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Abstract—As cyber threats continue to evolve, there is a need
for autonomous cyber defense (ACD) strategies capable of fast
and context-aware responses. Reinforcement learning (RL) has
shown promise for automating cyber defense by exploring and
learning effective countermeasures, yet it often struggles with
sparse reward signals and insufficient context to handle diverse
attack scenarios. Furthermore, the convergence time taken by
an RL agent is often high, which makes it difficult to train
the RL agent in online settings. To address these challenges,
we propose a large language model (LLM)-enhanced RL method
that builds and queries a knowledge graph (KG) derived from
agent—environment interactions. We leverage the pre-trained
knowledge of an LLLM on different cybersecurity frameworks and
use the LLM to analyze a part of the KG to generate appropriate
actions for the RL agent. We infuse the knowledge extracted from
the LLM into the RL agent’s training loop in two ways. First,
the state vector of the RL agent is augmented with the most
effective action and its corresponding reward, as determined from
the KG. Second, the suggested action from the LLM is used as
a reference policy. In addition, we introduce a regularization
term in the loss function to make the RL policy close to the
reference policy. To validate our approach, we develop a custom
RL environment guided by the MITRE ATT&CK framework,
enabling the agent to generate tailored mitigation strategies
for detected cyber attacks. Experimental results show that our
proposed approach significantly outperforms the baseline RL by
over 75% in terms of taking better mitigation actions.

Index Terms—Reinforcement Learning, Large Language Mod-
els, Knowledge Graphs, Cybersecurity Automation, Autonomous
Cyber Defense

I. INTRODUCTION

Cyber threats continue to become more dangerous and com-
plex. Attackers constantly change their methods, and defenders
must respond just as quickly. Traditional intrusion detection
systems (IDS) can flag suspicious traffic, but they rarely adapt
well to new attacks [1]. This gap in adaptability makes it
difficult to choose the right mitigation action at the right time.
As a result, cybersecurity research is increasingly focusing on
methods that can make real-time defense decisions, consider-
ing that IDS can fail to detect cyber attacks correctly.

This paper focuses on using RL to handle the challenge of
selecting proper mitigation actions, even when the detection
module may misclassify network flows. We treat the defense
problem as a sequence of actions that must adapt to the
possibility of detection errors. Our approach draws on large
language models (LLMs) that have been trained on diverse

cybersecurity frameworks, such as MITRE ATT&CK [2]. By
leveraging these models, we aim to provide the RL agent with
a dynamic knowledge base that can be updated and queried
during training to supply context to an open-source LLM,
which in turn guides the RL agent’s policy.

Existing RL-based methods for cyber defense often suffer
from two issues: slow convergence and a lack of context-
aware strategies [3]. When the environment provides only
sparse or misleading reward signals, an RL agent might need a
large amount of data to learn effectively. Moreover, many RL
agents [4]-[7] do not incorporate external knowledge about
known attack methods or best practices, which hampers their
adaptability to newer attacks. LLMs, on the other hand, are
pre-trained on vast amounts of Internet data, which includes
references to frameworks like Cyber Kill Chain [8] and Unified
Kill Chain [9]. By connecting RL with these LLMs, we can
shorten the learning curve and improve decision-making under
uncertainty.

Despite the potential of RL in ACD, most existing solu-
tions assume that the detection module accurately classifies
malicious traffic [10]. However, detection modules are of-
ten imperfect in reality, and misclassifications can lead to
suboptimal or even harmful mitigation actions. Current RL-
based approaches [11]-[16] lack mechanisms to explicitly
reason under such uncertainty. Our work addresses this critical
gap by proposing a novel system that augments RL agents
with detection confidence information and leverages an LLM-
guided KG to select better mitigation actions even when the
traffic classification is uncertain. To the best of our knowledge,
this is the first framework that systematically integrates real-
time KG construction, querying, and LLM-driven knowledge
infusion into the RL training loop for cyber defense. Unlike
prior work that only uses RL for policy guidance, our approach
actively builds and queries a KG during training, allowing
the agent to continuously refine its decision-making based on
evolving knowledge from past interactions.

The motivation for introducing the KG is twofold. First, the
KG captures dynamic relationships between detected attack
types, detection confidence levels, and corresponding mitiga-
tion actions along with their historical rewards. This structured
representation helps the agent reason over uncertainty rather
than relying solely on the current noisy observation. Second,
by querying the KG, an LLM can suggest historically effective



actions, providing an external reference policy that guides the
RL agent’s exploration and policy updates through regulariza-
tion. We explore the following research questions:

e How can RL be guided by an LLM and a dynamically
updated KG to choose effective mitigation actions when
the attack detection is uncertain or potentially incorrect?

« To what extent can aligning the RL agent’s policy with
an LLM-guided reference policy improve decision quality
and accelerate learning speed?

« What specific advantages and disadvantages does the inte-
gration of RL, LLMs, and KGs offer for ACD, compared
to using RL alone?

To answer these questions, we formulate a contextual bandit
[17] problem, modeled as a single-step Markov Decision
Process (MDP). In this setting, the agent receives a state vector
containing detection confidence and contextual information,
and must select an appropriate mitigation action in a single
decision step. To evaluate the effectiveness of our method,
we compare it against a baseline RL agent without LLM
guidance, an RL agent using a KG and LLM assistance, and
a supervised deep learning (DL) approach trained to directly
predict mitigation actions from the state vector. Our main
contributions are:

« KG Creation: We build a graph that links traffic sig-
natures, predicted traffic types, and actions, weighted by
rewards and confidence scores.

