
Encrypted Network Traffic Classification using
Self-supervised Learning

Md. Shamim Towhid
Department of Computer Science

University of Regina, Canada
mty754@uregina.ca

Nashid Shahriar
Department of Computer Science

University of Regina, Canada
nashid.shahriar@uregina.ca

Abstract—Network traffic classification is used in many ap-
plications including network provisioning, malware detection,
resource management, and so on. In modern networks, use of
encrypted protocols is a norm rather than an exception. Existing
network traffic classification techniques fall short in working
with encrypted traffic. Although deep learning based techniques
have been shown to perform well in the case of encrypted
traffic classification, they require an abundance of labeled data to
achieve high accuracy. However, labeled data is rarely available
in sufficient volumes in real network settings as they require
domain experts to annotate data with labels. Therefore, in this
paper, we propose a self-supervised approach that can achieve
high accuracy on encrypted network traffic classification with
a few labeled data. The proposed method is evaluated on three
publicly available datasets. The empirical result shows that our
method not only achieves high accuracy on encrypted traffic but
also has the ability to apply the acquired knowledge on a different
dataset. In our experiments, our method outperforms the state-
of-the-art baseline methods by ∼3% in terms of accuracy even
with a much lower volume of labeled data.

Index Terms—self-supervised learning, network traffic classi-
fication, encrypted traffic

I. INTRODUCTION

Modern networks are becoming increasingly complex to
support the heterogeneous needs of a variety of Internet appli-
cations. Automation is necessary to manage these complex
networks. Network traffic classification is usually the first
step in any automated network management system. It allows
network operators to analyze traffic and identify different types
of applications in the network which can be used to manage
the overall performance of the network. Communication in
the modern network is done by exchanging packets which are
obtained by segmenting the data according to some protocol.
As a result, there is a flow of these packets from one network
device to another. Classification of this flow of network packets
refers to this identification of applications of the traffic by
observing the characteristics of the traffic flow. This identifi-
cation of application can use multiple features in the network.
For example, an Internet service provider can prioritize one
particular type of flow over another, thus ensuring Quality
of Service (QoS) for the prioritized network traffic. Some of
the applications of network traffic classification are Quality of
Service (QoS) provisioning, Service Function Chaining (SFC),
malware detection, and anomaly detection [1].

Due to the various specific applications and the availability
of different protocols, network traffic classification becomes
a challenging task. Moreover, the development of encrypted

protocols (e.g., HTTP/2 [2] and QUIC [3]) and wide accep-
tance of these protocols in network communication exacerbate
the complexity of network traffic classification. In the past,
traditional machine learning techniques showed promising
performance in traffic classification. In [4], traditional machine
learning (e.g., Naı̈ve Bayes, Decision Trees) models are trained
on a set of flow statistics selected by domain experts. Some
more traditional machine learning approaches are mentioned
in [5]. However, these approaches cannot work on encrypted
network traffic because these techniques rely on hand-picked
features, which cannot be easily extracted from encrypted
traffic.

Recently, deep learning [6] is getting popular in the field
of networking because of its success in other domains such
as computer vision [7] and natural language processing (NLP)
[8]. The main advantage of deep learning is that we do not
need to design hand-picked features for it. These algorithms
can learn the required features by themselves [6]. Most promis-
ing deep learning algorithms follow the supervised learning
paradigm [9]. In supervised learning, we need to provide the
actual label (a.k.a ground truth) for the sample data. Then, the
algorithm can learn the important features from provided data
using the label during training. However, creating this labeled
data is time-consuming and errors may occur during labeling
the data. One major drawback of supervised learning is that
it requires lots of training data to train a model with good
accuracy.

Another type of approach from the machine learning domain
is recently getting popular, called self-supervised learning [10].
In self-supervised learning, we need a small amount of labeled
data to get a model with good accuracy. These algorithms
try to learn a representation of the data that is used for the
downstream task later on. Usually, a self-supervised learning
algorithm has two stages [10]–[12]. The first stage is called
pre-training stage where the model learns to represent the data
differently based on some property of the data rather than the
actual label. The next stage is called fine-tuning stage where
the weights of the model are fine-tuned based on a small
amount of labeled data of the actual task. The idea is that
if the model can learn a good representation of the data in
the pre-training stage, a small amount of labeled data will
be sufficient in the fine-tuning stage to achieve high accuracy.
The overall accuracy of the model highly depends on the given
task and the amount of unlabeled data in the pre-training stage.
This type of algorithm is suitable for encrypted network traffic

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

978-1-6654-0694-9/22/$31.00 ©2022 IEEE 366

20
22

 IE
EE

 8
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
8-

1-
66

54
-0

69
4-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
43

95
.2

02
2.

98
44

04
4

Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

classification because it is easy to capture lots of traffic data
from a network but the tedious part is to create the label for
every captured flow of packets. In self-supervised learning,
we need only a few labeled data along with a lot of unlabeled
data. Therefore, self-supervised learning seems to be a great
fit for encrypted network traffic classification [25].

Self-supervised learning is not a new concept. Researchers
proposed many self-supervised learning methods in the past
to solve various types of problems. Those algorithms were
not as good as supervised learning. Recently, Ting Chen
et al. propose a self-supervised learning method in [11]
that outperforms its corresponding supervised learning for a
computer vision task. Since then people are adapting self-
supervised learning methods in various domains [12], [13].
In this paper, we are adopting a well-known self-supervised
learning method proposed in [12] and enhancing it further
to address encrypted network traffic classification problem.
According to our knowledge, this is the first attempt to use a
self-supervised learning method for encrypted network traffic
classification. Our main contributions are-
• We propose a novel method to apply self-supervised

learning for encrypted network traffic classification using
protocol agnostic features. So, our proposed method can
work with traffic using any protocol.

