This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

Anomaly Detection and Localization in NFV
Systems by Utilizing Masked-Autoencoder and XAl

Seyed Soheil Johari*, Nashid Shahriarf, Massimo Tornatore?, Raouf Boutaba*, Aladdin Saleh®
*Department of Computer Science, University of Waterloo, {ssjohari | rboutaba}@uwaterloo.ca
TDepartment of Computer Science, University of Regina, nashid.shahriarQuregina.ca
tpolitecnico di Milano, massimo.tornatore @polimi.it
$Rogers Communications Canada Inc., aladdin.saleh@rci.rogers.com

Abstract—The integration of Network Functions Virtualization
(NFV) systems into mobile edge and core networks has height-
ened the need for effective anomaly detection and localization
methods. The complexity of NFV demands robust mechanisms
for network resilience, security, and performance. Machine
Learning approaches have demonstrated promising solutions in
crafting adaptive and efficient mechanisms for detecting and
localizing potential anomalies within NFV systems. Particularly,
Unsupervised Learning (UL) methods have garnered significant
attention for their potential to detect anomalies without the
need for labeled data. However, UL methods are susceptible to
even minor levels of anomalous samples in the training data,
termed contamination, which can severely compromise their
performance. This paper proposes a novel approach using the
Noisy-Student technique for anomaly detection. It addresses data
contamination by combining a density-estimation teacher model
for pseudo-labeling with a weakly-supervised student model
based on a Masked Autoencoder trained on the pseudo-labeled
data. For anomaly localization, we introduce a heuristic tailored
for our anomaly detection model and two Explainable Artificial
Intelligence (XAI)-based approaches applicable to any detection
model. Extensive experiments on three NFV datasets demonstrate
superior performance, with up to a 20% improvement in anomaly
detection and up to a 22% improvement in localization, in terms
of Fl-score.

Index Terms—Anomaly Detection, Anomaly Localization, NFV

I. INTRODUCTION

Virtualization represents a revolutionary change in the
networking industry, similar to the change brought in the
computer industry in the 80’s. A promising application of
virtualization in networking is NFV. NFV allows decoupling
network or service functions from the underlying hardware
by implementing them as software appliances, called Vir-
tual Network Functions (VNFs), on virtualized commodity
hardware. Furthermore, with the continuous advancement and
widespread adoption of VNFs especially in mobile computing
environments, the potential for achieving near-hardware per-
formance and realizing substantial opportunities for network
optimization and cost reduction has become increasingly evi-
dent. As NFV deployments continue to proliferate in mobile
computing, the effective implementation of anomaly detection
and localization techniques is crucial to ensure the resilience,
security, and efficiency of these dynamic and complex systems,
ultimately enabling the realization of their full potential in
enhancing mobile network capabilities [1,2]. Nonetheless,
provisioning and managing VNF-based services introduce ad-
ditional complexity due to dynamic network topologies, mul-

tiple layering, and lack of network visibility. This increased
complexity makes VNFs more failure-prone than dedicated
hardware-based solutions [3], [4], [5]. Therefore, detecting
anomalous behavior in an NFV system and localizing its root
cause is of paramount importance to ensure high reliability for
virtualized services.

The complex inter-dependencies and multi-faceted fault
characteristics in NFV systems render traditional anomaly-
detection and localization approaches inefficient as they typ-
ically identify malfunctions by metrics crossing a threshold
configured by some field expert [6], [7]. On the other hand,
Machine Learning (ML) methods, in particular Deep Learning
(DL) methods, have shown promising results in developing
adaptive and efficient mechanisms to detect and localize poten-
tial anomalies in a dynamic NFV system by capturing hidden
dependencies among a variety of performance metrics [8], [9].
However, most of these existing ML-based approaches utilize
Supervised Learning (SL) algorithms that require abundant
labeled faulty instances to achieve satisfactory performance.
Unfortunately, labeled network faulty data is a scarce resource
and generally unavailable in sufficient volumes for two main
reasons: i) labeling data often requires domain experts to
annotate logs of anomalous scenarios, and ii) only a small
amount of the monitored data from the NFV system is related
to faulty scenarios [7].

UL-based anomaly detection on multi-dimensional data can
help alleviate the need for abundant labeled faulty instances.
Autoencoder is one of the most popular UL method that has
been utilized for unsupervised anomaly detection in many
network management tasks, including anomaly detection in
NFV architectures [6], [10]. These methods assume the avail-
ability of a training dataset that purely consists of normal
instances. However, it is often unavoidable that the historical
data collected from the NFV system includes a few anomalous
samples, i.e., we expect historical data to have some degree
of contamination. Different studies have shown that even
small percentages of contamination in the training data can
significantly degrade the performance of Autoencoders in UL
anomaly-detection methods [11], [12].

In this paper, we propose a novel unsupervised anomaly-
detection approach for NFV systems when training data is
contaminated (a problem arising in most practical scenarios).
Inspired by the Noisy-Student [13] concept used in computer
vision, we first train a Deep Autoencoding Gaussian Mixture
Model (DAGMM) [12], (i.e., a UL anomaly-detection method

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

based on density estimation) on the contaminated training
data as the teacher model. Then, we use DAGMM to remove
potential anomaly instances (i.e., to clean the training data),
and from these removed instances, we pseudo-label a few
samples that DAGMM has classified as anomalies with very
high confidence (pseudo-labeling [14] is the process of using
a trained ML model to predict labels for unlabelled data). In
this way, we compensate for some of the information that
we potentially lose during the data cleaning process. The
cleaned dataset and pseudo-labeled anomalies are then fed to
the student model, which is our novel architecture consisting of
a Masked Autoencoder (MAE) [15] cascaded with a weakly-
supervised anomaly-detection model called Deviation Network
[15]. We also use data augmentation in feature space [16], a
data augmentation method proposed for non-image data, to add
noise to the extracted pseudo-labeled anomalies to improve the
model’s generalization.

Once anomaly detection is successfully done with the
approach described above, we focus on developing an unsu-
pervised approach for anomaly localization, i.e., localizing the
anomalous VNF after an anomaly is detected. Localization
is also a challenging task in a UL approach, as there might
be no labeled anomalous instances in the training data, and
distinguishing between different anomaly locations can only
be done by comparing the detected anomaly with normal
instances. In this paper, we first propose a heuristic method
that utilizes the output of our MAE-based detection model
for different masking scenarios of the MAE to determine the
anomaly location. While the proposed heuristic is specifically
designed for the MAE-based detection model, we also propose
two general localization methods based on XAl that are appli-
cable to any black-box anomaly detection model. We show the
effectiveness of our proposed solutions through comprehensive
experimental evaluations on three datasets from different NFV
testbeds. The first dataset is generated in an NFV-based test
environment that simulates a 5G IP core network. The second
dataset is from our experimental NFV testbed that resembles
Multi-access Edge Computing (MEC) in topology. The last
dataset is collected by [17] from the ClearWater project,
which is an NFV-based open source implementation of an
IP Multimedia Subsystem (IMS) for cloud platforms. In the
evaluation results, we observed improvement up to 24% in
anomaly detection and up to 22% in anomaly localization in
terms of Fl-score compared to the state-of-the-art methods.

This paper is an extended version of the work presented
in [18]. In this extended version, we modified the student
model of the anomaly detection architecture to learn more
generalizable features from the input data through a MAE,
which is a transformer-based Autoencoder model. As we will
see in the next sections, utilizing MAE in the student model
not only improves the anomaly detection performance, but
can also provide valuable information for the localization task
based on its output for different masking scenarios. In this
extended version, we build on this idea by introducing a novel
localization method called Mask Permutation, which systemat-
ically identifies contributing features by analyzing reconstruc-
tion quality under different masking patterns. Moreover, in the
extended version, we compare our student model with other

weakly-supervised methods from the state-of-the-art in a new
set of experiments. We also compare our proposed anomaly
detection method with SL methods in terms of generalization
capability, and show that unlike SL models, our method is
able to detect failure scenarios that are unseen during training.
Finally, we expand our discussion of the related work and
experimental results.

In summary, existing NFV anomaly detection methods
struggle with training data contamination, limiting the ef-
fectiveness of unsupervised approaches that assume clean
data. Additionally, weakly-supervised methods often rely on
simplistic feature extraction, reducing their generalization in
dynamic NFV environments. For anomaly localization, prior
techniques depend on manual heuristics, lacking automation
and interpretability. To address these limitations, we introduce
MNSUAD for robust anomaly detection and Mask Permu-
tation, SHAP, and Cluster Permutation for fully automated
localization, improving accuracy and interpretability in NFV
systems. The main contributions of this paper are as follows:

o Masked Noisy-Student-Based Unsupervised Anomaly
Detection (MNSUAD) Approach: We propose MN-
SUAD, a novel unsupervised anomaly detection method
for NFV systems that effectively mitigates the impact
of training data contamination. The approach utilizes
the Noisy-Student paradigm by employing a density-
estimation-based teacher model (DAGMM) to clean and
pseudo-label the data, followed by training a weakly-
supervised student model on the cleaned dataset aug-
mented with pseudo-labeled anomalies. The novel ar-
chitecture of our student model integrates a Masked
Autoencoder (MAE) with Deviation Networks (DevNet).
The MAE learns generalizable feature representations
from input data, while DevNet maps these representations
to anomaly scores, improving detection accuracy and
scalability in NFV environments.

o Fully Automated Anomaly Localization Methods: We
develop three anomaly localization techniques: (i) Mask
Permutation, which utilizes outputs from the MAE-based
detection model for different masking scenarios to deter-
mine the anomaly location, and (ii) two general XAI-
based methods (SHAP and Cluster Permutation) that
enable interpretable and automated root cause analysis
applicable to any black-box anomaly detection model.

o Extensive Evaluation on Realistic NFV Datasets: We
comprehensively evaluate our proposed approaches on
three NFV datasets from distinct testbeds, showing up
to a 20% improvement in anomaly detection F1-score
and up to a 22% improvement in anomaly localization
F1-score over state-of-the-art methods.

For convenience, a complete list of acronyms used in this paper
is provided in Table L.

II. RELATED WORK
A. Achieving Near-Hardware Performance in NFV

NFV decouples network functions from specialized hard-
ware, enabling their deployment as software on commodity
servers, and has shown potential to approach near-hardware

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

TABLE I
List of acronyms used in the paper

Acronym Definition

Al Artificial Intelligence

CL Contrastive Learning

DAGMM [Deep Autoencoding Gaussian Mixture Model
DAIFS |Data Augmentation in Feature Space

DevNet |Deviation Network

DL Deep Learning

IMS [P Multimedia Subsystem
KNN K-Nearest Neighbors

LOE Latent Outlier Exposure
MAE Masked Autoencoder

MEC Multi-access Edge Computing
ML Machine Learning

MSCREDMulti-Scale Convolutional Recurrent Encoder-Decoder

NFV Network Functions Virtualization

NSUAD [Noisy-Student-Based Unsupervised Anomaly Detection|
RNN Recurrent Neural Network

SCARF Semantically Coherent Adversarially Robust Features
SL Supervised Learning

UL Unsupervised Learning

VAE Variational Autoencoder

VNF Virtual Network Function

XAl Explainable Artificial Intelligence

XGBoost [Extreme Gradient Boosting

performance through various optimizations. Surveys by [I1,
2,19,20] emphasize how Telecom Service Providers lever-
age NFV to reduce CAPEX/OPEX while achieving flexible
and scalable service provisioning, using high-performance
commercial off-the-shelf hardware. These architectures sup-
port dynamic VNF instantiation and elastic scaling based on
workload demands, allowing efficient resource utilization and
service agility. Moreover, authors in [21] and [22] highlight
that, with proper VNF placement and scheduling strategies,
NFV platforms can meet stringent QoS requirements, rivaling
hardware-based solutions. These studies collectively establish
that with virtualization-aware design and orchestration (e.g.,
ETSI MANO), NFV can deliver near-hardware performance
suitable for production-grade telecom and 5G deployments.

B. ML-based Fault Detection and Diagnosis

Many works leveraged SL for fault detection and diagnosis,
including fault management of NFV environments [7,23-27].
Fault detection and diagnosis in NFV systems have been
addressed using various techniques, including threshold-based
methods, statistical approaches, machine learning models, and
hybrid techniques [9]. Threshold-based approaches rely on
predefined limits for performance metrics, triggering alerts
when deviations occur [28]. Statistical methods analyze metric
correlations and apply anomaly scoring to detect abnormal
behavior [29]. Machine learning-based techniques and hybrid
approaches that combine statistical and machine learning
techniques [30] have also been applied for fault diagnosis in
NFV systems. The work in [24] used Random Forest (RF) as
a supervised learning approach for detection and root cause
localization of Virtual Machine anomalies in NFV infrastruc-
tures including anomalous CPU consumption, memory leaks,

excessive number of disk accesses, packet losses, latency
increases, and heavy workload. The authors in [25] trained
Stacked and Bidirectional LSTM models on a large amount
of multivariate time series data collected from the NFV system
in cloud environments for early detection of performance
degradation and service failures.