« LLM-Driven Mitigation Suggestions: We employ an
open-source LLM to analyze the KG and recommend
mitigation actions grounded in cybersecurity best prac-
tices.

o Knowledge Infusion: We embed the LLM-suggested
action and reward into the RL state, and we introduce a
regularization term based on the Kullback—Leibler (KL)
divergence [18] to align the RL agent’s policy with the
LLM’s suggestions.

e Custom RL Environment: We design and test our
approach in a custom environment guided by the MITRE
ATT&CK framework and publicly available intrusion
detection dataset.

The remainder of the paper is structured as follows: We
discuss the related works from the literature in Section II. Our
proposed approach, in addition to our custom RL environment,
is discussed in Section III. Section IV outlines the conducted
experiments and results. The next section discusses the impact
of using LLM-enhanced RL for the mitigation action selection
task along with some limitations of the current work. This
section also mentions our future research directions. Finally,
we conclude the paper in Section VI.

II. RELATED WORKS

In this section, we review existing work on using RL for
cyber defense and highlight hybrid approaches that merge RL
with other Al paradigms. We then discuss recent research
on LLM-enhanced RL methods, focusing on how LLMs can
serve as knowledge repositories, planners, or policy guides.

Finally, we compare these studies with our proposed approach,
showing where our approach departs from conventional RL
frameworks by incorporating an explicit knowledge graph,
Bayesian inference, and an LLM-guided reference policy.

A. RL-based Cyber Defense

One of the earliest trends in ACD was to apply deep
reinforcement learning (DRL) to automate detection and mit-
igation workflows. For example, Liu et al. [11] developed a
DRL model on an extended version of the MITRE ATT&CK
framework, demonstrating the feasibility of mapping attack
tactics to prioritized nodes in a network. By selectively
deploying mitigations on these critical points, their model
improved defensive efficacy against sophisticated cyberattacks.
In contrast, Huang and Zhu [12] utilized a Bayesian game
framework to model the defender—attacker interplay, partic-
ularly for advanced persistent threats (APTs). While their
model captured attacker stealth, it depended on accurately
identifying attacker behavior probabilities—an assumption that
often falters in real-world conditions.

Similarly, Gao and Wang [14] investigated DRL-based mov-
ing target defense (MTD) to thwart DDoS attacks, showcasing
the promise of dynamic reconfiguration strategies. Becker et
al. [13] evaluated asynchronous actor-critic (A3C) and Q-
learning for penetration testing, revealing the potential of DRL
to generalize across diverse network setups. However, these
RL-centric methods typically assume reliable detection labels
or well-shaped rewards—conditions not guaranteed in practice,
especially when the IDS or signature database may misclassify
incoming traffic. This issue motivates hybrid approaches that
embed supplementary knowledge into the RL pipeline.

B. Hybrid Methods for Cybersecurity

To reduce the dependency on purely data-driven mod-
els, researchers have explored combining RL with symbolic
reasoning, causal inference, and multi-agent or hierarchical
frameworks. Peng et al. [15] designed a causality-driven hier-
archical RL framework to expedite exploration in adversarial
environments. Zhu et al. [19] introduced a deconfounding
strategy for offline DRL, re-weighting observational data to
minimize bias introduced by unseen confounders. Another
angle focuses on partially modeling the environment’s causal
relationships in RL. Rezende et al. [16] argued that flawed
causal assumptions could lead to suboptimal actions, espe-
cially in high-dimensional or noisy settings.

Hybrid AI designs that fuse data-driven learning with
human-readable rules or knowledge graphs have also gained
traction. Piplai et al. [20], for example, examined neuro-
symbolic methods that integrate neural networks for pattern
recognition with symbolic components for interpretability.
While these efforts improve the transparency and adaptability
of ACD systems, they typically do not leverage large-scale pre-
trained knowledge from language models. Consequently, these
methods may still require extensive domain engineering or rely
on limited training data to capture the breadth of evolving
cybersecurity threats.



C. LLM-Enhanced RL: From General Paradigms to Cyberse-
curity

A recent survey by Cao et al. [21] offers a unified view of
LLM-Enhanced RL, categorizing five fundamental integration
strategies: (i) treating the LLM as an information processor,
(ii) using the LLM to design or shape rewards, (iii) aligning
the RL policy with an LLM decision-maker, (iv) employing
the LLM as a generator for environment simulation or policy
explanation, and (v) hybrid approaches combining these roles.
In general, LLM-powered methods have produced encouraging
results in robotics, text-based adventures, and planning-based
tasks, where the model’s knowledge and reasoning capabilities
can mitigate sparse rewards or data limitations.

However, direct application of LLMs on cybersecurity is
comparatively sparse. Existing RL frameworks for cyber de-
fense rarely incorporate large-scale pre-trained language mod-
els to manage knowledge, especially when detection modules
mislabel traffic or produce uncertain classification scores. The
few [20], [22] that integrate textual knowledge (e.g., intrusion
logs or threat intelligence) generally use them as offline
references rather than dynamic advisors. As a result, many RL-
based defense systems continue to rely on handcrafted reward
functions or one-off heuristics, yielding slower convergence
under partial information.