• We show that our proposed method outperforms several
state-of-the-art methods in terms of accuracy by evaluat-
ing our method on three different datasets [1], [20] and
[24].

• We also showcase the transferability of our proposed
method according to [1]. Once the model is trained, it
can be used on a different dataset. This transferability is
crucial for network traffic classification because network
conditions and corresponding traffic characteristics may
change over time. In this type of dynamic scenario,
training the network from scratch every time is not a
feasible solution. By using this transferability, our model
can easily adapt to the new network condition. Our
proposed method shows a slight decrease in accuracy
when used in this setup, whereas an alternative method
proposed in [1] faces significant decline in accuracy.

In the next section, we provide our literature review. We
will discuss the motivation behind our work in this section. In
section 3, we will describe every component of our method in
detail. The evaluation of our method on three different datasets
is given in section 4. Finally, we conclude the paper in section
5 by providing a summary of our work and discussing some
future research directions.

II. RELATED WORK

As network traffic classification is a well known problem,
there is a plethora of research work on this topic. Many
researchers have tried to apply traditional machine learning
methods to distinguish between protocols (e.g., DNS, SMTP
and HTTP) in a network trace [4], [5]. The accuracy of these
traditional approaches has declined because of their simplicity
and inability to capture complex traffic patterns [14].

Encrypted traffic classification is more challenging because
it operates on non-standard port numbers. Deep learning is
suitable for these kind of challenging tasks because we can
feed large fine-grained feature vectors such as raw traffic to
the models. These models can learn complex patterns from
the raw traffic. From the deep learning domain Multilayer
Perceptron (MLP), Stacked Autoencoders, CNN and LSTM
have been explored extensively in recent literature [15]–
[19]. Iman Akbari et al. [20] proposes stacked LSTM and
CNN based tripartite neural network architecture to classify
encrypted network traffic. Their approach uses three types of
features namely flow statistics, raw bytes, and time series.
For the time series features, they use inter arrival time of
a packet in a flow, packet length, and direction. Since it is
a supervised approach, their method needs a lot of labeled
data to achieve good accuracy. On the other hand, only time
series based features i.e. inter arrival time, packet size, and
direction are used in [1]. This is a semi-supervised approach
which requires fewer labels compared to supervised methods.
In this paper, we compare our result directly with the semi-
supervised approach of [1] as we are using the same dataset.
In [1], the authors first train the CNN model to predict the
statistics of the whole flow of packets using a sampled flow.
They use three different sampling techniques in their paper
which are fixed sampling, random sampling, and incremental
sampling. We adopt their sampling techniques in this paper
and use that as a form of augmentation for our proposed self-
supervised method. With the same number of labeled data, our
proposed method outperforms this semi-supervised approach
in terms of accuracy. Furthermore, according to [1], in a
transfer learning setup where the model is pre-trained using a
different dataset, the accuracy drops almost 15%. In a similar
setup, the accuracy of our proposed method drops only 2%.

In [24], A. S. Iliyasu et al. proposes another semi-supervised
approach for encrypted traffic classification. A deep convolu-
tional generative adversarial network is used in their approach.
However, the accuracy of their approach is lower than the other
semi-supervised approach mentioned earlier in [1]. Another
semi-supervised time series classification approach is proposed
in [25]. The authors in [25] adopt the self-supervised approach
proposed in [11] and apply that for time series classification.
The problem with their approach is, it needs negative sample
to be present in the same batch during the contrastive learning
stage. A negative sample is a transformed version of another
time series when the loss is calculated for a particular time
series. Since we do not use actual label in the contrastive
learning stage, we can not decide whether the selected negative
sample is coming from a different time series or it is a different
series from the same class. In [11], this problem is solved
by assuming that if we select a large batch size for training,
the selected negative sample will be from another class with
a high probability. Our proposed method completely omits
this requirement of negative samples by following [12]. In
addition to that, no experiment is done in [25] to prove the
transferability of the method.

Some other works [21] apply ensemble learning for network

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

367Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

traffic classification. In [21], the authors propose an ensemble
of CNN models. Fundamentally, the working principle of
ensemble learning and self-supervised learning is not the same.
Ensemble learning is a type of supervised learning which
requires a lot of labeled data to achieve high accuracy. In [21],
the ensemble method is trained using a lot of labeled data
compared to our approach. Transformers [22] are becoming
popular to deal with sequential data due to its huge success
in NLP. A transformer based classification approach for time
series is proposed in [23]. However, the ability to classify
encrypted network traffic with a few labeled data of these
types of methods is yet to be explored.

In this paper, we evaluate our proposed approach using
three publicly available datasets used in [1], [20], and [24]
and compare our approach with the semi-supervised approach
of [1]. We also show transferability of our approach.

III. METHODOLOGY

Similar to most of the self-supervised techniques, our pro-
posed method has two stages. In the first stage, we train a
neural network with unlabeled data. We call it the pre-training
stage. In the second stage, we fine tune the weights of the
neural network with a few labeled data. This stage is called
the fine-tuning stage. In this section, we describe both of these
stages with the data preparation.

A. Data Preparation

Our method uses two types of features from a flow of
network packets. One is inter arrival time (IAT) between two
packets in a flow. The other is the direction of the packet. The
direction can be either forward (from source to destination)
or backward (from destination to source). Notice that these
two features do not depend on the used protocols. Since we
rely on publicly available datasets, we are restricted to use the
available features in those datasets (described in section IVA).
IAT, direction, and packet length are available in all the used
datasets. In our experiments, the highest accuracy (98.01%)
is achieved using IAT and direction as features, whereas IAT,
direction, and packet length achieve slightly lower accuracy
(96.65%) on the QUIC dataset, justifying our decision of
selecting IAT and direction for training our models.