Similar to [25], the proposed approach in [26] leveraged
sequential deep learning methods like RNNs and Transformers
to capture temporal dependencies and sequential patterns in the
data for anomaly detection in VNF chains. Authors in [7] gen-
erated faulty scenarios of network latency, CPU resource short-
age, and excessive disk I/O in the ClearWater IMS test-bed
through fault injection tools, and evaluated the performance of
RF, extreme gradient boosting (XGBOOST), max-likelihood
classification, and K-nearest neighbors (KNN) methods in
detecting and classifying the mentioned network failures.
Contrastive learning has also been applied for fault detection in
tabular data. For example, the study in [31] uses contrastive
loss to learn class-specific dependencies for anomaly detec-
tion, while [32] introduces SemanticMask, leveraging feature
semantics to improve contrastive learning-based anomaly de-
tection. However, contrastive learning methods for anomaly
detection often rely on well-constructed positive and negative
sample pairs and can suffer from representation collapse or
unstable training when labeled anomalies are limited. Recent
works have also explored ML-based fault detection in Digital
Twins [33,34]. For example, the study in [33] proposes a
deep recurrent graph convolutional model to detect, isolate,
and accommodate sensor faults, leveraging spatial-temporal
dependencies to improve reliability.

However, as discussed earlier, SL. methods require abun-
dant labeled network-fault data that usually is unavailable
in sufficient volumes. Some existing works addressed the
issue of lack of labeled data by investigating unsupervised
ML techniques [6,10,24,35-39]. For example, Authors in
[24] evaluated the performance of three shallow unsupervised
anomaly detection approaches (Isolation Forest, Local Outlier
Factor, and One-Class SVM) on a dataset collected from
the Vodafone NFV infrastructure that spans across multiple
data centers in 11 European countries. A common Deep UL
approach that is shown to outperform shallow UL methods for
high-dimensional data consists in training an Autoencoder on
a dataset consisting of only normal samples and performing
anomaly detection based on the overall reconstruction error of
the Autoencoder. This type of Autoencoder-based UL method
has been used in [6] and [35] for anomaly detection in an
NFV architecture, in [10] for anomaly detection in Radio
Access Network (RAN) cell trace data collected from multiple
Evolved NodeBs, in [36] for detecting anomalous symptoms
in 5G RAN, and in [37] for anomaly detection on a cloudified
mobile core architecture. However, all these works assume the
availability of a training dataset that consists only of normal
samples with no contamination.

C. Unsupervised Anomaly Detection with Contamination

Some existing studies from the ML field (e.g., [11], [12])
addressed the issue of training-data contamination for un-
supervised anomaly detection on multi-variate data. Authors

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

in [11] and [12] increase robustness against contamination
by performing density estimation on the features extracted
by the Autoencoder prior to anomaly detection. Similarly,
[40] introduces a self-supervised anomaly detection approach
based on Latent Outlier Exposure (LOE) that jointly infers
normal and anomalous labels during training, leveraging a
dual-loss optimization strategy to improve anomaly detection
in contaminated datasets. However, contamination still causes
a significant degradation in the performance of these meth-
ods (partial robustness), while our approach even leverages
the contamination to improve anomaly-detection performance
([12] and [40] are among the compared approaches in our
experimental evaluations).

D. Weakly-supervised Anomaly Detection

Some works utilize weakly-supervised methods to leverage
a limited number of labeled anomalous samples for boosting
the anomaly detection performance. For instance, the approach
in [41] uses a pair of VAE models, one model trained on the
unlabeled data for learning reconstruction of normal samples,
and another model which initially is an exact copy of the
first trained VAE model, but fine-tuned on the limited number
of labeled anomalous samples. At the end, the difference
between the anomaly scores calculated by the two VAE
models is considered as the ultimate metric for anomaly
detection. In the experimental evaluations on eBay’s search
back-end systems, it is shown that this method outperforms
the supervised ensemble method designed by domain experts
at eBay. Moreover, there are many weakly-supervised methods
proposed in the ML literature for anomaly detection of multi-
dimensional data, including DevNet [15], V-DevNet [42], D-
SAD [43], and PRO [44]. We describe these approaches with
more detail in Section VLD, as they are implemented and
evaluated in our experimental analysis.

E. Anomaly Localization

Different types of anomaly-localization techniques were
proposed for fault diagnosis in network management. Model-
based localization methods leverage the knowledge of network
topology to build abstraction models, such as dependency
graphs, to represent correlations among different metrics and
events of the network that can be used for fault localization
[45-49]. However, these techniques are not suitable for NFV
architectures that have dynamic topologies [7]. Some data-
driven methodologies employ a labeled dataset to tackle root
cause analysis through a multi-classification approach [50-53].
For instance, authors in [50] address root cause analysis for
wireless network failures by treating it as a time-series classi-
fication task. They achieve this by converting time-series data
into fixed-size feature vectors and then employing an ensemble
method that combines XGBoost, rule set learning, attribution
models, and graph algorithms. However, these methods require
abundant labeled anomalous samples to achieve satisfactory
performance.

When anomaly detection is performed by an Autoencoder,
most existing unsupervised localization approaches try to lo-
calize the anomalous VNF by analyzing reconstruction errors
of different features in the Autoencoder [54]. However, it is

shown that these approaches usually lead to poor localization
performances [54]. More recently, XAl methods have been
utilized for anomaly localization [10], [55]; however, the
methods in these works only provide some basic information
to facilitate the procedure for the domain experts. In contrast,
in our paper, we use XAl algorithms to perform the anomaly-
localization task in a fully automated manner.

III. PROBLEM FORMULATION

We are monitoring the health state of an NFV system
that consists of a network of k& VNFs: vnf!, onf?,...,onf".
In each time step t, we coll¢ct n; metrics from vn fj and
denote these metrics as vnf] € R!*". Examples of these
metrics could be the general performance metrics shared by
all the VNFs, such as CPU utilization and incoming/outgoing
packet rates, or more exclusive performance metrics related
to the functionality of each individual VNF that can vary
from one VNF to another (e.g., call success ratio). There-
fore, xy, our data sample for time step t that represents
the status of the entire NFV system consists of the com-
bination of all the collected metrics from all the VNFs:
x, = {onflonf?, ...,onfF} € R™? where d = Zle n;
is the total number of metrics collected from the NFV system.
We have the historical data of the first n time steps: X =
{x1,29, ...}, X € R"¥4 We assume the system works
in normal circumstances for most of this period; however,
the historical data also includes some anomalous samples
and is not entirely made of normal instances. Similar to
[12], we assume up to 5% of the training data might consist
of anomalous samples (i.e., up to 5% contamination in the
training data). Given this historical data of the NFV system
for the first n time steps as the training data, we have two
objectives in this problem:

« Anomaly Detection: Detecting anomalous behavior of the
system after time step n, i.e., determining the behavior
of the system y,,+; € {0, 1} (0: normal, 1: anomaly), for
samples z!¢t € R'4, ¢ > 0.

o Anomaly Localization: Localizing the VNF responsible
for the anomalous behavior of the system after the
detection of an anomaly, i.e., determining 7 such that
vnf" is the location of the anomaly.

IV. MASKED NOISY-STUDENT-BASED UNSUPERVISED
ANOMALY-DETECTION (MNSUAD) APPROACH

To overcome the issue of contamination in the training
data, we propose an unsupervised anomaly-detection approach
based on the Noisy-Student method and call it MNSUAD. The
Noisy-Student method was introduced in [13] for leveraging
unlabeled datasets in computer vision classification problems.
In this method, a neural network is trained on the avail-
able labeled dataset to reach an initial good performance.
Then, this neural network is used as the teacher model to
generate pseudo-labels on the unlabeled dataset. Afterwards,
another neural network (usually larger in size and with more
parameters) is trained on the combination of labeled and
pseudo-labeled data, and is called the student model. The key
idea behind this method, which enables the student model to

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

5
TABLE II
Comparison of the related works included in our experiments based on their key characteristics

Anomaly Detection Supervised/ Localization Handles Main

Method Unsupervised Approach Contamination? Contribution

Autoencoder [6, 10] Unsupervised Reconstruction Error No General anomaly detection in NFV systems

DAGMM [12] Unsupervised Reconstruction Error Partial Robustness to data contamination

SemanticMask [32] Unsupervised Not Provided No Structured feature space for tabular data

MSCRED [54] Unsupervised Inter-correlation Analysis No Time-series anomaly detection

DevNet [15] Weakly-Supervised Not Provided No Proper utilization of a few labeled anomalies

LOE [40] Weakly-Supervised | Mutual Information Analysis Yes Robustness to noisy datasets via latent label refinement

MNSUAD (ours) Unsupervised Mask Permutation / XAl Yes Improved detection/localization in contaminated data
outperform the teacher model, lies in injecting noise into the X.=X[Ex <thr], X. € Rs*d 3)

input data via data augmentation during the student model’s
learning process. This augmentation enhances the student’s
ability to generalize, resulting in improved performance.

A. Teacher Model

In a Noisy-Student approach, we need a teacher model
that achieves an initial good performance in the anomaly-
detection task, and its predictions are utilized for training
a student model that outperforms the teacher. In our prob-
lem, we do not have a labeled dataset to train the teacher
with; instead, for the teacher model to achieve an initial
good performance in anomaly detection, we train a Deep
Autoencoding Gaussian Mixture Model (DAGMM) [12], an
unsupervised anomaly-detection method, on a fraction (e.g.,
40% in our experiments) of the training data, initially treating
the training data as it has no contamination. We train the
DAGMM on a fraction of the training data instead of the whole
training data to avoid overfitting on the anomalous samples.
In other words, DAGMM treats its training samples as normal
instances, therefore, training it on a fraction of data (instead
of all data) would lead to fewer false negatives when we are
observing the teacher’s prediction on the training data. Since
we are interested in extracting pseudo-labeled anomalies from
the training samples, having fewer false negatives is more
desirable to us than having fewer false positives at this stage.

As we mentioned earlier, DAGMM is shown to be robust
against contamination in the training data to some extent [12];
therefore, it is a good choice for our teacher model. The output
of DAGMM for a sample is an energy value representing the
sample’s potential to be an anomaly. The higher the energy
of a sample, the higher is the probability that the sample is
an anomaly. After training DAGMM on a fraction of training
data, we observe its prediction (energy) of the whole training
samples and denote it as Ex:

Ex = DAGMM(X), Ex € R"*! (1)

B. Cleaning Training Data and Extracting Pseudo-labeled
Anomalies

We consider p; % of training samples with the lowest energy
as a cleaned training dataset (X.) that is expected to be
much less contaminated than the original training data (thry
is defined as the p,-th percentile of the energy values in Ex):

thry = percentile’* (Ex))

In our experiments, we chose p; = 93% to disregard a slightly
larger percentage than the highest considered contamination
percentage (5%) in the training data. However, X, still could
be contaminated (to a lesser degree, though), and we poten-
tially would lose some valuable information by disregarding
(100 — p1)% of the training data. To compensate for this lost
information, we extract some pseudo-labeled anomalies from
the training samples that have the highest energy calculated
by the DAGMM method. If ug and og are the average and
standard deviation of the energy values of samples in X, then
we define thry as:

thTQZME—FbXO'E,bZl 4)

In our experiments, we chose b = 2, but its value does not have
a big impact on the performance of the approach as long as it
is not too large. By this definition, most of the samples in X,
would have a lower energy value than thry, and a considerable
number of anomalous samples in the training data would have
a higher energy value than thro; therefore, we also separate
all the training samples with higher energy values than thrs
as the potential contamination data, and denote it as X op;:

Xcont = X[EX > th?"g] (5)

Now, we define thrs to choose the top p2% samples with
the highest energy values (e.g., top 20%) in X ,,+ as pseudo-
labeled anomalies, and denote as X0, (training samples
that DAGMM has classified as anomalies with very high
confidence):

Econt = DAGMM(Xcont) (6)
thrs = percentile(loo_”)(Econt) @)
Xanom = Xcont [Econt > th?“g,] (8)

In a Noisy-Student method, the key idea for achieving
a better performing student model is to add noise to the
pseudo-labeled data through data augmentation to improve
the generalization of the student model. Therefore, we utilize
the data augmentation method for non-image data proposed
in [16], called “data augmentation in feature space (DAIFS),”
to add noise to the extracted pseudo-labeled anomalies. We
denote the obtained noisy anomalous pseudo-labeled samples

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

as Xanom:

Xanom - DAZFS(Xanom) (9)

Then, our new training data that the student model of MN-
SUAD will be trained on is the combination of X, and X .,om.:

Xnew == {XcaXanom}a Xnew € REXd (10)

In summary, the three-step thresholding approach ensures
effective detection and utilization of minority anomaly sam-
ples by leveraging DAGMM-based density estimation within
the Noisy-Student framework. Unlike traditional unsupervised
methods that disregard data contamination, this method sys-
tematically refines the dataset as follows. First, the clean-
ing step only keeps the low-energy samples to create a
contamination-free training set. Second, the pseudo-labeling
step extracts high-confidence anomalies based on energy
scores. Third, the augmentation step enhances model general-
ization by adding noise to pseudo-labeled anomalies. This pro-
cess minimizes false classifications while leveraging anomalies
to improve learning, making the approach more robust than
standard unsupervised techniques.