Our proposed approach addresses these gaps by combining
an explicit KG derived from RL agent—environment interac-
tions with an open-source LLM to generate mitigation actions.
This design simultaneously tackles detection uncertainty and
sparse reward issues. Unlike prior methods, such as (Gao
and Wang, [14] or Liu et al., [11])—that assume a static
or reliable detection stage, we store and periodically update
Bayesian confidence scores for each signature in our KG,
allowing the RL agent to ignore signatures with low confidence
and focus on those with higher accuracy. Furthermore, the
reward function in our environment incorporates an LLM-
curated action list for each attack type, incentivizing the RL
agent to match the top-ranked mitigating measures. Finally, by
embedding the LLM-suggested action and its historical reward
into the agent’s state vector and adding a KL divergence
regularization term in the loss, we ensure the RL policy
remains aligned with the LLM’s knowledge.

III. LLM-ENHANCED RL AGENT

In this section, we discuss our proposed approach in detail.
First, we discuss the RL model used in our approach, including
its states, actions, and rewards. Second, the KG creation
process is discussed. Finally, how we create the prompt for the
LLM model using the KG and how the generated knowledge
from LLM is infused with RL training are discussed.

A. RL Environment

The RL environment is crucial to train a successful RL agent
because the agent learns by interacting with the environment.
In this paper, we leverage the CICIDS2017 [23] dataset
available publicly to prepare our custom RL environment. The
CICIDS2017 is a supervised dataset for intrusion detection.

The data is available in terms of network flow. A network
flow is defined as a collection of network packets with the
same source and destination IP, ports, and protocol. There
are more than 80 network flow features available in this
dataset. The CICFlowMeter [24] is used to extract these
features from the dataset. There are fourteen types of attack
traffic in this dataset. We combine similar attack classes into
one class to make the dataset less skewed and have better
detection accuracy. For example, three types of web attacks
(SQL Injection, Brute Force, and Cross Site Scripting) are
combined into one class named “Web”. Table I shows the
number of flows per class after combining similar classes into
one. This dataset represents the real scenario, as we can see
from Table I that the number of benign flows is much larger
than attack flows. As the dataset is for intrusion detection,
there is no information regarding mitigation actions. However,
the network configuration and settings are mentioned in [23].
We use this information to generate mitigation actions with
the help of three proprietary LLMs as discussed later in this
section.

Class Number of Flows
Benign 2271320
DDoS 128025
DoS 251712
FTP-Patator 7935
Infiltration 2003
PortScan 158804
SSH-Patator 5897
Web 2180

TABLE I: Number of flows per class in modified CICIDS2017

As a first step to build our custom RL environment, we
decouple the intrusion detection functionality (i.e., detecting
anomalous traffic) from the mitigation task. For the detec-
tion task, we train a decision tree (DT) classifier on the
CICIDS2017 dataset (which is split into a 70% training set
and a 30% test set). From this trained classifier, we extract all
possible decision paths, resulting in 1,451 signatures. These
signatures, along with their corresponding predicted class
labels, form a signature database for the RL environment
shown in Fig. 1.

Each signature sig, in the database stores: (i) the predicted
traffic class label (i.e., attack type or benign), (ii) the total
number of flows processed by that signature (NNV;), (iii) the
number of correctly classified flows by that signature (C;),
and (iv) a Bayesian posterior confidence score B;. As training
progresses, whenever a flow arrives and matches a particular
signature, IV; and C; are updated to reflect the newly observed
data, and B; is recalculated. This enables dynamic adaptation
of the signature’s reliability based on real-time evidence.

We define the Bayesian posterior confidence score B; for
each signature sig; using a Beta distribution with conjugate
prior. Let o and [ be hyperparameters for the Beta prior,
typically initialized to reflect a uniform prior (e.g., « = 1 and 3
= 1). After observing N; flows, out of which C; were correctly
classified, the posterior confidence for signature sig; at time
step t is given by Equation 1.
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Fig. 1: Overview of our proposed approach
TABLE II: Selected mitigation actions for each traffic type
a+ C;
Bi(t) = # (1) Traffic Type Mitigation actions Mitigation
a+ B8+ N; ID from
MITRE
By incorporating Bl.(t) in the RL observation, the agent is ATT&CK
able to assess the reliability of each signature when deciding Filter Network Traffic M1037
: sl : Network Intrusion Prevention M1031
on the appro;')rlate mitigation action. . . PortScan Network Segmentation M1030
State, Action, and Reward Function: At each episode, a Limit Access to Resource Over Network | MI035
single network flow is sampled from the training set. The flow Disable or Remove Feature or Program | M1042
: : : : : Filter Network Traffic M1037
is clasmﬁed by one qf the signatures in the database., say sig;, T L T ST
and assigned a predicted traffic type y; (e.g., benign, DoS, DoS Network Segmentation M1030
brute force, etc.). Hence, at time step t, the RL environment Limit Access to Resource Over Network | M1033
provides an observation vector as follows. _ Audit M1047
Benign No Action -
. () Filter Network Traffic M1037
Sy = [yh ID(Slgi), Ni, CZ-, Bi ] ) Network Intrusion Prevention M1031
. . . . DDoS Network Segmentation M1030
Here y; is the predicted class label of the flow i, ID(sig,) Limit Access to Resource Over Network | M1035
is the identifier of the signature that matched the flow, N; and 5 Al;dg - xig‘z‘;
. . aASSWOrt olicies
C; respecnv.ely deg())t.e the total and corre.ctly class1.ﬁed flow MultiFactor Authentication MT032
counts for sig;, B, is the current Bayesian posterior confi- SSH-Patator Account Use Policies M1036
dence for sig;. The RL agent then chooses a mitigation action Filter Network Traffic M1037
. e . . . Behavior-based Traffic Analysis M1040
Ay from a fixed set of 14 possible mitigation actions derived —