We need to prepare two sets of data. One unlabeled dataset
(DU) for pre-training stage and another labeled dataset (DL)
for supervised fine-tuning. In the pre-training stage, we apply
augmentation on a flow to get a transformed version of it.
Two flows from the same class are required in the pre-training
stage because the goal here is to learn similar representation
for these two flows coming from the same class. Since we do
not have access to labels in the pre-training stage, we cannot
select these two flows using labels. Therefore, augmentation
is applied to create another instance of a flow from the same
class. Augmentation on numerical data is harder as the label of
the data may change after applying augmentation. Therefore,
we divide a flow of packets into sub-flows as explained below.
Then we use one sub-flow as an augmented version of another
sub-flow. As a pre-processing step, we make sure that all the

flows in our dataset have at least 300 packets in them. There
are two benefits of creating sub-flows. The first one is, we
can use one sub-flow as an augmented version of another. The
other benefit is that training dataset size increases by creating
sub-flows. According to [11], the pre-training stage training
benefits from large number of unlabeled data.

To create sub-flows from a flow of packets, we follow
the incremental sampling technique mentioned in [1]. This
technique has three parameters α, β, and γ. It selects packets
from a flow that are α packets away from each other. After
selecting β number of packets, it multiplies α by γ. By
following [1], we use α = 10, β = 22 and γ = 1.6 for all
our datasets. We also sample only 45 packets from the entire
flow. That means the length of a sub-flow is 45.

In the pre-training stage, we will use one sub-flow as an
augmented version of another sub-flow. These two sub-flows
must come from the same flow. Otherwise, if a sub-flow comes
from a flow of a different class, it is not possible to use the
sub-flow as a form of augmentation. To keep track of the sub-
flows, we include a file identification number, Fid to each of
the sub-flow of a flow. In other words, Fid is unique for each
of the flow in our dataset. The unlabeled dataset DU consists
of sub-flows and the file identification number corresponding
to each of the sub-flows.

The labeled dataset, DL is a smaller dataset compared to
DU . For the Orange’20 [20] and QUIC [1] dataset, we have
only 30 flows per class to put in DL. Note that these flows
are not included in the set that is used to prepare DU . These
30 flows per class are randomly selected from the set of all
flows. The length of each sub-flow in DL must be the same
as the length of a sub-flow in DU . Otherwise, we can not use
the same trained model from pre-training stage. Therefore, we
prepare sub-flows of DL by following the same incremental
sampling technique mentioned above. The only difference is,
we include class labels for each of the sub-flows of DL. DL
is used in the fine-tuning stage as supervised dataset.

B. Pre-training Stage

After preparing the unlabeled dataset DU , now it is time to
start the training. Fig. 1a shows every step of the pre-training
stage. By following [12], we use two neural networks in the
pre-training stage. One network is called the online network
and the other is named as target network. The purpose of the
target network is to provide the regression target for the online
network.

Both of the neural networks in the pre-training stage have
one encoder f , and one projector g. The architecture of these
two components is the same but they are initialized with
different sets of weights. Here, θ represents the weights of
the online network and ξ represents the weights of the target
network. The online network has one extra layer for prediction.
The dimension of the representation vector is very high. The
purpose of the projectors gθ and gξ is to convert this high
dimensional vector to a low dimension.

In our work, we use ResNet [26] architecture as the
encoder (fθ and fξ). The goal in the pre-training stage of

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

368Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

(a) Pre-training Stage

(b) Fine-tuning Stage

Fig. 1: Overview of the proposed method

self-supervised learning is to separate different classes of
data in the feature space by learning such representation of
the data. ResNet is a popular choice of encoder in self-
supervised learning due to it’s powerful representational ability
by increasing the depth of the model. ResNet has some
variations such as ResNet18, ResNet34, ResNet50 and so on
[26]. ResNet34 is selected for our training because it provides
a good trade-off between accuracy and training time compared
to the other variations. All the 2D convolution layer and
batch normalization layer of ResNet34 is replaced by 1D
convolution layer and batch normalization layer respectively.
For the projectors (gθ and gξ), fully connected layers are used.
In the online network, the prediction layer is also a fully
connected layer.

In the pre-training stage, we take two sub-flows (S1 and
S2) from DU with the same Fid. One sub-flow S1 goes to
the online network and the other sub-flow S2 goes to the
target network. From the encoders fθ and fξ, we obtain
the representations of the two sub-flows. Then these two
representations go to the corresponding projectors (gθ and gξ).
From there, we obtain a low dimensional vector representation.
Finally, the predictor qθ of the online network predicts the
representation of the target network which is z′ξ. To be able
to predict the representation of the target network, the online
network needs to learn a representation which is close to the
target network. Note that the input to these two networks
are sub-flows coming from the same actual flow. Therefore,
training in this way helps the encoder to learn a similar
representation for the sub-flows coming from the same flow.
Furthermore, sub-flows from different flows are represented
differently in the feature space. Since the model is already

learning to represent sub-flows from the same flow close to
each other in the feature space, a few labeled data will be
enough to achieve high accuracy in the fine-tuning stage.
During the training, the weights of the online network are
updated in every step of the training. But the weights of the
target network is an exponential moving average of the weights
of the online network. A target decay rate τ ∈ [0, 1] is selected
to calculate this exponential moving average according to the
following equation.

ξ ← τξ + (1− τ)θ (1)

We use the same symmetric loss function from [12]. In
this loss function, one mean squared loss Lθ,ξ is defined
between the normalized predictions of the online network and
the normalized projections of the target network. The mean
squared loss is given in Eq. 2.