C. Student Model

The actual task of anomaly detection is performed by
a weakly-supervised student model trained on X,., =
{XC,Xanom}, which treats the samples belonging to X, as
normal samples and samples in Xamm as known anomalies.
For the student model, we propose a novel architecture,
consisting of an MAE [15] and a Deviation Network (DevNet),
to be trained on X,,.,. The proposed student model is pre-
sented in Fig. 1. DevNet [15] is a weakly-supervised learning
anomaly-detection approach that is designed to utilize a few
available labeled anomalies to improve the anomaly-detection
performance; therefore, it is a well-suited approach to take
advantage of the extracted pseudo-labeled anomalies in our
problem. DevNet uses a neural network to directly learn a
single anomaly score from each input sample, which serves as
the basis for anomaly detection. However, since this anomaly
score is a direct mapping from the input space to a single scalar
value, DevNet might not perform well when dealing with high-
dimensional data. Moreover, DevNet typically requires a large
number of training samples to avoid overfitting, which might
not be available in our case. To address both of these issues,
for the student model, we integrate DevNet with an MAE in
a novel architecture, where Devnet learns its anomaly score
from the rich features learned by the MAE from the input
data, instead of learning it directly from the input samples.
MAE is a transformer-based Auto-encoder model that has
been shown to learn very generalizable representation from
raw data [15]. These generalizable features contain valuable
information regarding the anomalous behavior of the input
samples, thus, can improve the performance of DevNet and
also the scalability of the student model for large NFV
systems. In the following, we first describe the architecture
of MAE and DevNet individually, and then illustrate how
they are integrated together in our proposed student model
for performing anomaly detection.

MAE Architecture: MAE is a transformer-based Auto-
encoder model that similarly to other transformer models
considers the input data as a sequence of tokens (e.g., words of
a sentence in NLP or patches of images in computer vision). In
our case, metrics of each VNF (vnf{,j € {1,2, ..., k}) are the
k input tokens for our MAE model. To convert the input tokens
to vectors of equal dimension d.,., we use k linear projection
layers with trainable weights (with input size n; and output
size dey,.) that transform each vnf{ € R1™ to z] € R1Xdene,
such that the input z; = {vnf}, onf?, ..., onfF} is converted
into zy(z;) = {z1,22,..,2F} € RFXdenc. In transformer
models, positional encoding features [15] are added to the
input so the model is informed of the order of tokens in the
input sequence (in our case, the model would know which
token is related to which one of the VNFs). The positional
encoding features (pos € R¥*denc) have the same dimension
denc for each token, so after adding the positional encoding
we have:

(1)

zo(xt) = z1(x¢) + pos

2o(w1) € RFXdenc (12)

The idea for learning a very generalizable representation
in MAE is to randomly mask (remove) a portion of the
encoder’s input data (a fixed number of the input tokens), and
forcing the decoder to reconstruct the entire input data from
the incomplete information that is encoded by the encoder.
This design follows the masked autoencoder paradigm, which
enables the encoder to focus on learning robust representations
by reconstructing missing data, a strategy that improves gen-
eralization under partial or noisy observations. This is particu-
larly beneficial in NFV environments where input features can
be incomplete, delayed, or noisy due to real-time monitoring
limitations. For the sake of simplicity, in our approach, we
assume that only the metrics of one of the VNFs (one input
token) is randomly selected to be masked from the encoder.
However, all the following algorithms can be easily extended
to cases where the metrics of more than one VNF are masked.
So, we first randomly (with uniform distribution) select the
number m from {1,2, ..., k}, and remove the features related
to the m-th VNF from 2z, to obtain zs:

m—1

z3(xp,m) = {z%, zg, vy 28

m—+1 k
2y 25)

13)

z3(x¢,m) € R(*k—1)xdene (14)

Now, z3 is the input to the MAE’s encoder. This encoder is
a standard ViT encoder [15], which is a series of transformer
blocks that transforms the input to a latent representation
zy(xs,m) € RFE-Dxdenc Then, before feeding this latent
representation to the decoder to reconstruct the original input,
we need to concatenate it with a random trainable vector of
dimension d.,., called mask token [15], to inform the decoder
that the information in the m-th position (metrics regarding
the m-th VNF) is masked. Let’s denote the mask token as
Mioken, then the output zs(x, m) will be the concatenation

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

of z4(xs) = {24, 23, ..., 2871} and Myppen:

1 .2 —1 3 k—1
ZS(mtam) = {24724, 7ZT aMtok:en;ZZna--wZzl } (15)

z5(xy,m) € REXdene (16)

Similar as for the encoder, we need to add positional
encoding features to z5 before feeding it to the decoder:

a7

ZG(Itam) = 25(xt7m) + pos

26(x, m) € RE*dene (18)

Now we use a single projection layer (with input size
dence and output size dg..) to project each token to a new
dimension dg, to obtain z7(z;, m) € R¥Xddace, 2 (2, m) will
be the input to our decoder. The decoder is also a series
of transformer blocks that transforms z;(x;,m) to another
representation zg(x;,m) € R¥*dacc. Since MAE’s goal is to
reconstruct the original input sample, we should also have a
final linear projection layer (with input size k X d 4. and output
size d) at the end of the decoder to project the decoder’s
output zg(x¢,m) to a vector of dimension d, denoted as
z9(x¢,m) (unlike previously mentioned projection layers that
were applied separately on each token, this final projection
layer is applied once on the entire decoder’s output):

z9(we,m) = {25723’ ’Zg} (19)
zg e RIXn (20)
k
29(xy, m) GRIXd,d:an 21)
j=1

The MAE is trained according to the following loss func-
tion, which is the mean squared error (MSE) of the masked
VNF original metrics and those reconstructed by the decoder:

Lyag = MSE(vnf{", z5") (22)

DevNet Architecture: DevNet is a weakly-supervised
anomaly detection method that can utilize a limited number of
known anomalies to improve anomaly detection performance.
DevNet’s architecture is a simple neural network that learns
a scalar anomaly score ®(x) value from its input samples x.
DevNet’s neural network architecture consists of three hid-
den layers with ReLU activation functions, incorporating 1.2
regularization to prevent overfitting. The final layer outputs an
anomaly score using a linear activation function. In the training
of DevNet, anomaly scores of normal samples are forced to
be close to a reference average, and anomaly scores of known
anomalous samples are forced to deviate significantly from
this average. To achieve this goal, the following loss function
is used for training DevNet:

|%;”R\, if = is normal
LDev(x) =
maz(0,a — 2EZLE) if 2 s anomalous

OR

(23)

Same as in [15], we assume that anomaly scores of normal
samples have a standard normal distribution F': N (0, 1), and
for training a batch of training samples, we draw [observa-
tions from this distribution: (r1, 72, ..., 7;). Then, the reference
average is calculated based on these ! drawn observations:
UR = %Zézl r;and 0% = 1 Zé:l (r; — pg)®. Similar to the
loss function in [15], our loss function pushes anomaly scores
of normal samples in X to be near pp and requires anomaly
scores of samples in Xamm to deviate from ppr with at least
a > 0 confidence level. In our experiments, we chose a = 5
to ensure significant deviation from ppr for our anomalous
samples. Moreover, for creating a batch of training samples
with size 3, we select /2 samples from X, and 3/2 samples
from X 4nom. In the end, based on the loss function, parameters
of the DevNet are optimized by performing a gradient descent
step.

Integrating MAE with DevNet: In our proposed student
model depicted in Fig. 1, we integrate MAE with DevNet and
train the entire model on X,,.,, in an end-to-end fashion. More
specifically, rather than using raw input samples, the model
first processes them through the MAE before passing features
into DevNet. The MAE encoder extracts latent features, while
reconstruction error features are computed based on the dif-
ference between the input and output of MAE. Both the latent
and reconstruction error features are then fed into DevNet to
compute anomaly scores of the samples. So, the new input of
DevNet, =’ (x¢,m), is:

o' (xp,m) = {z6(@s, m), r€Cerr (xy,m)} € RIX (kX denctk)
24
recor (xe,m) = {||28 — xi||2,i € {1,2,...,k}} (25)

The student model is trained according to the following loss
function, which is a combination of the loss functions of MAE
and DevNet:
o1 X Lyag + ‘W;WL if x4y € X,
L(z) =
max(0,a — W), if 2; € Xanom
(26)

Where Lyjap = MSE(vnfl™, 2J"), and oy > 0 deter-
mines the effect of the two components of loss function for
normal samples. At inference time, we calculate the average
of ®(a'(x,,m)) for a test sample x, when m varies from 1
to k, and the test sample is considered as an anomaly if this
average value exceeds a predefined threshold (e.g., a/2).

Regarding the scalability of our proposed method, it is
important to highlight that the transformer architecture used
for feature representation efficiently handles large input sizes.
The self-attention mechanism, with a complexity of O(k?)
relative to the number of input tokens, remains computation-
ally feasible due to the high parallelism enabled by modern
hardware accelerators. Unlike sequential models, transformers
process all input tokens simultaneously, ensuring that an
increase in the number of VNFs has a manageable impact on
execution time. The architecture’s ability to represent complex
relationships among tokens further enhances computational

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

MAE

Endoder's Decoder's

Al Unmasked
NFs output input

Al UNFs
VNFs (reconstructed)

vnf,! vnfy!

vnf,!

vnfm vnf™

o | e
(\ token [

=> (vnf™ | —> — — 5" | |—> |Pecoder|— {vnf{®
> Vnfm

Vnfm nf+

vnfk

Reconstruction

error features ‘
Canar)
i distrib:nionF XT i

| Q@ Q009 !
!] |
Reference | ¥ | | Deviation
Score | : Network
Generation| i
i i
Ref L_____;___. .___/z_____J
eference -
MR, OR ~ ®(x") Anomaly
average and std \,/ Score

Loss

Function L(xt, 26, X', ®(x)

Fig. 1. The proposed student model to be trained on Xpeq. The latent
features (low-dimensional representation and reconstruction error features) are
extracted from the input by the MAE and are fed to the Deviation Network.
Then, the anomaly score output of the Deviation Network alongside average
anomaly score of some normal samples (u) that is calculated according to
a prior distribution F' are fed to the loss function for end-to-end training of
the whole model.

efficiency without introducing excessive additional parameters.

V. ANOMALY LOCALIZATION

After an anomaly is detected, localizing the VNF that is
responsible for the anomalous behavior of the system is the
next important step in fault management of NFV systems. In
this paper, we assume the reasonable assumption that as the
probability of multiple simultaneous failures is very small, the
anomalous behavior originates only from one of the VNFs,
and our localization objective is to pinpoint the corresponding
VNE. We first present an anomaly localization algorithm
called "Mask Permutation” that utilizes the outputs of the our
anomaly detection model for different masking scenarios to
determine the anomaly location (exclusive for our anomaly
detection model MNSUAD). Furthermore, we propose two
more generic algorithms for anomaly localization based on
XAI methods that are applicable to any black-box ML-based
anomaly detection model. All three algorithms perform the
anomaly localization task in a fully-automated manner without
requiring domain experts’ intervention.

