning Segmentation via Large Lan-
guage Model,” May 01, 2024, arXiv: arXiv:2308.00692. doi:
10.48550/arXiv.2308.00692.

[6] A. Karapantelakis et al., “Using Large Language Models to Understand
Telecom Standards,” Apr. 12, 2024, arXiv: arXiv:2404.02929. doi:
10.48550/arXiv.2404.02929.

[71 C. Alberti, D. Andor, E. Pitler, J. Devlin, and M. Collins, “Synthetic QA
Corpora Generation with Roundtrip Consistency,” Jun. 12, 2019, arXiv:
arXiv:1906.05416. doi: 10.48550/arXiv.1906.05416.

[8] N. Harris, A. Butani, and S. Hashmy, “Enhancing Embedding
Performance through Large Language Model-based Text Enrich-
ment and Rewriting,” Apr. 18, 2024, arXiv: arXiv:2404.12283. doi:
10.48550/arXiv.2404.12283.

[91 H. Zhou et al.,, “Large Language Model (LLM) for Telecommu-

nications: A Comprehensive Survey on Principles, Key Techniques,

and Opportunities,” May 17, 2024, arXiv: arXiv:2405.10825. doi:
10.48550/arXiv.2405.10825.

H. Zou et al., “TelecomGPT: A Framework to Build Telecom-Specfic

Large Language Models,” Jul. 12, 2024, arXiv: arXiv:2407.09424. doi:

10.48550/arXiv.2407.09424.

“Introduction to Matryoshka Embedding Models.” Accessed: Aug. 12,

2024. [Online]. Available: https://huggingface.co/blog/matryoshka

A. Maatouk, F. Ayed, N. Piovesan, A. De Domenico, M. Debbah,

and Z.-Q. Luo, “TeleQnA: A Benchmark Dataset to Assess Large

Language Models Telecommunications Knowledge,” Oct. 23, 2023,

arXiv: arXiv:2310.15051. Accessed: Aug. 16, 2024. [Online]. Available:

http://arxiv.org/abs/2310.15051

Zindi, “Specializing Large Language Models for Telecom

Networks,” Zindi. Accessed: Aug. 17, 2024. [Online]. Available:

https://zindi.africa/competitions/specializing-large-language-models-for-

telecom-networks

P. Joshi, A. Gupta, P. Kumar, and M. Sisodia, “Robust Multi Model

RAG Pipeline For Documents Containing Text, Table & Images,”

in 2024 3rd International Conference on Applied Artificial Intel-

ligence and Computing (ICAAIC), Jun. 2024, pp. 993-999. doi:
10.1109/ICAAIC60222.2024.10574972

A.-L. Bornea, F. Ayed, A. D. Domenico, N. Piovesan, and A.

Maatouk, “Telco-RAG: Navigating the Challenges of Retrieval-

Augmented Language Models for Telecommunications,” Aug. 07,

2024, arXiv:2404.15939. Accessed: Oct. 10, 2024. [Online]. Available:

http://arxiv.org/abs/2404.15939

“TelecomRAG: Taming Telecom Standards with Retrieval Augmented

Generation and LLMs.” Accessed: Oct. 10, 2024. [Online]. Available:

https://arxiv.org/htm1/2406.07053v1

[10]

(11]

[12]

[13]

[14]

[15]

[16]