Lθ,ξ , (
qθ(zθ)

‖ qθ(zθ) ‖2
−

z′ξ
‖ z′ξ ‖2

)2 (2)

In Eq. 2, the loss is defined as the squared difference between
l2 normalization of predictions of the online network (qθ(zθ))
and projections of the target network (z′ξ). Note that the loss
in Eq. 2 is calculated by feeding S1 to the online network
and S2 to the target network. To make the loss symmetric,
another version of it is calculated by feeding S1 to the target
network and S2 to the online network. This loss is denoted
as L̂θ,ξ. So, at each iteration a stochastic optimization step is
performed to minimize the total loss LT OT ALθ,ξ = Lθ,ξ + L̂θ,ξ
with respect to θ only. Finally, we update θ according to the
following equation.

θ ← optimizer(θ,OθLT OT ALθ,ξ , η) (3)

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

369Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

Here, η is the learning rate. In all our experiments, we use
η = 0.0001 with Adam [29] optimizer. A weight decay rate
of 1e−6 is used with the optimizer. In pre-training stage, we
train the network for 50 epochs with a batch size 128. The
target decay τ = 0.99 is used. From the encoder, we obtain a
representation vector of size 4096. In the projection layer, we
reduce this representation vector to a 256 dimensional vector.

C. Fine-tuning Stage

From the pre-training stage, we obtain the trained encoder
for the online network (fθ). In the fine-tuning stage, we freeze
all the layers of the encoder. By freezing, we mean there is
no update to the weights of the encoder layers in this stage.
The frozen layers are represented by f ′θ in Fig. 1b. We use
the small supervised dataset, DL in this stage. A new fully
connected layer q′θ is added as a prediction layer on top of
the encoder. The number of neurons in this fully connected
layer is equal to the number of class in our dataset DL. In
this stage, we use the cross entropy loss (Eq. 4) to update the
weights of the prediction layer q′θ.

L(l, z′θ) , −
∑
∀x

l(x) log(z′θ(x)) (4)

In Eq. 4, x represents one single observation from the distri-
bution. l represents the true distribution and z′θ represents the
predicted distribution from the prediction layer.

In this stage, we train the network for 25 epochs with a
batch size of 128. We use the Adam optimizer with a learning
rate 1e−4 and weight decay 1e−6. Our evaluation metrics and
the result of our experiments are presented in the next section.

IV. EVALUATION

In this section, we evaluate our proposed method. At first,
we discuss the used datasets in our experiments. The number
of flows used in the pre-training stage and fine-tuning stage
are shown in this section. Next, we discuss the result of our
method on the selected datasets. We also explore how the
accuracy of our method changes with different length of sub-
flows and number of labeled data in the fine-tuning stage.
Finally, we conclude the section by showing the transferability
of our method.

Like most of the classification models in literature, we use
accuracy, F1 score, recall and precision as our evaluation
metrics. To explain these evaluation metrics, we will use the
following terms.
• True Positive (TP): The number of times the model

predicted positive for class n and it is true.
• True Negative (TN): The number of times the model

predicted negative for class n and it is true.
• False Positive (FP): The number of times the model

predicted positive for class n and it is false.
• False Negative (FN): The number of times the model

predicted negative for class n and it is false.
For a binary classification problem like Orange’20 where we
have only two classes, it is easy to understand the above def-
initions. For a multi-class problem like QUIC where we have

more than two classes, we calculate each of the above term per
class. Then we calculate an evaluation matrix per class using
the following formulas. Finally, we take the average of all
the classes to get the final value of that particular evaluation
matrix. This is called the “macro” average in the literature
[21].

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2
Precision

Precision+Recall

We use Scikit-learn [30] for the evaluation metrics and
Pytorch Lightning [31] for the implementation of our method.
All the experiments are performed on an 11th Gen i7 machine
that has one GeForce RTX 3090 GPU with 24GB memory and
32GB main memory. As mentioned in the “Methodology” (see
IIIC) section, we train for 25 epochs in the fine-tuning stage.
After each epoch, we calculate the evaluation metrics on the
test set. The best values are recorded as the result for that
training. We run the fine-tuning stage five times and take the
average of the evaluation metrics as the final result.

A. Dataset

Encrypted protocols such as QUIC are only recently being
adopted in practice, hence it is hard to find suitable datasets
for encrypted network traffic classification. To evaluate our
approach, we use QUIC, Orange’20 and ISCX VPN-NonVPN
dataset from [1], [20] and [27], respectively. QUIC and Or-
ange’20 datasets are published by the corresponding authors
of the papers. ISCX dataset is published by the Canadian
institute of cyber security. We use the QUIC dataset as it is
from [1] and pre-process the Orange’20 and ISCX dataset as
described below. In Orange’20 dataset, the number of flows
per application level class is highly imbalanced after the pre-
processing step. For example, FacebookChat class has only
two flows in the dataset. In self-supervised method, we need
a large number of unlabeled data from each class in the pre-
training stage [11]. Therefore, we merge similar classes into
one class. Finally, as shown in Table I, we obtain two classes
(namely, Social and Streaming) for this dataset. We obtain
Social class by merging Facebook, Twitter, and Instagram
classes, and Streaming class consists of Youtube, Netflix,
Snapchat, and Facebook classes from Orange’20 dataset. Note
that Orange’20 dataset distinguishes between Facebook brows-
ing traffic and Facebook streaming traffic. In our experiments,
Facebook browsing and Facebook streaming traffic classes
of Orange’20 are merged into Social and Streaming classes,
respectively.