: Password Policies M1027
from the MITRE ATT&CK framework (e.g., ‘Filter Network Multi-factor Authentication M1032
Traffic”, “Re-authenticate user” etc.), along with a special FTP-Patator }/:\'fcougt Usekp%licégs M}ggg
T CSRT . : : 1lter Network Traffic

No Action” choice fgr benign trafﬁ?. These 14 actions are Behavior-based Traffic Analysis MT040
curated and ranked using three proprietary LLMs, OpenAl’s Tnput Validation MOS18
01, GPT 40, and O3 mini—which act as domain experts. Multi-factor Authentication M1032
The commonly recommended actions from these LLMs are Web __Execution Prevention MI038

i . . . T Privileged Account Management M1026
compiled into an ordered list of five prioritized mitigations Behavior-based Traffic Analysis M1040
for each attack type. The selected mitigation actions for each Filter Network Traffic M1037
. Update Software M1051

of the network traffic are shown in Table II. L Infiltration Multi-Tactor Authentication MT032
To guide the RL agent toward selecting effective mitiga- Privileged Account Management MI026
tions, we design a reward function that leverages the LLM- Password Policies M1027

recommended action list. Let A;pm = {a1, a2, as, a4, as} be
the ordered list of five recommended actions from the LLMs
for a given attack type. The reward R, at time step t is defined
as follows:
« If the agent selects the top-ranked action aj, it receives
+5.

o If it selects the k-th recommended action aj (where
1 < k < 5), it receives +(6 — k). Hence, +4 for the
second recommended action, down to +1 for the fifth
recommended action.



« If the agent selects an action not in Ay, it receives -5.
o For benign traffic, the correct action is “No Action”.

Selecting any other action results in a -5 reward.
Formally, we can write as follows:

6 —k, if A; =ax € ALm,
Ri(Ay) = €)]

-5, otherwise.

The above reward scheme aligns the RL agent’s actions with
expert-recommended mitigations from the LLMs, assigning
higher rewards to more effective responses and penalizing
unsafe or irrelevant actions. Therefore, it guides the agent
toward safer and context-aware decisions. By emphasizing
alignment with a prioritized list of suggested mitigations, the
RL agent is encouraged to converge toward a policy that
is both effective and contextually consistent with established
cybersecurity practices. Each episode terminates once the
reward is assigned, after which a new flow is sampled from the
dataset in the next episode, allowing the RL agent to iteratively
refine its mitigation policy.

Although cyber attack mitigation often involves long action
sequences, our current setting reduces to a one-step episodic
Markovian Decision Process (MDP), which is known as the
contextual bandit [17]. The RL environment has no dynamics
in a bandit problem, which means the reward depends on
the current action and the observation only. Since the RL
agent only observes predicted traffic type with its confidence
and statistics, the true state is never revealed to the agent.
The agent’s objective is to learn a policy that maximizes the
expected reward under the unknown joint distribution of true
state and the observed state. This is the objective solved by RL
algorithms in a contextual bandit form. RL is therefore both
applicable and necessary, as it can discover the optimal action
selection strategy despite observation noise, sparse rewards,
and a non-stationary traffic distribution.

B. Knowledge Graph Creation

During each training cycle, the RL agent interacts with our
custom environment over a fixed number of episodes. Each
interaction (i.e., observed state, chosen action, and correspond-
ing reward) is stored in a replay buffer as a trajectory, 7. After
completing these episodes, we perform two updates. First, we
train the policy network and update the value function using
the saved trajectories. Second, we create or update the KG
based on the information contained in the replay buffer. The
goal of this KG is to capture and aggregate knowledge about
how different signatures, traffic types, and mitigation actions
relate to one another, thereby providing a richer context to
guide subsequent LLM policy improvements.

The KG is a weighted graph featuring three distinct types of
nodes: traffic types, mitigation actions, and signature IDs, and
three types of weighted edges. The first edge type links the
detected traffic type to the selected mitigation action, capturing
the cumulative reward obtained for that particular pairing. The
second edge type connects a signature ID to its predicted
traffic type, weighted by the Bayesian posterior confidence B;.

The third edge connects two traffic-type nodes representing
misclassification of one traffic type to another. This edge is
weighted by three attributes: percentage of misclassification,
signature used for the prediction and confidence score when
the traffic is misclassified by the detector. A simplified version
of the KG is shown in Fig. 2, where three types of nodes and
edges are visible. The edge between Benign and DDoS traffic
means, when signature 3776 detects “Benign” traffic, 15%
of the time it is actually “DDoS” traffic, and the confidence
score for this misclassification is less than 0.92. As the agent
processes more network flows, the Bayesian confidence values
stored on these edges are recalculated to reflect the updated
statistics of correctly classified versus total flows for the
relevant signature.

