Demonstrating Network Slice KPI Monitoring in a
5G Testbed

Niloy Saha*, Alexander James®*, Nashid Shahriar’, Raouf Boutaba* and Aladdin Saleh?
{n6saha, alexander.james, rboutaba} @uwaterloo.ca
{nashid.shahriar} @uregina.ca, {aladdin.saleh}@rci.rogers.com
*University of Waterloo, Canada, TUniversity of Regina, Canada, iRogers Communications, Canada Inc.

Abstract—Network slicing has been envisaged as a key enabler
to satisfy diverse requirements of 5G networks, by creating
multiple isolated end-to-end virtual networks dedicated to differ-
ent services. An accurate view of these end-to-end 5G network
slices is essential for both artificial intelligence (AI) driven
slice orchestration, and data-driven automated service assurance.
However, the existing open-source implementations of the 5G
core do not natively support slice Key Performance Indicator
(KPI) monitoring. In this demonstration, we show how to deploy
a functional 5G testbed using a combination of open-source
frameworks and tools, with a guide for configuring multiple
network slices published on GitHub [1]. We also show the
feasibility of monitoring and visualizing network slice KPIs using
a representative cloud-gaming use-case.

Index Terms—Network Slicing, KPI, monitoring, 5G Network

I. INTRODUCTION

Network slicing, now an important part of Third Generation
Partnership Project (3GPP) Release 16, is a core component of
the 5G mobile network architecture. One of the motivating fac-
tors behind the introduction of slicing is the ability to support
a set of applications with heterogeneous Quality of Service
(QoS) requirements using the same physical infrastructure.

One of the most important problems preventing the wide
adoption of network slicing is the need for orchestration
platforms and algorithms that are up to the task of managing
the myriad resources allocated to each slice deployed in
the network, as well as handling the life-cycle and fault
management operations for each slice. Over the past decade
Machine Learning (ML), and more specifically Reinforcement
Learning (RL), has been applied to many control tasks in a
number of different domains. Now mobile network research is
also shifting to focus on the use of RL for management and
orchestration tasks.

The reliance on learning algorithms to orchestrate and
manage the mobile network presupposes that there are large
quantities of monitoring data available that accurately captures
the relevant state of the mobile network in order to train
learning agents to accomplish management and orchestration
tasks. However, in surveying the available open-source im-
plementations of the mobile core, we found that none of the
current offerings support monitoring in any meaningful way.

Various 3GPP Technical Specificationss (TSs) define a
number of slice specific KPIs, with the idea being that these
KPIs can accurately capture the state of the mobile network,

specifically the state of the constituent slices. Computing many
of the 3GPP slice KPIs requires the collection of a number of
performance metrics from distinct network functions in the
mobile core, complicating the process of slice KPI collection
and computation. As such, some work is required to develop
a system that is capable of performing efficient and timely
collection and computation of slice KPIs as they are defined
in various 3GPP TSss.

In this demo, we showcase a system for slice KPI collection,
computation, aggregation and visualization using a set of
open-source components in a state-of-the-art mobile network
testbed. We also demonstrate how this system can be used to
collect and visualize slice KPIs in real-time for a cloud gaming
application deployed as an edge service in the testbed.

II. SYSTEM DESCRIPTION

This section provides an overview of the software and
hardware components deployed in the testbed. Figure 1 depicts
these components.

Data Plane

—————— Monitoring [vibana
Game Client & elasticsearch
Wlogstash — | om
(© .
D, $katka [Locoos) .
. spaik’
5G UE Application Data Processing
Emulator Server Pipeline
Z
Z
y
e N3 |[upF SMF
Emulator | Interface -
Edge Mobile &% Open Source
Site Core NFs : M A N 0
Kubernetes Containerization Layer
Kubernetes Management
Worker VMs and
Orchestration
OpenStack Virtualization Layer Layer

Compute Cluster

Fig. 1: System Description

Compute Cluster The foundation of the mobile network
testbed is a compute cluster managed using OpenStack Ussuri
[2]. The cluster consists of 6 compute servers, each with 16
GiB of RAM and 8 CPUs running at 3.3 GHz. Each of the
compute servers is connected using 100 Base-T ethernet.

Containerization Layer All of the network functions used
in this demonstration are deployed as containers in a Ku-
bernetes cluster. The Kubernetes controller and worker nodes
are deployed as virtual machines in the OpenStack cluster,
allowing the lifecycle of the Kubernetes worker nodes to be
orchestrated via the OpenStack virtualization layer.

Orchestration and Management Layer Deployment and
lifecycle management of the mobile core is handled by Open
Source MANO (OSM), an important open-source project
that conforms to the European Telecommunications Standards
Institute (ETSI) NFV architecture. OSM automates the man-
agement and orchestration of network services composed of
any number of constituent Virtual Network Functions (VNFs).
Each VNF is described using a Virtual Network Function
Descriptor (VNFD), which is a YAML file specifying the
base image for the VNF (either a VM or container image),
as well as its dependencies, compute, storage and network
requirements and a host of other customizable parameters.
Network operators then create a Network Service Descriptor
(NSD), which specifies a network topology composed of any
number of VNFDs. Once the NSD has been onboarded, the
network service can be deployed through either the OSM web
or command line interface. OSM will then interface with the
various Virtual Infrastructure Managers (VIMs) present in the
system to instantiate the service described by the NSD.