ISCX dataset contains packets captured by using different
applications such as Facebook, Netflix, Twitter, etc., which are
encrypted using different encryption protocols. By following

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

370Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

[24], we use the raw format (pcap) of this dataset. To convert
raw packets to flow of packets, we use pkt2flow tool [28].
We use a script to extract the required features (IAT and
Direction) for our experiments. After getting the features from
flow of packets, we follow the steps described in the “Data
Preparation” section (see IIIA) of this paper to create sub-
flows. After creating sub-flows, the number of data per class
was extremely low. In [24], the same problem with ISCX
dataset is addressed by the authors. Therefore, we follow the
same strategy as [24] and combine similar services into one
class. Finally, we obtain three classes for the ISCX dataset
(namely, Chat, Streaming, and VOIP). Table I shows the
number of flows and sub-flows for each of the datasets.

Dataset Class Names Number
of flows

Number of
Sub-flows,

DU

Number of
Sub-flows,

DL

QUIC

Google Doc 1251 99831 2993
Google Drive 1664 133663 3000
Google Music 622 49936 1123
Google Search 1945 156725 3000

Youtube 1107 88019 2933
Total 6589 528174 13049

Orange’20 Social 2097 127782 7677
Streaming 1669 104209 3615

Total 3766 231991 11292

ISCX
Chat 54 1205 221

Streaming 12 213 79
VOIP 10 176 54
Total 76 1594 354

TABLE I: Number of flows and sub-flows in the datasets

Note that we use 30 flows per class to create supervised
dataset DL for QUIC and Orange’20 datasets. Among the
selected 30 flows, 20 flows are used for training in fine-tuning
stage and the rest of the 10 flows are used for testing the
model. Due to insufficiency of data in the ISCX dataset, we
use 10 flows from the streaming class, 50 flows from the Chat
class, and 8 flows from VOIP class to create DU . The rest
of the flows are used to prepare DL. From DL, we use 70%
of the sub-flow for training the model in the fine-tuning stage
and 30% of the sub-flow to test the model. As described in
section IIIA, we create sub-flows from flows using incremental
sampling. The number of created sub-flows in DU and DL
are also shown in Table I. From the total number of sub-flows
in each dataset, we can say that the selected three datasets
represent three use cases. First, the QUIC dataset represent the
best scenario where we have sufficient number of sub-flows.
Second, the Orange’20 dataset has a moderate number of sub-
flows. Finally, the ISCX dataset represents the worst scenario
where we have a small amount of sub-flows available for the
training.

B. Comparison with the baseline methods

For QUIC dataset, we can directly compare the result of our
method with the result of semi-supervised technique proposed
in [1]. As their source code is publicly available, we run their
code on the QUIC dataset to get the result. The obtained
result is reported in Table II as baseline for QUIC dataset. On
the other hand, for Orange’20 dataset, we can not compare

our result with [20] directly because the number of classes
in our version of the dataset are not same as [20]. Similar
to Orange’20, we can not compare our result on ISCX with
[24] because after applying pkt2flow on our collected data,
the number of classes are not the same as [24]. Therefore, we
use the corresponding supervised trained model as a baseline
for Orange’20 and ISCX dataset. To create the baseline for
Orange’20 and ISCX, we train the ResNet34 model on DL in
a supervised manner. In Table II, these models are mentioned
as “Supervised Baseline”. The semi-supervised method from
[1] is mentioned as “Semi-supervised” in Table II. In our
first experiment, we apply our proposed method on the three
individual datasets and compare the results with the baseline
methods.

Method Dataset Accuracy (%)
Semi-supervised Baseline [1] QUIC 95.11

Self-Supervised (Ours) QUIC 98.01
Supervised Baseline Orange’20 80.11

Self-supervised (Ours) Orange’20 82.34
Supervised Baseline ISCX 86.73

Self-supervised (Ours) ISCX 86.56

TABLE II: Performance of different methods

As mentioned earlier, to record the result of our method, we
run the fine-tuning stage five times. Then record the average
accuracy in Table II. The standard deviations of these five runs
are also calculated and shown as error bars in Fig. 2. Table II
shows that our method outperforms semi-supervised approach
proposed in [1] on QUIC dataset by 3%. It is worth to mention
that the proposed semi-supervised technique in [1] uses IAT,
direction, and length of the packet as features. We report their
result using the same features whereas in our method we use
only IAT and direction as features as these two features give
us the best result. Using IAT, direction, and length as [1], we
obtain accuracy of 96.65% from our method. Although the
accuracy of Orange’20 is lower than QUIC dataset, our method
outperforms the supervised baseline on Orange’20 dataset.
The number of sub-flows used in the pre-training stage for
Orange’20 dataset is smaller than QUIC dataset. This could
be a potential reason for this low accuracy in the Orange’20
dataset. This statement is justified in the next experiment. The
result on ISCX dataset is interesting. We see the supervised
baseline performs slightly better than our method for this
dataset. Since the number of flows in ISCX dataset is very low
compared to the other two datasets, our method can not learn
the representation well in the pre-training stage. Therefore, the
performance is similar to supervised baseline. From this result
on ISCX dataset, we can verify the statement that our approach
needs a lot of unlabeled data in the pre-training stage.

Figure 2 shows the other evaluation metrics of our method
for the three datasets with the calculated standard deviation of
the five results. From the figure, the scores of all the evaluation
metrics are close to each other for the same dataset. Therefore,
we can conclude that our method is capable of classifying sub-
flows of packets.