Input Validation
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Fig. 2: A simplified KG

A key challenge in our setup arises from the possibility
that the same action can produce both positive and negative
rewards for the same traffic type. For instance, if a flow
is initially misclassified by a low-confidence signature, the
“correct” action for that predicted traffic category may lead
to a negative reward. Over time, this duality is also reflected
in the KG: edges between traffic types and actions accumulate
weighted feedback for both correct and incorrect classification
scenarios. Through repeated updates, the RL agent can learn to
rely less on signatures with low confidence scores and develop
robust mitigation strategies even under partial or inaccurate
information. After the training phase, the constructed KG
contained 1,306 nodes and 1,382 edges, reflecting the diversity
of observed traffic patterns and mitigation outcomes.

C. Knowledge Infusion

In our proposed framework, once the RL agent receives
a new state S; from the environment, it propagates this
information to a prompt generation module (see step 4 in
Fig. 1). The module first queries the existing KG with the
predicted attack type and the identifier of the signature that
triggered this detection. The KG responds with all connected
nodes (mitigation actions, misclassified traffic types) and their
associated edge weights. These edges are then serialized into
text using a predefined template.

Following this serialization, any actions associated with
negative rewards and not connected to misclassified traffic



nodes are filtered out, leaving only actions that historically
have led to positive outcomes in similar states. Table III shows
the core template of our prompts, where three placeholders:
actions, records, and attack are replaced by:

o attack: the predicted attack type derived from the KG
query, the signature used for this prediction,

e records: the serialized edges for all actions that have
positive rewards for the identified attack type, the mis-
classification rate, and confidence of the signature from
KG, actual traffic type in the case of misclassification,
the correct mitigation action for the misclassified node,

e actions: the subset of the total 14 unique mitigation
actions remaining after filtering out those with consis-
tently negative rewards and not connected to misclassified
traffic.

The completed prompt is then passed to Microsoft’s Phi-
3.5 mini instruct [25] language model for local inference.
Phi-3.5, with its 3.82B parameters, requires approximately 15
GB of GPU memory in float32 precision and provides an
average inference time of ~ 0.58 seconds given our prompt
structure. We select Phi-3.5 mini instruct model because it
can fit into one single GPU and it is an instruction fine-tuned
model, which means it can follow instructions. Moreover, Phi-
3.5 model performs decently on the Cybermetric benchmark
dataset as reported in [26]. Cybermetric evaluates the ability
of LLM models to answer cybersecurity questions. The LLM
module returns two key attributes: (i) the most effective
mitigation action for the attack observed in the past, and (ii)
the corresponding reward that action yielded from KG. A post-
processing module ensures the correctness and format of these
raw outputs of the LLM.

Once the LLM-suggested action and historical reward are
obtained, they are fused into the RL loop. Formally, we extend
S; as follows:

Sl = @)

Here Appy is the action recommended by the language model
and Ry is the reward historically observed for [yi, ALLM}.
This augmented state enables the agent to leverage both the
Bayesian confidence from the KG and the expert-like insights
provided by the LLM.

In addition to augmenting the RL state, we treat the LLM’s
behavior as a reference policy, denoted mpm(A | Si). The
RL agent’s policy is mg(A | St), parameterized by 6. To align
the agent’s policy with the LLM policy, we introduce the KL
divergence [18] term as a regularization component in the loss
function. Specifically, we compute the KL divergence:

[St, ArLm, RLLM]

Dxw(mo(- | So) | 7Lem(- | S1)) Z”H (A]Sy) ln{wfféA,l‘fgz

®)

Let Lrr(0) denote the original RL loss (e.g., a policy

gradient objective). We augment it with the KL regularization
term weighted by A:

}

Liota1(0) = Lrr(0) + ADkr(ma(- | S) | mm(- | Sp))
(6)
By penalizing large deviations from the LLM’s policy
distribution, the RL agent is gently guided toward the expert-
like behavior proposed by Phi-3.5. Over multiple training
epochs, this knowledge infusion helps the agent converge
more efficiently, especially in scenarios where the state and
reward signals are partially misleading. The RL agent balances
between exploration and exploitation by trying random actions
beyond LLM suggestions and favoring expert-informed actions
through LLM-guided policy alignment.

TABLE III: Prompt template for the local LLM

—System—

You are a Cybersecurity expert. Given a predicted attack on networks,
you must select one mitigation action from the following list separated
by comma to mitigate the predicted attack.

Some previous records of predicted traffic and selected actions with its
rewards are also given below. You must select the action with reward
5.00. If the records do not have any action with reward 5.00, select
based on your knowledge of the MITRE ATT&CK framework.

In addition to previous records, which signature used for prediction and
confidence of prediction are given. Sometimes the prediction can be
wrong. According to previous records, how many times the particular
prediction was wrong and what was actual traffic are given below.

Reason thoroughly before answering and consider the fact that pre-
dictions can be wrong. When prediction is wrong, some possible true
attack list is also given below.