A. Localization with Mask Permutation

The goal of Mask Permutation is to observe the output
of the detection model for different masking scenarios and
determine the anomaly location based on the information
provided by these different outputs. Let us assume x, is a
detected anomaly sample. If vnf7 is the anomaly location,
we expect the following behavior from our detection model:

When metrics of vnf/ are masked: if metrics of vnf7 are
masked, we would expect the reconstruction error for vn 7 to

be high (big difference between predicted values and actual
values of vnf7’s metrics). The reconstruction error can be
calculated according to the following:

Uxa,j) = MSE(vnf;, 2(va, 5)) (27)

Moreover, since the metrics of the anomalous VNF are not
given to the MAE, we would expect a relatively lower anomaly
score when metrics of vn f7 are masked (we expect ¢(z4,7) =
|W| to be lower relative to when the metrics of a
VNF other than vnf? are masked).

When metrics of vnf’ are not masked: Let us assume
metrics of vn f? are masked (i # j). Then, the anomaly score
calculated by the detection model would be ®(z’'(x,,7)). Now,
assume we replace the metrics of vnf’ (the anomalous VNF)
with values that the MAE predicts for it when it is masked
(i.e., z(xq,)) to create a synthetic sample gy, (5):

Toyn(J) = {vnf;, ...,vnfg_l, zg(xa,j),vnfg"’l7 ...mnff}
(28)

Since the metrics of the anomalous vn f7 are replaced
with their predicted values z}(z,,j), we expect the resulting
synthetic sample to exhibit a lower anomaly score than the
original one when another VNF (vnf?,i # j) is masked;
in other words: |¢(Zl(wsy’;§2j)’i))f“’*| < |¢(I/(I;§))_“R|. We

denote this difference as AP (z,, j,1):

O(2'(2a,17)) — iR

O(xa,1) = | on (29)
(i), i) = | T IOD) Z 0y
A@(I’a,j, Z) = ¢(xaa Z) - gf)(!ﬂsyn(j),l) (31)

Based on these expectations, we define a global localization
score (GLS) for each vn f7 and denote it as G(j):

Zi;ﬁj A¢<xaa j> Z)

G(j) = g X Qxq,j) — (24, 7) + E_1

(32)

Where oo > 0 adjusts the effect of the reconstruction
error component of the GLS. The higher the G(j) score is,
the higher is the probability that vnf7 is the location of the
system’s anomalous behavior. We calculate G(j) for all the &k
VNFs (5 € {1,2,...,k}) and choose the VNF with the highest
GLS to be the anomaly location.

Although our current implementation does not leverage
parallelism, as the number of VNFs is small in our ex-
periments, the mask permutation method employed in our
approach is inherently parallelizable due to the independence
of masking scenarios. Each masking scenario can be processed
independently, allowing the workload to be distributed across
multiple computational units, such as GPUs or processing
nodes. This parallelism significantly reduces computational
overhead when scaling to larger datasets, ensuring efficient
execution without compromising performance.

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

B. Localization with SHAP

The complete procedure of anomaly localization with the
SHAP method [56] is presented in Algorithm 1. To determine
the contribution of each feature to the decision of the anomaly
detection model, SHAP gets the detected anomaly sample x,,
the anomaly detection model (e.g., MNSUAD), and a set of
background input samples to explore the input space with.
Giving the entire training samples as the background data
to the SHAP method would result in a highly impractical
execution time. A possible solution is to apply k-means on
the training data and give the obtained centroids, as repre-
sentatives of the training data, to the SHAP method. In our
experiments, we applied k-means on X,., (e.g., with 50
clusters) and gave the corresponding centroids Cents to the
SHAP method as background data to achieve a reasonable
execution time. Shap,, € R*4 the output of the SHAP
method for the detected anomaly z,, has a value for each
feature that represents the effect of the feature on the detection
model’s output for this detected anomaly. In the next step, for
each vnf’, we separate elements of Shap,, corresponding
to the features of vnf’ and denote it as Shapl € R,
Finally, the anomaly location is chosen to be the VNF whose
SHAP values (S hapg;a) have the highest first norm. We have
also considered a scaling factor ¢; € C for each Shapg;n’
to avoid any potential biases towards/against some specific
VNFs. For example, in our experiments, we chose ¢; = %l
to avoid being biased towards the VNFs from which we collect
a higher number of features (n; being the number of features
collected from vnf;). Moreover, it is important to note that
we chose the first norm instead of the second norm because it
allows the algorithm to consider a higher number of features in
localizing the anomaly, where the second norm might focus
the algorithm on a few specific features (i.e., features with
large SHAP values become too dominant in determining the
anomaly location) and degrade the localization performance.
The SHAP localization method can be applied to any ML-
based anomaly detection model that calculates an anomaly
score for any given data sample.

Algorithm 1 Anomaly Localization with SHAP
1: function SHAPLOCAL(z,, MNSUAD, Cents, C) > Input:
detected anomaly x,, anomaly detection model (MNSUAD),
background data centroids (Cents), scaling factors (C)
2: Shapy, < SHAP(zq, MNSUAD,Cents) 1> Compute
SHAP values for x, using centroids as background data

3: Shap;a +— elements of Shap,, related to vnf? > Extract
SHAP values corresponding to each VNF

4: location < argmaz;(c;||Shapl, ||1) > Identify VNF with
the highest scaled SHAP first norm

5: return [ocation > Return the VNF most responsible for the
anomaly

C. Localization with Cluster Permutation

SHAP is a general model-agnostic XAI method that is
designed to be applicable to any ML task. For improving the
accuracy and reducing the computational complexity of our
localization method, we propose our own novel XAI algorithm

(called Cluster Permutation) that is specifically designed for
the task of anomaly localization but is still applicable to any
anomaly detection model. The overall procedure of Cluster
Permutation is presented in Algorithm 2. In this algorithm, to
check whether vn f7 is the location of the detected anomaly
r, = {vnflonf? .., onfF}, we first define the metrics
related to/vifj in x, as x,(j), and the remaining metrics

in z, as x,(j). We do the same separation on all the samples

P

in X, (a total of s samples) to obtain X.(j) and X.(j). Then,
by the K-Nearest Neighbors (KNl\Qilgorithm,/wi find the
indices of the nearest neighbors of z,(j) in the X.(j) dataset.
These neighbors would be normal samples that resemble our
detected anomaly sample when we are excluding metrics of
vnf?. Our intuition is that if vnf7 is the location of the
anomaly, replacing its current metrics in the detected anomaly
with those from normal neighbors should reduce the anomaly’s
impact. As a result, the newly created sample (27°¢) would
exhibit a lower degree of anomalous behavior. Consequently,
its anomaly score would be lower and closer to pp. For
each vnf7, we measure the average change in the anomaly
score for all the neighbor samples. The vnf7 with the highest
decrease in anomaly score, when its metrics are replaced by
normal neighbors’ metrics, is chosen as the anomaly location.
However, if none of the VNFs show a decrease in anomaly
score, or if the decrease is less than a given threshold (T'hr),
the algorithm outputs “undecided”. So, in this case, we ran the
ShapLocal algorithm (Algorithm 1) to determine the anomaly
location. The Cluster Permutation method is also applicable
to any ML-based anomaly detection model that computes an
anomaly score for a given data sample.

One important point is that even though X. is much less
contaminated than the original training data, it still has some
degree of contamination, but in this algorithm, we are treating
X. as if it only includes normal samples. However, this
issue would not be problematic if we choose K in the KNN
algorithm large enough so that the obtained neighbors include
enough normal samples for the algorithm to work properly.

VI. EXPERIMENTAL RESULTS

In this section, we first introduce the three datasets on
which we evaluated our anomaly detection and localization
methods. Then, we describe the-state-of-the-art approaches
that are compared with our proposed methods. Following this,
we conduct a detailed examination and analysis of the results
obtained from applying our methods to detect and localize
anomalies within these datasets.

A. Datasets

ITU Dataset: Our first dataset is from the “ITU AI/ML
in 5G” challenge [57]. It was generated in an NFV-based
test environment that simulates a 5G IP core network. The
target topology of the NFV testbed is shown in Fig. 2(a) and
consists of 5 VNFs: two IP core nodes (TR-01 and TR-02),
two internet gateway routers (IntGW-01 and IntGW-02), and
a router reflector (RR-01), each hosted on a different Virtual
Machine (VM). Various performance metrics, such as CPU
utilization and network incoming/outgoing packet rates, are

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

Algorithm 2 Anomaly Localization with Cluster Permutation

1: function CLUSTERPER(xq, X., MNSUAD,Thr) b Detected
anomaly, clean dataset, model, threshold

2: AP + {} > Store anomaly score changes for each VNF
3: for j =1t kdo > Iterate over VNFs
4: ﬁ_(j\) = {vnfl} e RM*" > Extract vnf’ features
5: Ta(j) == (Ta \ Ta(j)) > Remove vnf? from sample
6: Run KNN in X.(j) for za(j)

7: Find nearest neighbors: X.,,(j),p € NEIGHB

8: Ap«+—0,c+0

9: for p € NEIGHB do

10: e — fonfl, ...z (5), ..., onfr}

I A |Rzadmpn) | 2D ur

12: if A >0 then "

13: Ad — Ap+ A

14: c+—c+1

15: if ¢ > 0 then

16: A@.append(%)

17: else

18: AP .append(0)

19: location < argmaz(Ad) > Select most affected VNF
20: if (maxz(A®) > Thr) then
21: output < location
22: else
23: output < ShapLocal(z4) > Fallback to SHAP
24: return output

collected from each VNF per minute. For evaluation of the
anomaly-detection mechanisms, the following fault scenarios
are injected to one of the VNFs periodically: 1) node failure,
i.e., an unplanned reboot of a VNF. 2) interface failure, i.e.,
a failure that causes an interface to be down, and 3) packet
loss/delay, i.e., an event that causes packet loss/delay on
an interface. We label each faulty instance according to the
location of the fault (1:5, the VNF to which the fault is
injected), and that would be the target that our localization
algorithms should predict. A well-structured version of this
dataset can be found in [58]. For this dataset, the training
data includes 3870 normal samples, and the test data includes
3505 normal samples and 1112 anomalies. For creating a
certain level of contamination in the training data, we choose
some anomalous samples at random from a set that includes
an equal number of different types of anomalies and add
those anomalies to the training data. When extracting pseudo-
labeled anomalies from this training data according to the
procedure in Section IV.B, we observed that, as expected, the
number of extracted pseudo-labeled anomalies was larger for
higher contamination rates. Specifically, the average number
of extracted pseudo-labeled anomalies was 25, 41, 57, 65,
and 72 for contamination rates of 1%, 2%, 3%, 4%, and 5%,
respectively.

MEC Dataset: Our second dataset is from our experimental
NFV testbed depicted in Fig. 2(b), and consists of 4 open-
source VNFs: a Firewall (iptables [59]), an intrusion detection
System (Suricata [60]), a deep packet inspector (nDPI [61]),
and a flow monitor (ntopng [62]). We have adopted the
topology in Fig. 2(b) from [27] and implemented it on the
SAVI testbed [63], where each of the VNFs is hosted on a
different VM. We used Apache Bench for traffic generation
in the testbed. We have collected 61 resource-related metrics
(CPU, Disk, memory, and network) from all the VNFs every 5

seconds (see [27] for a complete list of collected metrics). We
injected one of the following faults to one of the VNFs peri-
odically to generate faulty instances to evaluate our anomaly-
detection techniques: 1) CPU stress by the stress-ng [64] tool
that increases the CPU usage in the VM, 2) disk stress by
the stress-ng [64] tool that increases the disk usage in the
VM, and 3) network stress by the tc [65] tool where network
delay of one of the interfaces in a VM increases. For this
dataset, the training data includes 3500 normal samples, and
the test data includes 1500 normal samples and 200 anomalous
samples. Similarly, we extract pseudo-labeled anomalies from
the training data of this dataset according to the procedure
in Section IV.B. The number of extracted pseudo-labeled
anomalies (on average for multiple runs) was 28, 52, 72, 84,
and 89 for 1%, 2%, 3%, 4%, and 5% contamination rates,
respectively.

IMS Dataset: This dataset is collected by [17] from the
ClearWater project, which is an NFV-based open source
implementation of an IMS for cloud platforms. The IMS
consists of the ten components depicted in Fig. 2(c), each
deployed on a docker container. The dataset contains the
performance metrics of the three most important components,
namely Bono, Sprout, and Homestead, which are responsible
for controlling sessions initiated by users. The performance
metrics are collected from the containers every 5 seconds.
For generating faulty data instances, they inject CPU fault,
Memory fault, or i/o fault randomly to one of these three
components (at each fault scenario, one of these fault types is
injected to one of the three main components). The training
data here includes 480 normal samples and the test data has
120 normal samples and 700 anomalous samples. Similarly,
we extract pseudo-labeled anomalies from the training data of
this dataset according to the procedure in Section IV.B. The
number of extracted pseudo-labeled anomalies (on average for
multiple runs) was 3, 6, 11, 14, and 16 for 1%, 2%, 3%, 4%,
and 5% contamination rates, respectively.