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

371Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Evaluation Metrics of our method

C. Effect of varying the length of sub-flow

Previously, we mentioned that the length of each sub-
flow in our dataset is 45. In this experiment, we vary the
length of the sub-flow. Decreasing the length of the sub-flow
means we have less number of packet’s information in a sub-
flow. On the other hand, increasing the length of the sub-
flow means we have more packet’s information. Increasing
the length should give us better accuracy as we have more
packet’s information in a single sub-flow. But it will increase
the computation complexity. As a result, every epoch of the
training will take longer time compared to the smaller length
sub-flows. Table III shows the accuracy with different length
of the sub-flows. The time per epoch in the fine-tuning stage
is negligible compared to the pre-training stage as only one
model is trained in the fine-tuning stage as opposed to two
models being trained in parallel in the pre-training stage. In
addition, the number of sub-flows used in the fine-tuning stage
is much smaller compared to the pre-training stage. Since
the accuracy of our method on ISCX dataset is lower than
corresponding supervised model, we exclude ISCX from this
experiment.

Dataset Length of
Sub-flow ACC. (%) Time per epoch (min)

Pre-training Fine-tuning

QUIC
20 87.79 7.10 0.091
45 98.01 15.16 0.157
70 99.24 30.23 0.283

Orange’20
45 82.34 3.71 0.116
70 83.20 8.12 0.241
100 83.41 17.67 0.493

TABLE III: Varying the length of sub-flow
Table III shows, the accuracy increases with the increasing

length of the sub-flow. But this comes at the cost of increased
time taken for each epoch. The overall accuracy on Orange’20
is lower than the accuracy on QUIC dataset. Therefore, rather
than decreasing the sub-flow length of Orange’20, we try to
increase the length of sub-flows. Among the three cases (45,
70, and 100), we obtain the best result with the sub-flow length
100. We can not increase the length beyond 100 because the
Orange’20 has some flows with length 300 and we need at
least two sub-flows from incremental sampling for the pre-
training stage. Although the accuracy increases a little with
increasing length, still the accuracy of Orange’20 is lower

than QUIC dataset. This behavior can be explained from the
number of sub-flows in the pre-training stage. From Table I,
we can see that the QUIC dataset has a larger amount of sub-
flows than the Orange’20 dataset. As a result, the Orange’20
dataset has a lower amount of unlabeled data compared to
the QUIC dataset in the pre-training stage. In the case of the
Orange’20 dataset, the model cannot learn the representation
well from the unlabeled data in the pre-training stage, thus
yielding a lower accuracy. This result suggests that instead of
increasing the length of the sub-flows, our method needs a
lot of unlabeled data in the pre-training stage to achieve high
accuracy. Table III shows that increasing the sub-flow length
beyond 45 has a small gain in accuracy, whereas the increase
in time per epoch is much more prominent. Therefore, we
select 45 to be the best sub-flow length for our experiments.

Dataset Length of Sub-flow Classification time
for one batch (s)

QUIC 20 0.009
Orange’20 45 0.016
Orange’20 70 0.022
Orange’20 100 0.028

TABLE IV: Classification time of the sub-flows

To be able to use the trained model in an actual network, it
is important to know how much time it takes to classify sub-
flows. In Table IV, we show the time (in seconds) to classify
one batch of sub-flows. In our experiments, we set the batch
size to 128 sub-flows. The classification time does not change
based on the dataset. It depends on the length of the sub-
flows. Therefore, Table IV shows classification time for all
the different sub-flows length in our experiments.

D. Effect of varying the size of the datasets

In this experiment, we try to see the effect of changing
the number of labeled data in the fine-tuning stage of our
method. After the pre-training stage, we fine-tune the model
using 5, 10, 15, and 20 flows per class in the supervised
training set. Since there are 30 flows per class in the fine-
tuning dataset, we use the rest of the flows for testing the
model. For example, when we train with 5 flows per class
in the fine-tuning stage then the model is evaluated on the
rest of the 25 flows per class. Note that the number of flows
mentioned here are divided into sub-flows using incremental
sampling technique (described in section IIIA) before the fine-
tuning stage. As a result, the actual volume of labeled data
in the fine-tuning stage is different than the number of flows
mentioned in Fig. 3. For example, when 5 flows per class are
used, 2200 sub-flows are obtained for QUIC dataset and 2615
sub-flows are obtained for Orange’20 dataset. The model uses
these sub-flows for training in the fine-tuning stage. Similarly,
to evaluate the model during testing, sub-flows generated from
chosen flows are used. We also try to see the effect of pre-
training in this experiment. To do that, using the same dataset,
we train our model without pre-training stage. This is similar
to the supervised baseline models mentioned in section IVB.
Fig. 3 shows the result of this experiment. From Fig. 3, it is
clear that pre-training stage helps the model to achieve high

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

372Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

accuracy. The model with pre-training stage outperforms the
model without pre-training stage in all the cases for Orange’20
dataset. We see a similar behavior for the QUIC dataset. Only
the last case, where we use 25 flows per class for training the
model in the fine-tuning stage has the same accuracy (100%)
with and without pre-training. From this result, we conclude
that the test set is extremely small (only 5 flows per class
are used for testing) to represent the whole dataset. Therefore,
in this case, the model without pre-training can also achieve
high accuracy. Otherwise, in all the cases, the model with
pre-training is outperforming the model without pre-training
by 3.74% on average.

Fig. 3: Effect of varying the size of the fine-tuning dataset

In the previous experiment, the dataset size for pre-training
was fixed while changing the dataset size for the fine-tuning
stage. In the next experiment, we show the effect of pre-
training by varying the dataset size of the pre-training stage
while fixing the dataset size for the fine-tuning stage. Table
V shows that the accuracy drops ∼5% when 10% of the total
sub-flows (mentioned as DU in Table I) are used in the pre-
training stage compared to the case when 100% of the sub-
flows are used in the pre-training stage. Therefore, we can
conclude that the dataset size of the pre-training stage affects
the overall accuracy of the model.