—User—

Now, if {attack} traffic is predicted. Select one mitigation action from
the given list. Output only the mitigation action name, nothing else.
Mitigation actions: {actions}

Previous records: {records}

—Assistant—

IV. EVALUATION RESULTS

In this section, we describe our evaluations and results. At
first, we vary the value of the KL coefficient A\ to control
the KL penalty and observe the effect of it. Observing the
effect of the KL coefficient, we decide to anneal the value
of this coefficient in our next experiment. Finally, our third
experiment shows the improvement compared to the baseline
where we introduce supervised pre-training.

A. Experimental Settings

We train the RL policy by using the Proximal Policy
Optimization (PPO) algorithm [27]. Due to its training stability
and popularity in the field of Cybersecurity, we select the PPO
algorithm. All the experiments are performed on an 11** Gen
17 machine that has one GeForce RTX 3090 GPU with 24GB
memory and 32GB main memory.

As mentioned in Section III-A, we divide the CICIDS2017
dataset into two sets. The RL training happens by using the
network flow in the training set of CICIDS2017. Later, we
evaluate the RL policy on the network flows of the test set
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of CICIDS2017. During the training of the RL agent, we
traverse through the network flows of the training set five
times in total. We test the learned policy on all the network
flows of the test set. We report both training time reward
and testing time reward to evaluate our proposed approach
in comparison with the baseline. We select the performance
of the PPO algorithm as baseline, referred to as PPO, in our
experiment. Our goal is to improve the performance of the
RL agent by using LLM and KG. Hence, we combine LLM
and KG with the RL agent (referred to as PPO-KG) in one of
our experiments. In another experiment, we initialize the RL
agent’s policy network with pre-trained weights rather than
random initialization, and then integrate both the LLM and
KG into the RL training (referred to as PPO-KG-PT). We
evaluate the performance of the LLM that leverages the KG
without any RL agent (LLM-KG). A supervised DL approach
that directly maps the state vector to mitigation actions is also
compared with our proposed approach.

B. Effect of varying the value of KL coeffcient

In our first experiment, we showcase the effect of varying
the value of KL coefficient (\). We control the amount of
penalty given to the RL policy with this parameter. The value
of X ranges between 0 and 1. A high value of this parameter
(A = 1) means we give more penalty if the RL policy is not
close to the LLM policy. On the other hand, a low value of
this coefficient means we give less penalty. We experiment
with two values of A. For the high value, we use A\ = 1 and
for the low value, we use A = 0.1. When A = 1, we take the
whole KL divergence and apply that as regularization. A = 0.1
means we take only 10% of the penalty for regularization. Fig.
3 shows the average training reward obtained by each of the
variations of the PPO algorithm.

Fig. 3 shows that a high value of A helps faster convergence
but the average reward is slightly lower compared to PPO
(Fig. 3a). On the other hand, A = 0.1 achieves the same
average reward by compromising a little bit of convergence
time. We run all these three experiments for 500K episodes.
This experiment suggests that a higher value of A\ achieves
better convergence but lacks accuracy. By observing this result,
we decide to use KL coefficient annealing. At the beginning
of the training, the KL value should be high as it helps in the
convergence. As training progresses, we decrease the value of
A by following a linear decay schedule so that the RL agent
achieves a better average reward.

Fig. 4 shows the performance of KL coefficient annealing
in comparison with the baseline PPO algorithm. In this ex-
periment, the agent is trained for five iterations of the whole
training set. As the value of A is high at the beginning of
the training, we see the PPO-KG algorithm converges to a
lower average reward compared to the baseline PPO algorithm.
After certain episodes, when the value of A reduces to a
certain value, the PPO-KG starts to outperform the baseline
algorithm. Since the KG is updated during training, our
proposed approach achieves a higher but less stable reward
curve, as shown in Fig. 4.
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Fig. 4: PPO vs PPO-KG with KL coefficient annealing

C. Supervised Pre-training of the RL Policy Network

As our proposed approach outperforms the baseline in the
training set, the next step is to evaluate the learned policy on
the test set. Our proposed approach achieves a 2.88 average
reward on the test set whereas the baseline PPO algorithm
achieves only 1.13. Therefore, our proposed approach outper-
forms the baseline on average reward in the test set. However,
the class-wise average reward on the test set reported in Table
IV shows that the main benefit comes from the “Benign” class.
As the number of network flows on “Benign” class is the
highest and our proposed approach takes correct action for
the large number of “Benign” traffic, the average reward for
“Benign” class is higher (-0.11) than the baseline PPO (-5.0).

Table IV also shows that for certain classes, such as “SSH-
Patator”, “FTP-Patator”, and “Infiltration” the baseline PPO
algorithm achieves a better average reward compared to our
proposed approach. Our investigation reveals that the PPO
algorithm has gradient clipping functionality that prevents
drastic changes between two consecutive policies during the
training. Hence, during the random initialization of the RL
policy network, if the distance between the RL policy and



LLM policy in the feature space is too high, the PPO-KG
algorithm struggles to converge to the LLM policy.

To make the RL policy close to the LLM policy from the
beginning of the training, we implement a behavior cloning
strategy in our next experiment. Since we already have the
KG and the LLM policy ready to infer, we create a super-
vised dataset that maps states to actions according to the
LLM policy. Then, we pre-train the RL policy network for
ten epochs on this supervised dataset. Instead of randomly
initializing the RL policy network, we initialize it with these
trained parameters. Now, the RL policy should be closer to
the LLM policy from the beginning of the RL training. The
fourth column of Table IV shows this result.