Data Preprocessing: We perform the necessary data pre-
processing tasks before feeding the data to the ML models,
including replacing the accumulative values (e.g., number of
packets sent) with their numeric difference, data normalization
due to the different dynamic ranges of the collected metrics,
metric selection, etc. The compared approaches were evaluated
on a server with 2x20 core Intel Xeon Silver 4114 2.20GHz
CPU, 187 GB memory, and NVIDIA Tesla P40 GPU. Feature
statistics (mean + standard deviation) for different fault type
scenarios for our three datasets are reported in TABLE III.

B. Compared Approaches

Baseline: The baseline approach used to compare our
detection approach with is the Autoencoder-based anomaly-
detection algorithm in [6] and [10], where the Autoencoder
is trained on only normal samples and then based on the
overall reconstruction error of the Autoencoder, anomalies are
separated from normal samples in the test data. Since [6]
and [10] have worked with different datasets that are not
publicly available, we have designed the best Autoencoder
architecture for our datasets by trying different architectures,

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

TABLE III

Feature statistics (mean + standard deviation) for different fault types across the three NFV datasets. Feature values are normalized to [0,1] but reported in
percentage format for better interpretability.

5G Core

Target NFV
System
(@)
2 openstack
W1 0
= -) _ =
T Am TR e el =l T I
Clients Firewall DS Flow Monitor DPI o —]
(Apache Bench) (iptables) (Suricata) (ntopng) (nDPI) Web servers
Ellis
Y Vellum Dime
L R [cassancra | [chronos | P—
yy | Etcd I I Astaire I
]
' 1
[. A
e ; 4
L
T
|
i YVY -—HTTP—
Bono === > Sprout - — XCAP — =
<— 5P —
()

Fig. 2. NFV system of (a) ITU Dataset, (b) MEC Dataset [27], and (c) IMS
Dataset [6]

from very shallow to very deep, to reach the best possible
outcome for the Baseline. Moreover, similar to [10], we added
L2-regularization to the Autoencoder network to improve the
model’s robustness against contamination in the training data.

Dataset CPU Utilization Incoming Packet Rate Outgoing Packet Rate
Fault Type IntGW-01 IntGW-02 RR-01 TR-01 IntGW-01 IntGW-02 TR-01 IntGW-02 TR-02
Normal 925+25 933+22 943+24 892+20[853+30 500+28 495+30[857=x35 350.0=+30
ITU Node Failure [72.0 £ 185 74.0 £ 17.8 79.5 + 162 73.8 + 14.5| 84.8 +4.0 49.0 + 18.8 50.2 + 19.1|72.1 £ 17.0 49.5 + 183
Interface Failure| 89.5+7.0 89.7+72 945+40 889 +75 820+ 185 485+20.7 483 +£21.3[73.0 £19.8 487 +20.5
Packet Loss [91.7+45 921 +48 946+35 89.0+43[839+85 483+78 481+9.0[832+73 49.0+75
Dataset CPU Utilization Disk Utilization Outgoing Packet Rate
Fault Type iptables Suricata nDPI iptables Suricata nDPI iptables Suricata nDPI
Normal 81.3+60 820+67 83173 [785+128 762+9.6 51.0+12.6[50.2 +21.2 66.0 £ 18.6 5I.1 + 12.8
MEC CPU Stress 83.0+82 837+57 849+62[803+84 768 +11.3 51.2+16.0[50.5+23.5 67.1+19.1 514+ 152
Disk Stress [81.0 + 11.5 81.7+9.3 829 +7.6 [80.0+ 153 78.6 £ 13.0 51.7 + 18.3|50.1 + 183 65.2 + 19.5 50.8 +8.5
Network Stress | 81.5 £ 8.6 823 +8.1 83475 [782+£169 758 +9.2 509 +153[50.2 +23.1 657+ 174 51.1 £14.7
Dataset CPU Utilization Memory Utilization Outgoing Packet Rate
Fault Type bono homestead sprout bono homestead sprout bono homestead sprout
Normal 904 +2.8 91.0+£25 922+30[8.0+46 859+34 515+£127]609+80 755+85 61.7+£98
IMS CPU Fault 920+55 92652 93.8+41[895+72 867+61 51.0+152[61.3+162 764 +12.5 62.0 +12.8
Memory Fault | 912 £+4.1 91.8+£35 93.0+32 | 88.6+9.1 864 +66 508 +182[60.7+ 11.7 759 +92 61.5+105
1/0 Fault 909 +35 91441 926+25[83+66 858=x43 50.6=+162]60.6+83 756+ 11.8 61.2+938
BGP Peoring For the baseline localization approach, we implemented the

conventional method where the VNF whose features have
been reconstructed more poorly is chosen as the location of
the fault (Let =} = {vnf/',onf/?,...,unf/*} be the recon-
structed output of a vanilla Autoencoder for the input sample
zy = {vnfl,onf?,..,onfF}. We calculate the reconstruction
error |[vnf]? — vnf!||2 for each vnf?, and choose the VNF
with the highest reconstruction error as the fault location).

DAGMM: Our teacher model, DAGMM [12], trained on the
whole training data, is another compared approach. DAGMM
has shown to be robust against contamination in the training
data to some extent since it performs density estimation on
features extracted from its Autoencoder. Therefore, it is a good
choice to be compared with our approach when dealing with
contaminated training data. The localization task here is the
same as the Baseline.

MSCRED: Multi-Scale Convolutional Recurrent Encoder-
Decoder (MSCRED) was proposed in [54] for unsupervised
anomaly detection and localization (diagnosis) in multivariate
time series data. In this approach, inter-correlation between
different metrics is calculated with different temporal window
sizes, and a Recurrent Encoder-Decoder DL model is trained to
construct these inter-correlations for normal instances. Then,
anomaly-detection and localization tasks are performed based
on the reconstruction errors of these inter-correlations values.

LOE: This method from [40] applies the concept of La-
tent Outlier Exposure (LOE) to detect anomalies on datasets
contaminated with unlabeled anomalies. This method jointly
infers binary labels to each unlabeled sample while updating
the model parameters by incorporating two loss functions: a
normal loss, which maximizes mutual information between
complementary feature subsets, and an anomaly loss, which
minimizes mutual information to emphasize anomalies. Both
losses share the same model parameters, allowing the anomaly
loss to inform the normal loss about regions in feature space
where anomalies are likely to occur. By using an assumed
contamination ratio (as input) to guide the optimization, LOE
jointly refines the anomaly labels and model parameters,
making it robust to noisy datasets. Although the contamination

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

ratio is treated as a hyperparameter in LOE and can be adjusted
by the method, we provide the true contamination ratio of
the dataset in our experiments to ensure the best possible
performance. Additionally, the paper recommends specific
loss functions based on the type of data. Following these
guidelines, we use Internal Contrastive Learning (ICL) [31] as
the loss function for tabular data. For anomaly localization in
this approach, we adopt the localization procedure outlined in
ICL [31], adapting it to our context. Specifically, we calculate
the mutual information between each VNF’s features and the
features of all other VNFs, and identifying the VNF with the
largest deviation from normal mutual information patterns as
the most anomalous.

SemanticMask: SemanticMask [32] is a semantic-aware
data augmentation method designed for contrastive learning-
based anomaly detection in tabular data. It incorporates three
key steps to enhance the quality of representations. First,
SemanticMask groups features with similar semantics into
clusters. In our problem, we consider features of one specific
VNF as a cluster. Second, the method uses a data augmentation
module that creates positive pairs for contrastive learning by
dividing the clusters into two disjoint subsets and applying a
cluster-wise masking strategy. Finally, the augmented views
are passed through an encoder, and a contrastive loss is
calculated to encourage the representations of similar instances
to be close. The resulting structured feature space, with
tightly clustered normal samples and well-preserved feature
correlations, allows anomalies to be identified as samples with
high Mahalanobis distance from the training distribution. Since
the paper does not propose an anomaly localization method,
we only evaluated it for anomaly detection.

Our Proposed Methods: MNSUAD is our proposed
anomaly-detection solution described in Section IV. SHAP
(Algorithm 1), ClusterPer (Algorithm 2), and MaskPer (Sec-
tion V.A) are our proposed anomaly-localization approaches
that utilize MNSUAD as their detection model.

C. Detection Results

The performance metrics for anomaly detection (namely,
Precision, Recall, and Fl-score) of different approaches are
shown in TABLE IV. For training our MNSUAD model, we
used the Adam optimizer with dataset-specific learning rates.
Specifically, for the ITU dataset, we trained the model for 150
epochs with a learning rate of le-4 and a batch size of 128.
For the MEC and IMS datasets, a slightly smaller learning
rate of 5e-5 and 100 training epochs were used, as these
datasets exhibited faster convergence. The reconstruction loss
was computed over the unmasked tokens only, and dropout
with a rate of 0.1 was applied after each encoder and decoder
layer to prevent overfitting. In the first row of TABLE IV,
we report the detection performance metrics when there is no
contamination in the training data (§ = 0%), so we can clearly
observe the effect of contamination on these approaches in the
next experiments. In the next rows of TABLE IV, we change
the contamination percentage (J) in the training data from
1% to 5% and report the detection performance. We can see
that contamination in the training data significantly degrades

the performance of all existing methods, and this degradation
becomes more severe as ¢ increases. Also, in all datasets,
DAGMM and LOE have a better average performance than
Baseline, MSCRED and SemanticMask (especially in the ITU
dataset), and their performance degrades less significantly
compared to the Baseline, MSCRED and SemanticMask as
0 increases. This is due to the fact that DAGMM and LOE
explicitly account for robustness against contamination in the
training data. Even though we provided the LOE method with
the true contamination ratio in each experiment, contamination
in the training data still degraded its performance. This was
because a considerable portion of anomalies in the training
data were incorrectly assigned to the normal class during
the method’s latent label inference steps. As a result, the
representations learned by the normal loss function were
partially corrupted, reducing the model’s ability to effectively
distinguish between normal and anomalous samples.

Moreover, our detection approach MNSUAD outperforms
all existing methods when § is 1%, and, unlike the other
approaches, its detection performance improves as ¢ increases
up to 5%. This is due to MNSUAD’s ability to leverage the
extracted pseudo-labeled anomalies in the contaminated train-
ing data rather than being negatively affected by them. More
specifically, increasing § (percentage of anomalous samples)
in the training data has both a negative and a positive effect
on MNSUAD’s performance. The negative effect is that as
0 increases, the performance of MNSUAD’s teacher model
(DAGMM) degrades. The positive effect is that MNSUAD
extracts a greater number of pseudo-labeled anomalies at
higher values of J, enabling the student model to learn better
anomaly representations. Our experimental results show that
up to & = 5%, the positive effect dominates, leading to a
performance improvement compared to lower contamination
levels. Unlike prior methods that are significantly impacted by
contamination, MNSUAD takes advantage of the anomalous
samples in the training data. This allows it to generalize better
under real-world conditions where training sets are rarely
clean.

However, beyond a certain contamination threshold, the
degradation in the teacher model’s performance outweighs the
benefits of pseudo-labeling. For instance, when we increased
0 to 8%, the teacher model’s Fl-score declined to 65.4%,
64.1%, and 67.5% in the ITU, MEC, and IMS datasets,
respectively. Consequently, MNSUAD’s F1-score dropped to
81.1%, 88.5%, and 91.4%, which is notably lower than its
performance at § = 5%. This indicates that while MNSUAD is
robust to moderate levels of contamination, excessive contam-
ination reduces its effectiveness. For very high contamination
levels, Active Learning [66] approaches that incorporate expert
labeling might be more suitable.