Dataset Percentage of sub-flows (DU in
Table I) used for pre-training (%)

Accuracy (%)

QUIC

10 94.52
30 94.81
50 95.00

100 98.01

Orange’20

10 77.16
30 77.34
50 79.02

100 82.34

TABLE V: Effect of varying size of the pre-training dataset

E. Transferability of our method

In this experiment, we aim to show the transferability of our
method. Transferability means whether the model can learn
representation from a dataset and use that learned representa-
tion to classify network traffic from another dataset. Since the

model learns representation of one unlabeled dataset (DU) in
the pre-training stage, a different labeled dataset (DL) is used
in the fine-tuning stage that utilizes the learned representation
and labels from DU and DL, respectively, to classify the
network traffic. For example, the third column of the first row
in Table VI shows the accuracy of the model when the QUIC
dataset is used in the pre-training stage and Orange’20 is used
in the fine-tuning stage. The fourth column of Table VI shows
the accuracy when the same dataset (mentioned in the second
column) is used for both pre-training and fine-tuning stages.

Pre-training
Dataset

Fine-tuning
Dataset

Accuracy(%)
using different

datasets

Accuracy(%)
using same

dataset
QUIC Orange’20 81.48 82.34

Orange’20 QUIC 97.18 98.01
QUIC + ISCX
+ Orange’20

Orange’20 80.92 82.34

QUIC + ISCX
+ Orange’20

QUIC 97.83 98.01

QUIC + ISCX
+ Orange’20

ISCX 86.31 86.56

TABLE VI: Transferability of our method

Since ISCX dataset has a few number of flows, this dataset
is excluded from the single pre-training experiment. For
Orange’20 and QUIC dataset, the accuracy outperforms the
baseline methods from Table II in both the cases whether
we use single dataset for pre-training or combined dataset.
This result suggests that our method can utilize the acquired
knowledge from the pre-training stage even if the dataset
is different. However, the accuracy on ISCX dataset drops
when we use the combined dataset for pre-training. The
accuracy is even less than self-supervised training mentioned
in Table II. Since we have large number of flows in QUIC
and Orange’20 datasets compared to ISCX, in the pre-training
stage, the learned representations are dominated by Orange’20
and QUIC dataset. Therefore, the accuracy on ISCX dataset
is less than what we get in Table II. Also, this is the reason
why we exclude the cases of combining ISCX with Orange’20
or QUIC individually in this experiment. The result shown in
Table VI suggests that if we include ISCX to any of the other
datasets (QUIC or Orange’20) the model will learn most of
the representations from that dataset rather than ISCX.

We now compare the transferability of our approach with
that of [1]. When the proposed method of [1] is pre-trained
on different dataset (Waikato [32]), the best accuracy of their
method on QUIC dataset drops to 80.76% from 98.53%
(reported results from [1]). On the other hand, as shown in
Table VI, the accuracy of our proposed method drops from
98.01% to 97.18% as in the case of using Orange’20 in pre-
training and QUIC in fine-tuning. On an average, the accuracy
of our proposed method drops ∼2% when pre-trained on a
different dataset and fine-tuned on different datasets. We also
use the aggregate of the three datasets in the pre-training stage
and each of the individual datasets in the fine-tuning stage (see
last three rows of Table VI). In all the cases, the results are
consistent. Therefore, we conclude that our proposed method
outperforms the existing work [1] in terms of transferability.

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

373Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

In this paper, we propose a self-supervised method that uses
a small amount of labeled data to classify encrypted network
traffic. Labeling network traffic data is a time consuming and
error-prone task. But collecting network traffic data is not that
hard nowadays. In our method, we need a lot of unlabeled data
and a few labeled data to be able to classify network traffic
with high accuracy. Our method has two stages, namely pre-
training and fine-tuning which are described in details. Then
we evaluate the performance of our approach on three datasets.
The results of all the experiments suggest that our method is
able to achieve high accuracy with a few labeled data. At the
same time, we need a lot of unlabeled data to get an overall
high accuracy. Our proposed method is able to outperform the
state-of-the-art baseline methods by ∼3% in terms of accuracy
when there are enough data present in the pre-training stage.
Furthermore, our method is able to achieve high accuracy
when trained with unlabeled data from a different dataset than
the labeled dataset, whereas the accuracy of the compared
approaches decline significantly.

In our future research, the deployment process of the trained
model in a real network will be investigated. We will address
the problem of adding new class to an already trained model
according to our method. It is often necessary to add a new
class to a trained model without compromising the accuracy
on existing classes. Explainability of the proposed method
is needed to be explored as well. We will explore these
capabilities of the proposed method in our future work.

ACKNOWLEDGEMENT

We would like to thank our shepherd Dr. Sandra Scott-
Hayward and anonymous reviewers of IEEE Netsoft 2022 for
their valuable feedback.

REFERENCES

[1] S. Rezaei and X. Liu, “How to Achieve High Classification Accuracy
with Just a Few Labels: A Semi-supervised Approach Using Sampled
Packets,” arXiv:1812.09761 [cs], Dec. 2018.

[2] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext
Transfer Protocol Version 2 (HTTP/2). IETF RFC 7540. 1–96 pages.

[3] Janardhan Iyengar and Ian Swett. 2015. QUIC: A UDP-Based Secure
and Reliable Transport for HTTP/2. Technical Report. Network Working
Group. 1–30 pages.

[4] Nigel Williams, Sebastian Zander, and Grenville Armitage. 2006. A pre-
liminary performance comparison of five machine learning algorithms
for practical IP traffic flow classification. ACM SIGCOMM Computer
Communication Review 36, 5 (2006), 5–16.