Class PPO | PPO-KG | PPO-KG-PT
PortScan 5.0 5.0 5.0
DoS 5.0 4.98 4.99
Benign -5.0 -0.11 4.99
DDoS 5.0 4.99 4.99
SSH-Patator 1.99 -3.87 1.97
FTP-Patator | 1.99 -4.99 1.98
Web -5.0 -4.88 -4.94
Infiltration 5.0 2.20 2.35
[ Average [ 1.13 [ 2838 | 4.91 |

TABLE IV: Class-wise performance of the proposed approach
in comparison with the baseline on test dataset

Table IV shows significant improvement in our proposed
approach after supervised pre-training. The average reward on
the test set after supervised pre-training is 4.91 which is signif-
icantly higher than what we obtained previously. Interestingly,
Table IV shows that our proposed approach “PPO-KG-PT”
does not perform well on the “Web” and “Infiltration” classes.
The vanilla PPO algorithm performs well on the “Infiltration”
class; however, it performs the worst on the “Web” class.
We argue that the baseline PPO algorithm is biased towards
the most popular mitigation action in the dataset, which is
“Filter Network Traffic”. This is the best mitigation action
for four types of attacks among the eight types of traffic in
our dataset (see Table II). Therefore, the PPO algorithm is
biased towards this action. The poor performance of the PPO
algorithm on the “Web” class is evidence of this behavior
because the best action for the “Web” attack is not filtering
but “Input Validation”. Hence, the PPO algorithm does not
perform well on the “Web” attack class. On the other hand,
the LLM-enhanced RL approach performs better than vanilla
PPO on the “Web” class.

D. Performance of LLM-enhanced RL Under Uncertainty

It is crucial to evaluate the proposed approach when the
detection module is incorrect. Since we propose utilizing a KG
that captures the misclassification of network traffic associated
with a particular signature, the LLM model should reason
about this misclassification by observing the relations captured
in the KG. In this subsection, we compare the performance of
our proposed approach when the detection module is correct
versus when it is incorrect.

First, we need to evaluate the performance of the detection
module to understand its misclassification rate and assess
the impact of our proposed RL-based approaches (PPO-KG
and PPO-KG-PT). Table V shows the class-wise performance
of the detection module. The “Support” column in Table V
shows the number of data samples for a particular class in
the test set of CICIDS2017. The signature-based detection
module performs well in most of the classes except for
“Web” and “Infiltration” classes according to Table V. In
the following subsection, we investigate how the performance
of different approaches varies with the performance of the
detection module.

Class Name | Precision | Recall | Fl-score | Support
PortScan 99.33 99.96 99.64 47641
DoS 99.63 99.77 99.70 75514
Benign 99.94 99.88 99.91 681396
DDoS 99.96 99.90 99.93 38408
SSH-Patator 99.27 99.66 99.46 1769
FTP-Patator 99.92 99.79 99.85 2380
Web 95.14 95.72 95.43 654
Infiltration 71.45 72.05 71.75 601

TABLE V: Classification report of the signature-based detec-
tion module
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Fig. 5: Performance of RL Under Uncertainty

Figure 5 shows the percentage of correct actions taken
by different agents in the case of correct versus incorrect
detection. The LLM-KG approach shows what the LLM model
can achieve without any fine-tuning or an RL agent. Here, the
prompt for LLM is created using the KG and state vector (.S).
By taking the prompt as input, the LLM model outputs the
mitigation action. Since our problem formulation is a one-step
MDP, and we have the mitigation action as ground truth in the
dataset, we can train a DL model in a supervised manner that
takes the state vector as input and outputs a mitigation action
like a classification problem. The performance of this approach
is shown in Figure 5 as DL. For the model architecture
in the DL approach, we select the same model architecture
used as a policy network in the RL-based approaches for a
fair comparison. One difference is that we iterate through
the training dataset 5 times in RL-based approaches during



training, whereas we iterate through the entire training set 100
times in the DL approach.

Figure 5 shows that our proposed approach “PPO-KG-PT”
is the best overall among the compared approaches. On the
other hand, the supervised DL approach is the worst, according
to Figure 5. Although the DL model is trained for more epochs
compared to RL-based approaches, it performs the worst in
terms of both correct and incorrect detection. The reason for
the poor performance of the DL approach is the imbalanced
dataset. As shown in Table I and Table V, both the training
and test sets are highly imbalanced across different classes.
Therefore, the DL approach overfits the majority class in the
dataset. Three variations of our proposed approach—“PPO-
KG”, PPO-KG-PT”, and LLM-KG”—outperform the baseline
PPO algorithm and DL when the detection is correct. However,
in the case of incorrect detection, the baseline PPO algorithm
performs better than our proposed approach. The reason for
this behavior of the baseline PPO algorithm lies in the distri-
bution of mitigation actions in our dataset. For the majority of
attack types, “Filter Network Traffic” is the mitigation action
that obtains the maximum reward. Therefore, the baseline PPO
selects this mitigation action most of the time. Hence, in Table
IV, we observe that the baseline PPO algorithm does not
perform well on the classes where “Filter Network Traffic”
is not the best mitigation action.