D. Comparison of Different Weakly-supervised Learning
Anomaly Detection Methods

In our experiments so far, our proposed MNSUAD method
has been the only approach that is trained on X,,.,,, and all
the other compared approaches were trained on the original
contaminated training dataset . To show that the performance

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

TABLE IV
Anomaly-detection results of different methods on contaminated training data with the contamination percentage () varying from 0% to 5%
ITU Dataset
1) Baseline DAGMM MSCRED LOE SemanticMask MNSUAD (ours)
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
0| 80.8 46.6 589 | 833 82.1 827 | 764 622 684 | 842 837 839 | 8.3 80.7 81.5 - - -
1776 314 448 | 80.1 80.2 80.1 | 71.5 559 623 | 81.6 812 814 | 770 753 76.1 | 848 843 845
21769 311 445|793 789 79.1 | 686 493 573|771 713 772 | 634 586 610 | 8.3 850 85.6
31761 300 43.0 | 758 748 753 | 577 421 486 | 759 750 754 | 580 613 59.6 | 8.7 853 86.0
4| 758 295 426 | 735 726 729 | 415 326 365 | 763 766 765 | 544 539 542 | 877 859 86.8
51745 292 420 | 71.8 717 71.7 | 278 243 259 | 73,5 73.6 735 | 4877 495 49.1 | 87.1 85.6 863
MEC Dataset
1 Baseline DAGMM MSCRED LOE SemanticMask MNSUAD (ours)
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
0| 834 785 809 | 8.8 837 847 | 762 733 747 | 852 830 84.1 | 85.1 82.8 839 - - -
1|83 712 755 | 821 788 804 | 656 627 0640 | 84.6 833 839 | 746 751 747 |93.0 89.7 913
21789 641 707 | 773 752 762 | 493 488 49.1 | 79.6 79.1 793 | 685 693 690 | 942 935 938
31772 609 68.1 | 745 73.6 741 | 412 387 399 | 758 74.6 752 | 543 576 559 | 948 932 94.0
4 708 59.5 646 | 73.6 71.8 727|339 305 321|751 739 745|509 537 522|953 935 944
51667 526 588 | 703 699 70.1 | 203 197 200 | 754 743 749 | 416 420 41.8 | 952 94.0 94.6
IMS Dataset
1) Baseline DAGMM MSCRED LOE SemanticMask MNSUAD (ours)
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
0] 988 975 981 981 969 975 | 100 100 100 | 955 959 957 | 927 925 926 - - -
1748 741 744 | 848 814 831 | 657 643 650 | 81.6 81.1 813 | 903 88.6 894 | 951 934 942
2| 686 67.1 67.8 |80.1 783 792 | 59.1 582 586|779 784 781|716 703 710 | 964 952 958
31642 623 632 | 782 754 768 | 524 51.0 517 | 732 73.6 735 | 641 660 649 | 96.6 953 959
41549 501 524|735 71.6 725 | 47.1 470 47.1 | 704 700 702 | 559 558 559 | 96.6 955 96.1
51508 473 49.0 | 727 709 71.8 | 424 422 423 | 709 706 70.7 | 484 479 482 | 965 953 959
improvement achieved by MNSUAD is not just due to cleaning unlabeled.

the contaminated dataset, in this section, we compare our
student model in MNSUAD with other state-of-the-art weakly-
supervised anomaly detection methods when they are also
trained on the newly obtained dataset X,,.,,. We implemented
the following weakly-supervised anomaly detection methods
for comparison with our student model:

DevNet [15]: As we described earlier, our student model
integrates DevNet with MAE for a better feature encoding.
In this algorithm, we directly apply the DevNet on the raw
input samples. Comparing the result of this algorithm with our
student model can better illustrate the effectiveness of using an
MAE for learning a richer feature representation in MNSUAD.
V-DevNet [42]: V-DevNet is a modified version of DevNet,
where the reference scores used in the deviation loss of DevNet
are calculated by a Variational Auto-encoder (VAE), instead
of generating them according to a prior probability.

D-SAD [43]: In this algorithm, a neural network is trained
to transform the input space to a lower-dimensional output
space with the goal that the output of unlabeled samples
should be as close as possible to a predetermined center
point, while maximizing the quadratic distance of known
anomaly samples from this multi-dimensional center point.
This algorithm can be considered as an extension of the Deep
one-class classification method proposed in [67].

PRO [44]: In this algorithm, anomaly detection is refor-
mulated as a pairwise relation prediction task in order to
take advantage of a few available labeled anomaly samples.
More specifically, the algorithm tries to train a supervised
learning method on unordered random instance pairs la-
beled as anomaly-anomaly, anomaly-unlabeled, or unlabeled-

ContLeaEncod: In this approach, the SCARF [68] contrastive
learning encoder (ContLeaEncod) is trained to map samples
into a latent space where augmented views of the same sample
are close, and normal and anomalous samples are farther
apart. We then fit two Gaussian Mixture Models (GMMs)
in this latent space: GMM-Normal, trained exclusively on
embeddings of normal samples, and GMM-Anomaly, trained
on embeddings of the known anomalies. For each test sample,
its latent embedding is passed through both GMMs to com-
pute the normal likelihood pyormai(z) and anomaly likelihood
Panomaly (). The anomaly score is calculated as:

S(z) = log panomaly(z) — 10g Pnormai (2),

and samples are classified as anomalies if S(z) > 7, where 7
is a predefined threshold.

NSUAD [18]: NSUAD is the proposed algorithm in our
previous work, where DevNet is integrated with a vanilla auto-
encoder to perform the anomaly detection task.

The anomaly detection performance of the mentioned
weakly-supervised methods (namely, Precision, Recall, and
F1-score) are presented in TABLE V. We can see that DevNet
and V-DevNet have a very similar performance, so we can
conclude that calculating the reference scores through a data-
driven approach (e.g., VAE) instead of a prior distribution has
no significant effect on the anomaly detection performance.
Among the compared approaches, the contrastive learning
methods (PRO and ContLeaEncod) have the lowest average
F1-score. This is expected as we only have access to pseudo-
labeled anomalies rather than accurately labeled data samples.
Thus, generating different instance pairs from the pseudo-

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

TABLE V
Anomaly-detection results of different weakly-supervised methods trained on Xe. With the contamination percentage (&) varying from 1% to 5%
ITU Dataset
1 DevNet V-DevNet D-SAD PRO ContLeaEncod NSUAD (ours) MNSUAD (ours)
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
11804 785 794|805 787 79.6 (815 792 803|734 755 744|783 785 784|827 8l1.6 82.1 | 848 843 845
21822 81.1 816|822 813 81.7|829 816 822|779 786 782|809 813 81.1|84.1 835 838|863 850 85.6
31837 820 828|836 820 828|844 825 834|784 79.1 787|824 818 81.6|854 838 84.6| 867 853 86.0
4852 836 844|851 835 843|859 840 849|793 800 79.6|829 81.8 823 | 86.1 844 852|877 859 868
51858 841 850|858 842 850|864 848 856|792 79.8 79.5|83.6 840 838|865 844 854|871 856 863
MEC Dataset
1) DevNet V-DevNet D-SAD PRO ContLeaEncod NSUAD (ours) MNSUAD (ours)
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
11828 821 825|827 821 824|830 826 828|665 663 664|804 797 80.0| 8.1 835 84.8|93.0 89.7 913
21852 843 847|851 843 847|873 865 869|721 722 722|823 820 82.1|90.4 87.1 887|942 935 938
31896 878 887|89.6 87.8 88.7(90.8 90.0 904 | 784 782 783|840 83.6 838|927 90.5 91.6| 948 932 94.0
41912 904 908 |91.3 904 909|926 913 919|792 795 793 |87.1 86.8 869|932 9I.1 921|953 935 944
5191.6 91.0 913|917 912 914|925 914 919|785 784 785|879 87.8 87.8 931 914 922|952 94.0 94.6
IMS Dataset
1 DevNet V-DevNet D-SAD PRO ContLeaEncod NSUAD (ours) MNSUAD (ours)
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1
11878 873 875|878 874 876|882 876 879|813 81.0 81.2|80.5 80.1 80.3|90.3 89.1 89.7| 951 934 94.2
21894 887 890|895 887 89.1|89.6 885 89.0| 885 886 885|831 832 831|91.6 90.7 91.1 | 964 952 958
31907 89.6 90.1 |90.6 89.5 90.0 915 904 910|892 892 89.2|874 867 870|921 91.0 915 96.6 953 959
4191.6 907 91.1 [91.5 90.6 909|920 91.1 91.6 | 90.2 90.1 90.2 | 90.6 88.9 89.7|93.0 915 922 |96.6 955 96.1
5191.6 90.5 910|916 904 91.0]922 912 91.7 | 89.8 89.5 89.7|903 89.6 899|927 915 92.1|96.5 953 959

labeled pairs (anomaly-anomaly, anomaly-unlabeled) in PRO
and creating augmented views of pseudo-labeled anomalies
as positive pairs in the contrastive learning process of Con-
tLeaEncod would intensify the inaccuracies of pseudo-labels.
This would lead to a poorly structured latent space that
fails to effectively distinguish between normal and anomalous
samples, ultimately resulting in poor performance, as observed
in our experiments. Moreover, results of TABLE V show
that D-SAD has a slightly better performance than DevNet
and V-DevNet in all the datasets since it projects the input
space into a multi-dimensional outer space close to a center
point as opposed to DevNet and V-DevNet that transform
the input space into a single anomaly score value as the
output space. Finally, we can see that the MNSUAD and
NSUAD methods, which learn the anomalous behavior from
a latent space pre-processed by an auto-encoder architecture
instead of learning it directly from the input samples, have
the best performance compared to the other methods. The
pre-processing in NSUAD is done by a vanilla auto-encoder
while MSUAD performs the pre-processing through an MAE
that as discussed earlier leads to learning a more generalizable
feature representation. Our experiments confirm this intuition
as the results show that on average, MNSUAD has a 1.7%,
3.7%, 4.3% better Fl1-score than NSUAD in the ITU dataset,
MEC dataset, and IMS dataset, respectively. It is important
to note that for lower contamination rates (and consequently
fewer pseudo-labeled anomalies in the dataset), the difference
between the performance of MNSUAD and NSUAD is more
significant compared to when the contamination rate is higher.
This likely stems from the MAE in MNSUAD learning
more generalizable features than the vanilla Autoencoder in
NSUAD, allowing MNSUAD to perform well even with few
labeled anomalies, while NSUAD requires more to reach peak
performance.

E. Ablation Study of the Loss Function in MNSUAD

In this subsection, we conduct an ablation study to evaluate
the impact of different loss functions on the performance of
the student model in our MNSUAD approach. Specifically, we
compare the original loss function L(x;) (defined in Section
IV.C) with two alternative loss functions:

a) Alternative Ly(x): This loss function trains the stu-
dent model exclusively on the cleaned dataset X.. It retains
only the normal component of the original loss function L(x;)
and is defined as:

(2" (i,m)) — R

d
Li(zy) = a1 X Lyjag + | on

, for x; € X,
(33)

b) Alternative Lo(x4): In this alternative, the reconstruc-
tion error of the MAE is removed from the original loss
function. The student model is trained on the combined dataset
XKew = { X, Xanom} using the following formulation:

|‘I’($/($t,m))—HR
OR

|, if 2, € X,

Lo(x¢)
max(0,a — W(av;,iz))ﬂm% if 2 € Xanom
(34)

The performance of these two alternative loss functions is
reported in TABLE VI. The student model trained with Lq ()
exhibits significantly lower performance compared to the orig-
inal loss function. Furthermore, its performance deteriorates as
the contamination rate () increases, as it fails to leverage the
extracted pseudo-anomalies that enhance the model’s ability
to generalize. Similarly, Lo(z;) consistently underperforms
the original loss function, highlighting the critical role of the
reconstruction error term in the loss function. These findings
emphasize the necessity of the reconstruction error term and
the utilization of pseudo-anomalies in the original loss function
to achieve superior performance in MNSUAD.