[5] Velan, P., Čermák, M., Čeleda, P., Drašar, M.: A survey of methods
for encrypted traffic classification and analysis. International Journal of
Network Management 25(5), 355–374 (2015).

[6] I. Goodfellow, Y. Bengio, en A. Courville, Deep Learning. The MIT
Press, 2016.

[7] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed.
Berlin, Heidelberg: Springer-Verlag, 2010.

[8] M. D. Harris, Introduction to Natural Language Processing. USA:
Reston Publishing Co., 1985.

[9] Liu Q., Wu Y. (2012) Supervised Learning. In: Seel N.M. (eds)
Encyclopedia of the Sciences of Learning. Springer, Boston, MA.
https://doi.org/10.1007/978-1-4419-1428-6 451

[10] L. Ericsson, H. Gouk, C. C. Loy, en T. M. Hospedales, “Self-
Supervised Representation Learning: Introduction, Advances and Chal-
lenges”, arXiv [cs.LG]. 2021.

[11] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A Simple
Framework for Contrastive Learning of Visual Representations,” CoRR,
vol. abs/2002.05709, 2020, [Online]. Available: https://arxiv.org/abs/
2002.05709.

[12] J.-B. Grill et al., “Bootstrap Your Own Latent: A New Approach to
Self-Supervised Learning,” CoRR, vol. abs/2006.07733, 2020, [Online].
Available: https://arxiv.org/abs/2006.07733.

[13] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, en R. Soricut,
“ALBERT: A Lite BERT for Self-supervised Learning of Language
Representations”, arXiv [cs.CL]. 2020.

[14] Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification:
An overview. IEEE communications magazine 57(5), 76–81 (2019).

[15] Zhitang Chen, Ke He, Jian Li, and Yanhui Geng. 2017. Seq2img: A
sequence-to-image based approach towards ip traffic classification using
convolutional neural networks. In IEEE International Conference on Big
Data (Big Data). 1271–1276.

[16] Jonas Höchst, Lars Baumgärtner, Matthias Hollick, and Bernd
Freisleben. 2017. Unsupervised traffic flow classification using a neural
autoencoder. In IEEE Conference on Local Computer Networks (LCN).
523–526.

[17] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and
Wouter Joosen. 2017. Automated website fingerprinting through deep
learning. arXiv preprint arXiv:1708.06376 (2017).

[18] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang.
2017. End-to-end encrypted traffic classification with one-dimensional
convolution neural networks. In IEEE International Conference on
Intelligence and Security Informatics (ISI). 43–48.

[19] Zhuang Zou, Jingguo Ge, Hongbo Zheng, Yulei Wu, Chunjing Han, and
Zhongjiang Yao. 2018. Encrypted traffic classification with a convolu-
tional long short-term memory neural network. In IEEE International
Conference on High Performance Computing and Communications;
IEEE International Conference on Smart City; IEEE International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS). 329–334.

[20] I. Akbari et al., “A Look Behind the Curtain: Traffic Classification in an
Increasingly Encrypted Web,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 5, no. 1, Feb. 2021, doi: 10.1145/3447382.

[21] A. Shahraki, M. Abbasi, A. Taherkordi, and M. Kaosar, “Internet Traffic
Classification Using an Ensemble of Deep Convolutional Neural Net-
works,” in Proceedings of the 4th FlexNets Workshop on Flexible Net-
works Artificial Intelligence Supported Network Flexibility and Agility,
New York, NY, USA: Association for Computing Machinery, 2021, pp.
38–43. [Online]. Available: https://doi.org/10.1145/3472735.3473386

[22] A. Vaswani et al., “Attention Is All You Need,” CoRR, vol.
abs/1706.03762, 2017, [Online]. Available: http://arxiv.org/abs/1706.
03762

[23] M. Liu et al., “Gated Transformer Networks for Multivariate Time Series
Classification,” CoRR, vol. abs/2103.14438, 2021, [Online]. Available:
https://arxiv.org/abs/2103.14438

[24] A. S. Iliyasu and H. Deng, ”Semi-Supervised Encrypted Traffic
Classification With Deep Convolutional Generative Adversarial Net-
works,” in IEEE Access, vol. 8, pp. 118-126, 2020, doi: 10.1109/AC-
CESS.2019.2962106.

[25] H. Fan, F. Zhang, R. Wang, X. Huang and Z. Li, ”Semi-
Supervised Time Series Classification by Temporal Relation Prediction,”
ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021, pp. 3545-3549, doi:
10.1109/ICASSP39728.2021.9413883.

[26] K. He, X. Zhang, S. Ren, en J. Sun, “Deep Residual Learning for Image
Recognition”, arXiv [cs.CV]. 2015.

[27] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of Encrypted and VPN Traffic using Time-related
Features:,” in Proceedings of the 2nd International Conference on
Information Systems Security and Privacy, Rome, Italy, 2016, pp.

[28] Pkt2flow. Accessed December 2021. [Online] Available: https://github.
com/caesar0301/pkt2flow

[29] D. P. Kingma en J. Ba, “Adam: A Method for Stochastic Optimization”,
arXiv [cs.LG]. 2017.

[30] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python”, Journal
of Machine Learning Research, vol 12, bll 2825–2830, 2011.

[31] W. Falcon en K. Cho, “A Framework For Contrastive Self-Supervised
Learning And Designing A New Approach”, arXiv preprint arXiv:2009.
00104, 2020.

[32] Dataset, W.V.: (2013), Accessed January 2022. [Online] Available: https:
//wand.net.nz/wits

2022 IEEE 8th International Conference on Network Softwarization (NetSoft)

374Authorized licensed use limited to: University of Regina IEL. Downloaded on October 03,2022 at 00:03:39 UTC from IEEE Xplore. Restrictions apply.