Mobile Core The mobile core implementation used in this
demonstration is Free5GC [3], an open-source implementation
of 3GPP R15. Free5GC contains implementations of the AMF,
AUSF, NRF, NSSF, PCF, SMF, UDM, UDR, and UPF. The
Free5GC binaries incorporated in container images hosted
on DockerHub and subsequently packaged as a Helm chart
[4]. The use of Helm allows for straightforward deployment
and dependency management for applications deployed over
a complex, inter-dependant set of Kubernetes containers.

Radio Access Network Emulation The Radio Access
Network (RAN) and User Equipments (UEs) are being em-
ulated using UERANSIM [5]. UERANSIM is an open-source
project that implements a 3GPP Release 16 compliant gNB
and UE in software. To emulate the over-the-air interface,
UERANSIM, uses the Radio Link Simulation (RLS) protocol,
which replaces the over-the-air transmissions that typically
take place in the RAN with a UDP based link between the
UEs and the gNB.

Data Processing Pipeline The data processing pipeline
is responsible for the ingestion, cleaning and indexing of
monitoring data generated by the mobile network. FileBeat
[6], an open-source project managed by Elastic [7], is used
to ship the container log files generated by the Kubernetes
containers that implement the mobile core to a Kafka queue
[8]. Once the container logs have been pushed into the Kakfa
queue, Logstash [9], another open-source project maintained
by Elastic [7], retrieves the logs from the specified topic
and parses them before pushing them into an FElasticsearch
instance [10]. Once the logs have been parsed and documents
containing the metrics have been ingested into elasticsearch,
the performance metrics that compose the slice KPIs are used

to compute the actual KPIs. At this point the slice KPIs can be
accessed via the Elasticsearch APIs or visualized and analyzed
using Kibana [11].

Application Server The application used to demonstrate 5G
slice KPI monitoring is Steam [12], a computer gaming appli-
cation that allows users to stream games from a game server
to a remote client. For this demonstration the game server is
hosted on a machine with dedicated graphics hardware located
outside of the compute cluster that hosts the mobile core.

III. NETWORK SLICE KPI MONITORING

Monitoring network slice KPIs involves the extraction and
subsequent correlation of performance metrics (PMs) from
various network functions (NFs) in the 5G network. In this
demonstration, we focus on a particular slice KPI — average
downlink throughput per network slice. This involves the
collection of PMs (such as packet or byte counts) from the
user plane functions (UPFs) in the network. Specifically, as
defined in 3GPP TS 28.552 (Section 5.4.1.3) [13], this requires
the collection of GTP data packets on N3 interface (from RAN
to UPF). Moreover, since the UPF does not store slice related
information due to the control and user plane separation in 5G,
the information from the UPF needs to be correlated with slice
information collected from the session management function
(SMF). This is done as follows.

A network slice is uniquely identified by its Single Network
Slice Selection Assistance Information (S-NSSAI) [14]. An
S-NSSAI may have one or more protocol data unit (PDU)
sessions associated with it, where a PDU session is an abstrac-
tion introduced in 5G to represent an end-to-end connection
from the UE to a data network through the UPF. Thus, the
average throughput per slice involves computing the sum of
GTP-U packets/bytes for the PDU sessions associated with
the slice. This information is associated with several packet
detection rules (PDRs) at the UPFs. Moreover, the SMF uses
the packet forwarding control protocol (PFCP) to manage
sessions with the UPF per PDU session. Therefore, the steps
involved in computing average throughput per network slice
are as follows:

At the SMF: a) Find the mapping between an S-NSSAI and
associated PDU sessions, b) identify individual PDU sessions
using PDU session ID, c) find the mapping between PDU
session and PFCP session, d) identify PFCP session(s) using
its fully-qualified session identifier (F-SEID), and e) identify
PDRs per PFCP session using PDR ID.

At the UPF: a) Use PDR ID at UPF to identify PDRs
at the UPF and b) to extract UL/DL statistics per PDR. UL
and DL statistics consist of packet counts for all of the PDRs
associated with the PDU sessions in question.

These packet counts were obtained by modifying the
gtp5g kernel module [15] that terminates the GPRS Tunnel-
ing Protocol (GTP) tunnels at the UPF. The kernel module was
modified to maintain and increment packet counters for each
of the PDRs currently installed at the UPF. We implemented a
netlink [16] interface to allow these packet count statistics
to be retrieved from the kernel module. Finally the UPF

container image was configured so that the packet count
statistics were redirected to one of the container log files,
allowing the metrics to be easily shipped from the Kubernetes
cluster to the appropriate Kafka queue using Beats.

We implement these steps on top of the open-source
FreeSGC project. Further details are available on GitHub [1].

