Diurnal Availability in un-structured P2P Systems

Nashid Shahriar¹, Mahfuza Sharmin¹, Reaz Ahmed¹, Md. Mustafizur Rahman¹, Raouf Boutaba², Bertrand Mathieu³

¹Department of Computer Science and Engineering Bangladesh University of Engineering and Technology ²School of Computer Science, University of Waterloo ³Orange Labs

Introduction

- State of the Art
- Our Contributions
 - Mathematical Model for Availability
 - A protocol: DATA
- Performance Comparison
- Future Directions

Introduction

- A persistent P2P system leveraging 24x7 availability through virtual assemblage of peers having diurnal uptime
- Possible applications
 - Content sharing
 - Distributed web hosting through peers
 - Distributed social networks
- The challenges are to ensure:
 - Consistent availability of data
 - Minimum overhead
 - Fairness in load distribution

- Introduction
- State of the Art
- Our Contributions
 - Mathematical Model for Availability
 - A protocol: DATA
- Performance Comparison
- Future Directions

Existing Strategies

- High availability is achieved mostly by Replication
- Replica management policies
 - Reactive System reacts to a change in the adopted criteria
 - Proactive System predicts the future behavior through monitoring
- Uncontrolled replication impose additional burden on the
 - Storage requirement
 - Bandwidth consumption
 - Update propagation
 - Routing process
- Major objective is to keep the number of replicas small

Shortcomings of Existing Strategies

- Consider only the current but single score of availability
- Do not utilize continuous connectivity information across time

- Reactives approaches are bandwidth hungry
- Proactive ones require complex predictive knowledge
- Burden highly available peers with a skewed load distribution
- Make no distinctions between transient and permanent failure

- Introduction
- State of the Art
- Our Contributions
 - Mathematical Model for Availability
 - A protocol: DATA
- Performance Comparison
- Future Directions

Our Contributions

- A representation for the availability patterns
- Measurement techniques for comparing patterns
- A gossip based peer discovery mechanism
- A distributed algorithm to form small groups of peers
- Altogether a protocol named DATA (Diurnal Availability by Temporal Assemblage of peers)
- Performance evaluation of the protocol

Global Availability Pattern

- Peers in Skype, Gnutella, Overnet, eDonkey, etc follow diurnal (daily cyclic) pattern governed by time-of-day effect
- The cyclic behavior of the peers situated on different time zones can be found overlapping or complementary
- Combined availability can be improved through virtual assemblage of out of phase peers

Vaterloo

Discrete Model of Availability

- We propose a discrete model to represent availability across time
- Divide a day into *n* slots of equal length *l*, n=24/1 slots per day
- The availability of a peer in a slot is the probability of its being available at that slot
- Computed from previous history and updated by periodic scan
- Availability in all slots is represented by an *Availability Vector* (\mathcal{A}_i)

Peer	Slot 1 00:00-01:00	Slot 2 01:00-02:00		Slot 23 22:00-23:00	Slot 24 23:00-00:00
P ₁	a ₁₁	A ₁₂	•••	a ₁₂₃	a ₁₂₄
P ₂	0.80	0.75		0.05	0.10
P ₃	0.55	0.35		0.85	0.70

Availability Measurement

- $C_{i,j}$ is a measure of the improvement on availability after P_i and P_j form a group
- Our protocol uses this metric to find the best matching peer
- More complementary availability vectors should result in a higher C_{i,j}
- Availability of a group is measured by the probability of at least one member of the group being present

Availability Measurement

• A "conservative" equation • A "general" equation

$$C_{i,j} = \sum_{k=1}^{K} \frac{C_{ijk}}{|G_i \cup G_j|}$$

$$C_{ijk} = \begin{cases} J_{ijk}^{(\frac{a_{ik}}{a_{jk}})} - J_{ijk} & \text{if } a_{ik} \le a_{jk}; \\ J_{ijk}^{(\frac{a_{jk}}{a_{ik}})} - J_{ijk} & \text{if } a_{ik} > a_{jk}; \end{cases}$$

Complementary Behavior = 0. 0.9 0.8 0.7 0.6 [¥[1]]0.5 0.4 0.3 0.2 0.1 Π. 0.6 Ω 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 a[ik] University o Vaterloo orange

- Introduction
- State of the Art
- Our Contributions
 - Mathematical Model for Availability
 - A protocol: DATA
- Performance Comparison
- Future Directions

Exploration

- *DATA* use a gossip based network discovery called *Exploration*
- Each peer gathers availability vectors of the peers within its two-hop distance
- Using the collected information it constructs a local list of current best candidates named as *knownlist*
- *Knownlist* is used in the next phase to keep the search space relatively smaller

Grouping Phase

- Peers communicate each other to form groups utilizing the complementary uptime distribution
- A group is constructed incrementally, i.e., forming groups with two single peers initially then growing in size
- Later, two non-Singleton groups merge into a larger one
- Grouping continues if the resultant availability of the new group increases from that of the former two groups

Group Maintenance

- Groups can revoke the membership of a peer
- If it is no more contributing to the availability increase
- The peer that is *Revoked* from a group,
 - executes exploration with its modified vector
 - go through grouping activities again

- Introduction
- State of the Art
- Our Contributions
 - Mathematical Model for Availability
 - A protocol: DATA
- Performance Comparison
- Future Directions

Grouping Strategies

- Using local knowledge two methods on the proposed metrics-
 - Conservative
 - General
- Random grouping among the currently alive two hop neighbors
- Centralized Oracle based scheme using global knowledge
- Even using, Oracle optimal grouping is an NP-complete problem
- Need a greedy strategy for near optimal solution

Experiment Overview

- We simulate an unstructured P2P network using Peersim varying time-zone disparity
- Performance metrics:
 - Group availability- Measured in units of nines defined as log10(1-T), where T is the fraction of the total observed time when groups are available
 - Group count-Total number of groups created by each strategy.
 - Message overhead-Total number of messages exchanged by the protocol normalized by the group count

- Introduction
- State of the Art
- Our Contributions
 - Mathematical Model for Availability
 - A protocol: DATA
- Performance Comparison
- Conclusion

Conclusion

- Our experimentation reveals following results
 - *DATA* ensures high availability around the clock for transient P2P environments
 - Keeps the number of replicas small
 - Requires no centralized mechanism or global knowledge
 - All the participating peers contribute resources for a portion of day
 - Ensures fairness in load distribution
 - The proposed model becomes more precise when the dimension of the vector \mathcal{A}_i becomes larger

Future Directions

- Investigate performance of the protocol in a real system
- Tackle the malicious peers
- Security issues related to group formation
- Apply a continuous model to estimate availability
 ∫ A(t) dt
- Refine the technique for a structured network using a DHT
- Globally optimizing the grouping strategy using distributed pattern matching (e.g., Plexus)

Thank You

For any question please email to: nshahriar@csebuet.org