Our proposed approaches in Figure 5 learn a policy that
is close to the LLM policy. Therefore, the performance of
our proposed approaches (PPO-KG and PPO-KG-PT) is close
to the “LLM-KG” approach. In the case of correct detection,
the LLM selects the correct mitigation action more than 98%
of the time. In the case of incorrect detection, if the relation
between the predicted and actual traffic is not captured by
the KG, then the LLM does not receive any clue about the
misclassification by the detector. Furthermore, even if there
is a relation between two traffic type nodes in the KG, it is
not guaranteed that the predicted traffic is misclassified. The
LLM model needs to pay attention to the confidence score of
the prediction and the percentage of previous misclassifica-
tions to reason about possible mitigation actions. Hence, the
performance of LLM-enhanced RL is lower than that of the
baseline PPO when detection is incorrect.

V. DISCUSSION AND FUTURE DIRECTIONS

The objective of this paper was to answer three research
questions discussed in Section I. First, we found that RL
agents can be guided by LLM to select effective mitigation
actions during a cyber attack by utilizing a KG created from
the agent-environment interactions. The KG must capture the
relationship between predicted and actual traffic by signature
in cases of misclassification. Furthermore, the KG must be
incrementally updated to stay current. Data should be collected
from the networks periodically to update the KG and RL
policy. Our experiments show that Open-source LLMs like
Phi-3.5 are capable of selecting proper mitigation actions like a
human expert if given the proper context and instructions. The
performance of LLMs varies depending on where instructions

are placed within a prompt, for example, instructions at the
beginning versus the end of the prompt may influence the
performance. Every instruction-fine-tuned LLM, like phi-3.5,
has a specific prompt format, and we must follow that prompt
style to maximize the benefits from the LLM.

Second, aligning the RL agent’s policy with an LLM-based
reference policy improved its performance by approximately
75%. We achieved this by embedding the LLM-suggested
action and its historical reward into the state vector and
introducing a KL regularization term to penalize policy devia-
tion. Third, combining LLM knowledge and reference policy
increased the RL agent’s average test-set reward from 1.13 to
4.91. Annealing the KL coefficient accelerated convergence,
requiring fewer episodes. By factoring in Bayesian confidence
and past rewards, the LLM effectively mitigates even when
facing uncertain traffic classification, enabling faster and more
reliable cyber responses than RL alone.

Our current contextual-bandit setting evaluates only a single
mitigation decision per flow. It does not yet capture multi-
step reasoning (e.g., triage — forensics — remediation) that
real incident-response workflows require. As a next step,
we will extend our work to automate cyber dynamic tasks
[28]. We will use simulation platforms like CybORG [29]
to create dynamic environments and evaluate our proposed
approach in solving dynamic tasks. We plan to apply post-
processing and human validation to mitigate potential biases
in LLM recommendations and prevent unsafe actions. The
proposed LLM-enhanced RL method requires approximately
0.88 seconds per inference, primarily due to LLM inference
overhead, whereas the baseline PPO agent requires only 1.7
milliseconds per inference. This gap may pose challenges in
high-throughput, real-time deployment scenarios. As future
work, we will explore quantized, distilled, or more lightweight
LLMs to reduce this computational burden and improve re-
sponse latency. Additionally, we have tested only one RL
algorithm (PPO) in our experiments. As future work, we aim to
evaluate the proposed approach with additional RL algorithms.
Specifically, we will investigate whether the requirement for
supervised pre-training in our proposed approach can be
eliminated by incorporating other RL algorithms.

VI. CONCLUSION

This paper addresses the challenge of selecting appropriate
cyber threat mitigation actions under uncertainty, where in-
trusion detection systems may misclassify traffic and provide
limited context. Traditional RL agents often struggle in such
settings due to sparse rewards and slow convergence. To
overcome these limitations, we propose a novel method that
combines RL with external knowledge derived from an open-
source LLM and a dynamically updated KG.

We formulate the mitigation task as a one-step MDP, en-
abling fast decision-making in the presence of noisy observa-
tions. Our custom RL environment, built on the CICIDS2017
dataset and guided by the MITRE ATT&CK framework,
allows the agent to interact with realistic traffic flows and
detection outputs. Our results show that this LLM-enhanced



RL

agent significantly outperforms a baseline PPO agent,

raising the average test-set reward from 1.13 to 4.91, which
is over 75% improvement toward optimal performance. The
agent also maintains robust behavior under misclassification
and learns policies that align with expert-recommended actions
more quickly and reliably.

Beyond performance improvements, this framework exem-
plifies how external knowledge can be integrated into RL
without compromising online adaptability. The approach is
model-agnostic, meaning alternative open-source LLMs or
external threat-intelligence feeds can be incorporated with
minimal effort. Thus, it bridges the research communities of

RL,

knowledge-graph reasoning, and cybersecurity, providing

a template for future hybrid systems operating under partial
observability and evolving threat landscapes.

In conclusion, our study provides empirical evidence that
coupling LLM with a knowledge-aware RL agent yields near-
optimal, context-aware cyber mitigations in real-time. We hope
this blueprint accelerates progress toward self-adaptive defense
systems and inspires broader adoption of LLM-enhanced RL
across cybersecurity domains.
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