IV. DEMONSTRATION

In this demonstration, we show network slice KPI monitor-
ing using a representative cloud-gaming use-case. The network
slicing scenario is setup as depicted in Figure 2, where we
have two distinct slices — a) a slice dedicated for the cloud
gaming stream, and b) a best effort slice, which has additional
background traffic.

Dedicated Gaming Slice
Best Effort Slice

UPF1

PDU Session 1

] Slice 1

Application Server
(Game Host)

Game

Client gNB
UE2 Slice 2 UPF2
10.2.0.1 PDU Session 2 = T
10.2.0.2 PDU Session 3
Background Edge sites 5G core
Traffic deployment
Client (Laptop)

Fig. 2: Network slicing setup for the cloud gaming use-case

Each slice is end-to-end as shown in the figure, and has
separate UPF and SMF functions, while sharing common 5G
core functions such as AMF and NRF. For the game streaming
from application server to the UE through the 5G testbed,
we leverage Steam Remote Play [12]. We demonstrate two
scenarios — using the gaming slice and the best effort slice,
and present gameplay footage to show how the quality of
experience is affected.

Aggregate Slice Throughput Aggregate Slice Throughput

3,500/s
2,500/s
1,500/s

500/s

3,500/s
2,500/s
1,500/s
500/s
Time (sec) Time (sec)

Game Traffic Game Traffic

3,000 3,000
2,400 2,400
1,800 1,800
1,200 1,200
600 600

0 0
Time (sec)

Time (sec)

BG Traffic

1,400

1,000

600

o 200

Time (sec)

BG Traffic

Time (sec)
(a) Dedicated game slice (b) Best effort slice

Fig. 3: Kibana showing network slice throughput KPI

Figure 3 presents the network slice throughput over time
as shown by the Kibana dashboard in our data processing

pipeline (See Section II), with Figures 3a and 3b representing
the dedicated game slice and best effort slice, respectively. In
both figures, the graph on the top shows the aggregate slice
throughput composed of the throughput of all PDU sessions
associated with the network slice. This is broken down into
throughput per PDU session, with the game traffic (middle)
and background traffic (bottom, only applicable for best effort
slice). It is evident from the figure that for cloud gaming using
the best effort slice, the background traffic has clear negative
impact on the game throughput, which results in degradation
in quality of experience for the user'. The dashboard allows
the user to visually inspect slice throughput KPIs and glean
insight regarding the impact of each PDU session in the slice.

V. DEMO IMPACT

This demonstration shows how a functioning 5G testbed
can be set up leveraging various open-source frameworks and
tools, and the configuration needed to setup multiple network
slices. A complete configuration guide can be found on our
GitHub repository [1]. This demonstration also shows the steps
needed for computing network slice KPIs on a 5G testbed, and
will hopefully encourage researchers to develop and evaluate
frameworks for efficient monitoring of network slice KPIs on
5G testbed deployments.

ACKNOWLEDGEMENTS

This work was supported in part by Rogers Communications
Canada Inc. and in part by a Mitacs Accelerate Grant.

REFERENCES

[1] 5G testbed configuration repository on Github. [Online]. Available:
https://github.com/niloysh/5gc-config

[2] OpenStack. (2022) Openstack releases: Ussuri. [Online]. Available:
https://releases.openstack.org/ussuri/

[3] Free5GC. (2022) FreeSgc
https://github.com/free5gc/freeSgc

[4] The Linux Foundation. (2022) Helm: The package manager for
kubernetes. [Online]. Available: https://helm.sh/

github. [Online]. Available:

[51 A. Gungr. (2022) Ueransim. [Online]. Available:
https://github.com/aligungr/UERANSIM
[6] Elastic. (2022) Filebeat reference. [Online]. Available:

https://www.elastic.co/guide/en/beats/filebeat/index.html
[71 Apache. (2022) Elastic: Free and open search. [Online]. Available:
https://www.elastic.co
[8] Apache. (2022) Apache Kafka. [Online].
https://www.elastic.co/guide/en/beats/filebeat/index.html
[9]1 Apache. (2022) Logstash: Collect, Parse, Transform Logs. [Online].
Available: https://www.elastic.co/logstash/
Apache. (2022) Elasticsearch: Free and open search. [Online]. Available:
https://www.elastic.co/
Apache. (2022) Kibana: Your window into the elastic stack. [Online].
Available: https://www.elastic.co/kibana
Valve Corporation. (2022) Steam remote play. [Online]. Available:
https://store.steampowered.com/remoteplay
3GPP, “Management and orchestration; 5G performance measurements,”
3GPP, Technical Specification (TS) 28.552, 09 2020, version 17.0.0.
3GPP, “Management and orchestration; 5G 5g end to end key perfor-
mance indicators (kpi),” 3GPP, Technical Specification (TS) 28.554, 09
2020, version 17.0.0.
PrinzZOwO. Gtp5g GitHub repository.
https://github.com/niloysh/Sgc-config
netlink(7) - Linux manual page, January 2022.

Available:

[10]
(1]
[12]
[13]

[14]

[15] [Online]. Available:

[16]

IThe degradation in quality can be seen in the gameplay footage in the
demo.