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

TABLE VI
Anomaly-detection results of two different alternative loss functions for MNSUAD, trained on X e with the contamination percentage (&) varying from
0% to 5%
ITU Dataset MEC Dataset IMS Dataset
é L1 L2 L1 L2 L1 L2
Pr. Re. Fl Pr. Re. Fl Pr. Re. Fl Pr. Re. Fl Pr. Re. Fl Pr. Re. Fl
1803 81.1 80.7| 814 806 81.0| 81.6 809 81.2| 823 81.8 82.0| 8.7 86.2 864 | 874 §87.0 872
2| 787 763 775|829 821 826|792 796 794|849 837 843|829 815 822|889 87.6 882
31770 754 762 | 84.0 833 836|785 788 78.6|89.1 873 882 | 81.6 803 809|903 894 89.8
41752 748 750|856 847 851|741 737 739|908 90.0 904 | 784 785 784|921 90.8 914
51749 748 748 | 8.5 847 850 | 740 723 73.1 914 907 91.1 | 781 756 768|919 905 912

FE. Comparison with Supervised Methods in terms of General-
ization Capability

As we mentioned, the main drawback of supervised
anomaly detection methods is that they require abundant
labeled faulty data to achieve good performance. However,
such data is a scarce resource. Additionally, obtaining labeled
data requires domain experts to annotate numerous logs of
anomalous scenarios, which is both time-consuming and labor-
intensive. In this section, through a set of experiments, we
illustrate another important disadvantage of supervised meth-
ods, which is the problem that they are restricted to the specific
failure scenarios that exist in their training data and do not gen-
eralize to failure scenarios unseen during training. However,
in traditional unsupervised anomaly detection methods, where
training is only performed on normal samples, the model is
naturally not specialized for some specific failure cases and
can detect any anomalous behavior that deviates from the
learned normal patterns. Our goal in this section is to show that
unlike supervised methods, our proposed weakly-supervised
student model for anomaly detection (that takes advantage of a
few pseudo-labeled anomaly samples) is generalizable to fault
scenarios unseen during training and has a similar behavior to
traditional unsupervised approaches in this regard.

To compare the generalization capability of our proposed
method with supervised learning approaches, we have con-
ducted the following experiments on the ITU dataset described
in Section VI.A. Let Xy denote the contaminated unlabeled
training dataset (from the ITU dataset) that has 3870 normal
samples, 50 samples of node down (ND) failure, 50 samples
of interface down (ID) failure, 50 samples of packet loss (PL)
failure, and 50 samples of packet delay (PD) failure. So, Xy
has a total of 200 failure samples, and its contamination rate is
around 5%. On the other hand, let X, denote the fully labeled
training dataset that includes 3870 normal samples, 54 samples
of ND failure, 233 samples of ID failure, 762 samples of PL
failure, and 763 samples of PD failure. We define X END_V) as
a subset of dataset X, where v percent of ND failure samples
are removed from X . For example, X éND*SO) would only
X NP=100) ou1d have no

L

, XépL*V), and XéPD*V) are
(ND-100) 3 (ID~100)
s Ay

have 27 samples of ND failure, and

samples of ND failure. X /P~

defined in a similar way. Moreover, X;; s
X[(]PLAOO), and Xé,PD*wO) would be the same as Xy but

without any samples of ND, ID, PL, and PD failure, re-
spectively. For each of these training datasets, we create a
corresponding test dataset that only consists of anomalous

samples of the missing failure scenario. For example, the test
data for the training datasets X éND_V) and X é,ND_lOO) would
be denoted as TNP) that only consists of samples of ND
failure. In our experiments, 7V) has 100 samples of ND
fault samples, /) has 100 samples of ID fault samples,
TL) has 100 samples of PL fault samples, and 7(F"P) has
100 samples of PD fault samples. We created the test datasets
in this way because we are interested to see whether different
methods are capable of detecting failure scenarios for which
only very few samples (or even no samples) of them exist in
the training data.

We trained Random Forest (RF) models as a supervised
method on different subsets of the labeled dataset Xj, (e.g.,
XéND*V), XgDiV), etc.) for different values of v. Here, the
RF model performs anomaly detection as a binary classifica-
tion problem, similar to [27]. In Fig. 3(a), we have reported
the obtained Recall score (the percentage of correctly detected
anomalies to the total number of anomalies) of each RF
model on its corresponding test dataset when the value of v
changes from 0 to 100. In Fig. 3(b), we have reported the
Recall score of our proposed MNSUAD method when it is
trained on different subsets of Xy. It is important to clarify
that the performance of an RF model/MNSUAD trained on

(ND—v) ,;x-(ND—100) . . .

X5 /Xy is reported on its corresponding test
dataset T(ND) (this is true for other failure scenarios, too).

Fig. 3(a) shows that as we decrease the number of samples
of a specific scenario in the labeled training data (increasing
the value of v), the ability of the supervised RF model to
detect the samples of that failure case degrades significantly.
For example, the Recall score of RF when trained on X, is
87.0% on the T(FL) test set, but its Recall decreases to 75.6%
and 68.8% when it’s trained on XéPL_gO) and XéPL_mO),
respectively. We can observe a similar decrease in the Recall
score of RF for the other three failure scenarios, too. However,
from Fig. 3(b), we can see that excluding all samples of a
particular failure scenario from the unlabeled training dataset
Xy has an insignificant effect on the performance of our
MNSUAD method (for example, Recall score of MNSUAD
on test data T(FL) when it is trained on Xy and X[(]PL_NO)
is almost the same value). This is due to the fact that the
student model of MNSUAD only utilizes the pseudo-labeled
samples to boost the performance, and does not need samples
from all the considered failure scenarios. These results show
that our MNSUAD is much more generalizable to unseen fault
cases compared to supervised learning approaches.

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

0.95 - SRR S \
0.90 NS
g 085y T -~
%]
¥ 0.80
T |
2075
¢ %'?||—— RF trained on x{NP~")
0.70 RF trained on Xx//P~"
—-~ RF trained on X{P- ="
0.65 ; _
------ RF trained on x{PP~"
0 20 40 60 80 100
Y
(@)
100
I MNSUAD trained on Xy
3 MNSUAD trained on corresponding subset of Xy
95
92.7
91.6
g
5 9
L%
L4 87.1
= 86.4 86.4
(]
% 85 84.3
-4 83.4
81.7
80

73 T(ND) T(D) TiPL)

Test Dataset

(b)

Fig. 3. The Recall scores of RF models trained on different subsets of Xy,
are shown in (a) when the value of v changes from 0 to 100. (b) shows the
Recall score of our MNSUAD method when it’s trained on Xy compared to
when its trained on one of the following datasets: XI(JND_IOO), X[(JID_mO),
x (PL—100) x (PD-100)

U , or Xy; .

T(PD)

G. Localization Results

The performance metrics for anomaly localization (namely,
Precision, Recall, Fl-score, number of truly detected anoma-
lies in the detection phase, and average execution time) of
different approaches for the detected anomalies in the three
datasets are shown in TABLE VII. As discussed, the localiza-
tion methods use a detection model for their process and lo-
calize the anomalies that are detected by that detection model.
MNSUAD is the detection model for SHAP, ClusterPer, and
MaskPer localization methods (with a training data that is
5% contaminated), and the detection models for the other
localization methods are the same as their names according
to Section VI.B. Therefore, the number of truly detected
anomalies is different for different approaches. According to
the results of TABLE VII, our SHAP and ClusterPer methods
outperforms Baseline, MSCRED, DAGMM, and LOE in all
datasets despite having more detected anomalies. Moreover,
the MaskPerm method, which leverages outputs from the
detection model across all masking scenarios of the detected
anomaly, achieves the highest Fl-score on all three datasets.
We can also observe from these experiments that Baseline
has the lowest average execution time in the datasets. This

TABLE VII
Anomaly localization results of the compared approaches
ITU Dataset
Method Pr. Re. FI ~ #Anom. Time(ms)
Baseline 624 651 62.7 516 12
DAGMM 583 582 582 913 13
MSCRED 73.6 734 734 698 17
LOE 689 694 69.1 931 32
SHAP (ours) 87.6 875 874 951 108
ClusterPer (ours) | 92.5 92.5 925 951 37
MaskPer (ours) 96.2 96.0 96.2 951 22
MEC Dataset
Method Pr. Re. FI #Anom. Time(ms)
Baseline 733 731 732 157
DAGMM 642 644 642 167 9
MSCRED 785 78.6 78.5 110 12
LOE 70.8 71.1 709 166 19
SHAP (ours) 845 843 844 188 97
ClusterPer (ours) | 93.2 93.1 93.1 188 22
MaskPer (ours) 944 93.0 93.7 188 20
IMS Dataset
Method Pr. Re. F1 #Anom. Time(ms)
Baseline 61.4 617 61.6 682 12
DAGMM 573 575 575 678 12
MSCRED 746 735 742 700 15
LOE 66.4 66.7 66.6 671 29
SHAP (ours) 793 792 792 667 114
ClusterPer (ours) | 84.3 84.2 842 667 32
MaskPer (ours) 87.7 878 87.8 667 25

is because its procedure involves a simple analysis of the
reconstruction error of different features. On the other hand,
SHAP has the highest execution time due to its relatively
complex calculations. Since ClusterPer only needs to perform
the SHAP calulation if its initial result is “undecided”, its
average execution time is much lower than the SHAP method.
As MaskPer’s procedure simply includes calculating the output
of the detection model a few times for the detected anomaly
sample, its average execution time is even lower than Clus-
terPer. So, we can conclude that the significant improvement
in F1-score obtained by ClusterPer and MaskPer comes at the
price of only a slight increase in the execution time.

VII. CONCLUSION

We proposed an unsupervised method for anomaly detection
in NFV systems that is robust against training-data contamina-
tion up to a certain percentage and can also leverage the con-
tamination to improve anomaly-detection performance, unlike
state-of-the-art unsupervised approaches whose performances
degrade when the training data is contaminated. Moreover, we
described how utilizing the information provided by the MAE
in our detection model can help to achieve a high accuracy
in the anomaly localization task. Through a comprehensive
experimental analysis on three datasets from different NFV
systems, we showed that in terms of Fl-score, our pro-
posed solutions outperform other state-of-the-art unsupervised
methods by up to 20% and 22% in anomaly-detection and
localization tasks, respectively.

Acknowledgement: This work was supported in part by
Rogers Communications Canada Inc. and in part by a Mitacs
Accelerate Grant.

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

REFERENCES

R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236-262, 2015.

B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey
of network function virtualization,” Computer Networks, vol. 133, pp.
212-262, 2018.

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” [EEE
Communications Magazine, vol. 53, no. 2, pp. 90-97, 2015.

B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh, “On the re-
siliency of virtual network functions,” IEEE Communications Magazine,
vol. 55, no. 7, pp. 152-157, 2017.

J. Nam, J. Seo, and S. Shin, “Probius: Automated approach for VNF
and service chain analysis in software-defined NFV.” in Proceedings of
the Symposium on SDN Research, 2018, pp. 1-13.

F. Schmidt, A. Gulenko, M. Wallschlédger, A. Acker, V. Hennig, F. Liu,
and O. Kao, “Iftm-unsupervised anomaly detection for virtualized net-
work function services,” in 2018 IEEE International Conference on Web
Services (ICWS). 1EEE, 2018, pp. 187-194.

A. Elmajed, A. Aghasaryan, and E. Fabre, “Machine learning approaches
to early fault detection and identification in NFV architectures,” in 2020
6th IEEE Conference on Network Softwarization (NetSoft). 1EEE, 2020,
pp. 200-208.

S. Zehra, U. Faseeha, H. J. Syed, F. Samad, A. O. Ibrahim, A. W. Abul-
faraj, and W. Nagmeldin, “Machine learning-based anomaly detection in
nfv: A comprehensive survey,” Sensors, vol. 23, no. 11, p. 5340, 2023.
J. Li, X. Qi, J. Li, Z. Su, Y. Su, and L. Liu, “Fault diagnosis in
the network function virtualization: A survey, taxonomy and future
directions,” IEEE Internet of Things Journal, 2024.

A. Chawla, P. Jacob, S. Feghhi, D. Rughwani, S. van der Meer, and
S. Fallon, “Interpretable unsupervised anomaly detection for RAN cell
trace analysis,” in 2020 16th International Conference on Network and
Service Management (CNSM). 1EEE, 2020, pp. 1-5.

J. Fan, Q. Zhang, J. Zhu, M. Zhang, Z. Yang, and H. Cao, “Robust deep
auto-encoding gaussian process regression for unsupervised anomaly
detection,” Neurocomputing, vol. 376, pp. 180-190, 2020.

B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” in International conference on learning representa-
tions, 2018.

Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 10687-10 698.

D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges
in representation learning, ICML, vol. 3, no. 2, 2013, p. 896.

G. Pang, C. Shen, and A. van den Hengel, “Deep anomaly detection
with deviation networks,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019,
pp. 353-362.

T. DeVries and G. W. Taylor, “Dataset augmentation in feature space,”
arXiv preprint arXiv:1702.05538, 2017.

Q. Du, Y. He, T. Xie, K. Yin, and J. Qiu, “An approach of collecting
performance anomaly dataset for nfv infrastructure,” in Algorithms and
Architectures for Parallel Processing: 18th International Conference,
ICA3PP 2018, Guangzhou, China, November 15-17, 2018, Proceedings,
Part 111 18. Springer, 2018, pp. 59-71.

S. S. Johari, N. Shahriar, M. Tornatore, R. Boutaba, and A. Saleh,
“Anomaly detection and localization in nfv systems: an unsupervised
learning approach,” in NOMS 2022-2022 IEEE/IFIP Network Opera-
tions and Management Symposium. 1EEE, 2022, pp. 1-9.

H. U. Adoga and D. P. Pezaros, “Network function virtualization and
service function chaining frameworks: A comprehensive review of re-
quirements, objectives, implementations, and open research challenges,”
Future Internet, vol. 14, no. 2, p. 59, 2022.

K. Kaur, V. Mangat, and K. Kumar, “A review on virtualized infras-
tructure managers with management and orchestration features in nfv
architecture,” Computer Networks, vol. 217, p. 109281, 2022.

S. Mostatavi, V. Hakami, and M. Sanaei, “Quality of service provision-
ing in network function virtualization: a survey,” Computing, vol. 103,
pp. 917-991, 2021.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518-532, 2016.

K. Guo, J. Chen, P. Dong, S. Liu, and D. Gao, “Fullsight: A feasible
intelligent and collaborative framework for service function chains fail-
ure detection,” IEEE Transactions on Network and Service Management,
2022.

C. Sauvanaud, K. Lazri, M. Kaaniche, and K. Kanoun, “Anomaly
detection and root cause localization in virtual network functions,”
in 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE). 1EEE, 2016, pp. 196-206.

L. Girish and S. K. Rao, “Anomaly detection in cloud environment using
artificial intelligence techniques,” Computing, pp. 1-14, 2021.

C. Lee, J. Hong, D. Heo, and H. Choi, “Sequential deep learning
architectures for anomaly detection in virtual network function chains,”
in 2021 International Conference on Information and Communication
Technology Convergence (ICTC). 1EEE, 2021, pp. 1163-1168.

J. Hong, S. Park, J.-H. Yoo, and J. W.-K. Hong, “Machine learning
based SLA-aware VNF anomaly detection for virtual network manage-
ment,” in 2020 16th International Conference on Network and Service
Management (CNSM). 1EEE, 2020, pp. 1-7.

Y. Cheng, H. Yao, Y. Wang, Y. Xiang, and H. Li, “Protecting vnf
services with smart online behavior anomaly detection method,” Future
Generation Computer Systems, vol. 95, pp. 265-276, 2019.

D. Kushnir and M. Goldstein, “Causality inference for failures in nfv,”
in 2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2016, pp. 929-934.

S. Cherrared, S. Imadali, E. Fabre, and G. Gossler, “Sfc self-modeling
and active diagnosis,” IEEE Transactions on Network and Service
Management, vol. 18, no. 3, pp. 2515-2530, 2021.

T. Shenkar and L. Wolf, “Anomaly detection for tabular data with
internal contrastive learning,” in International conference on learning
representations, 2022.

S. Tao, T. Zhu, H. Wang, and X. Meng, “Semanticmask: a contrastive
view design for anomaly detection in tabular data,” in Proceedings of
the Thirty-Third International Joint Conference on Artificial Intelligence,
2024, pp. 2370-2378.

H. Darvishi, D. Ciuonzo, and P. S. Rossi, “Deep recurrent graph
convolutional architecture for sensor fault detection, isolation and ac-
commodation in digital twins,” IEEE Sensors Journal, 2023.

H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-fault
detection, isolation and accommodation for digital twins via modular
data-driven architecture,” IEEE Sensors Journal, vol. 21, no. 4, pp.
4827-4838, 2020.

A. Diamanti, J. M. S. Vilchez, and S. Secci, “LSTM-based radiography
for anomaly detection in softwarized infrastructures,” in 2020 32nd
International Teletraffic Congress (ITC 32). 1EEE, 2020, pp. 28-36.
L. F. Maimo, A. L. P Gomez, F. J. G. Clemente, M. G. Pérez, and
G. M. Pérez, “A self-adaptive deep learning-based system for anomaly
detection in 5G networks,” IEEE Access, vol. 6, pp. 7700-7712, 2018.
F. Michelinakis, J. S. Pujol-Roig, S. Malacarne, M. Xie, T. Dreibholz,
S. Majumdar, W. Y. Poe, G. Patounas, C. Guerrero, A. Elmokashfi et al.,
“Ai anomaly detection for cloudified mobile core architectures,” IEEE
Transactions on Network and Service Management, 2022.

L. Tang, C. Xue, Y. Zhao, and Q. Chen, “Anomaly detection of service
function chain based on distributed knowledge distillation framework
in cloud-edge industrial internet of things scenarios,” IEEE Internet of
Things Journal, 2023.

A. Chawla, A.-M. Bosneag, and A. Dalgkitsis, “Graph-based inter-
pretable anomaly detection framework for network slice management
in beyond 5g networks,” in NOMS 2023-2023 IEEE/IFIP Network
Operations and Management Symposium. 1EEE, 2023, pp. 1-6.

C. Qiu, A. Li, M. Kloft, M. Rudolph, and S. Mandt, “Latent outlier ex-
posure for anomaly detection with contaminated data,” in International
conference on machine learning. PMLR, 2022, pp. 18 153-18 167.

Z. Li, Y. Zhao, Y. Geng, Z. Zhao, H. Wang, W. Chen, H. Jiang,
A. Vaidya, L. Su, and D. Pei, “Situation-aware multivariate time series
anomaly detection through active learning and contrast vae-based models
in large distributed systems,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 9, pp. 2746-2765, 2022.

J. Lu, J. Wang, X. Wei, K. Wu, and G. Liu, “Deep anomaly detection
based on variational deviation network,” Future Internet, vol. 14, no. 3,
p. 80, 2022.

L. Ruff, R. A. Vandermeulen, N. Gornitz, A. Binder, E. Miiller, K.-R.
Miiller, and M. Kloft, “Deep semi-supervised anomaly detection,” arXiv
preprint arXiv:1906.02694, 2019.

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[44]

[45]

[46]

(471

[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

[56]

[571
(58]
[59]
[60]

[61]

[62]

[63]

[64]
[65]

[66]
[67]

[68]

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3582195

G. Pang, C. Shen, H. Jin, and A. v. d. Hengel, “Deep weakly-supervised
anomaly detection,” arXiv preprint arXiv:1910.13601, 2019.

J. M. Sanchez, 1. G. B. Yahia, and N. Crespi, “Self-modeling based
diagnosis of services over programmable networks,” in 2016 [EEE
NetSoft Conference and Workshops (NetSoft). 1EEE, 2016, pp. 277-285.
Q. Zhu, T. Tung, and Q. Xie, “Automatic fault diagnosis in cloud
infrastructure,” in 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, vol. 1. 1EEE, 2013, pp. 467-474.
P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4, pp. 13-24, 2007.

A. Samir and C. Pahl, “Detecting and localizing anomalies in container
clusters using Markov models,” Electronics, vol. 9, no. 1, p. 64, 2020.
Y. Zhang, Z. Guan, H. Qian, L. Xu, H. Liu, Q. Wen, L. Sun, J. Jiang,
L. Fan, and M. Ke, “Cloudrca: a root cause analysis framework for cloud
computing platforms,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 4373—
4382.

C. Zhang, Z. Zhou, Y. Zhang, L. Yang, K. He, Q. Wen, and L. Sun,
“Netrca: an effective network fault cause localization algorithm,” in
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 1EEE, 2022, pp. 9316-9320.

C.-C. Yen, W. Sun, H. Purmehdi, W. Park, K. R. Deshmukh, N. Thakrar,
O. Nassef, and A. Jacobs, “Graph neural network based root cause
analysis using multivariate time-series kpis for wireless networks,” in
NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium. 1EEE, 2022, pp. 1-7.

C. Pham, L. Wang, B. C. Tak, S. Baset, C. Tang, Z. Kalbarczyk, and
R. K. Iyer, “Failure diagnosis for distributed systems using targeted
fault injection,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 2, pp. 503-516, 2016.

K. Guo, J. Chen, P. Dong, T. Zou, J. Zhu, X. Huang, S. Liu, and
C. Liao, “Dtfl: A digital twin-assisted graph neural network approach
for service function chains failure localization,” IEEE Transactions on
Cloud Computing, 2023.

C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time series
data,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, 2019, pp. 1409-1416.

A. Terra, R. Inam, S. Baskaran, P. Batista, I. Burdick, and E. Fersman,
“Explainability methods for identifying root-cause of SLA violation
prediction in 5g network,” in GLOBECOM 2020-2020 IEEE Global
Communications Conference. 1EEE, 2020, pp. 1-7.

S. M. Lundberg and S.-1. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st international conference on
neural information processing systems, 2017, pp. 4768-4777.
"itu-ai-ml-in-5g-challenge”. [Online]. Available: https://www.ieice.org/
~rising/AI-5G/

[Online]. Available: https://github.com/ITU- AI-ML-in-5G-Challenge/
ITU-ML5G-PS-032-KDDI-naist-1sm

“iptables”. [Online]. Available: http://ipset.netfilter.org/iptables.man.
html

“suricata - open source ids/ips/nsm engine”. [Online]. Available:
https://suricata-ids.org/

L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi: Open-
source high-speed deep packet inspection,” in 2014 International Wire-
less Communications and Mobile Computing Conference (IWCMC).
IEEE, 2014, pp. 617-622.

“ntopng - high-speed web-based traffic analysis and flow collection”.
[Online]. Available: https://www.ntop.org/products/traffic-analysis/ntop/
J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “Savi testbed: Con-
trol and management of converged virtual ict resources,” in 2013
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013). 1EEE, 2013, pp. 664-667.

[Online]. Available: https://manpages.ubuntu.com/manpages/artful/
manl/stress-ng.1.html

[Online]. Available: https://wiki.debian.org/TrafficControl

B. Settles, “Active learning literature survey,” 2009.

L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Miiller, and M. Kloft, “Deep one-class classification,”
in International conference on machine learning. PMLR, 2018, pp.
4393-4402.

D. Bahri, H. Jiang, Y. Tay, and D. Metzler, “Scarf: Self-supervised
contrastive learning using random feature corruption,” arXiv preprint
arXiv:2106.15147, 2021.

Seyed Soheil Johari is a graduate researcher at
the David R. Cheriton School of Computer Sci-
ence, University of Waterloo. He received his B.Sc.
in electrical engineering from Sharif University of
Technology in 2020. He was a recipient of the
best student paper award at IEEE/IFIP NOMS 2022.
His research focuses on the application of machine
learning techniques for data-driven management and
orchestration of 5G network slices.

Nashid Shahriar is an assistant professor in the
Department of Computer Science at the University
of Regina. He received his PhD from the School of
Computer Science, University of Waterloo in 2020.
He was a recipient of 2020 PhD Alumni Gold Medal,
2021 Mathematics Doctoral prize, Ontario Graduate
Scholarship, President’s Graduate Scholarship, and
David R. Cheriton Graduate Scholarship with the
University of Waterloo.

Massimo Tornatore (Fellow, IEEE) is a Professor
at Politecnico di Milano, Italy. He has also held
a appointments as Adjunct Professor at University
of California, Davis, USA and as visiting professor
at University of Waterloo, Canada. His research
interests include performance evaluation and design
of communication networks (with an emphasis on
optical networking), and machine learning applica-
tion for network management. He co-authored more
than 500 conference and journal papers (with 22
best-paper awards) and the recent Springer “Hand-

book of Optical Networks”. He is member of the Editorial Board of IEEE
Communication Surveys and Tutorials, IEEE Transactions on Network and
Service Management and IEEE Transactions on Networking, among others.

Raouf Boutaba (Fellow, IEEE) is currently a Uni-
versity Chair Professor and the Director of the
David R. Cheriton School of Computer science at
the University of Waterloo (Canada). He also holds
an INRIA International Chair in France. He is the
founding Editor-in-Chief of the IEEE Transactions
on Network and Service Management (2007- 2010).
He is a fellow of the IEEE, the Engineering Institute
of Canada, the Canadian Academy of Engineering,
and the Royal Society of Canada. His research
interests include resource and service management

in networks and distributed systems.

Aladdin Saleh received the Ph.D. degree in elec-
trical and electronic engineering and the M.B.A.
degree in international management from the Uni-
versity of London, U.K. He is currently an Adjunct
Professor with the Cheriton School of Computer Sci-
ence, University of Waterloo. He is currently prim-
ing research and innovation activities with Rogers
Communications, among them the joint research
partnership with the University of Waterloo on 5G
and emerging technologies.

Authorized licensed use limited to: University of Regina IEL. Downloaded on September 04,2025 at 20:46:17 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

