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Abstract—Optimizing routing in Software-Defined Networks
(SDNs) to meet Quality of Service (QoS) demands presents
notable challenges, particularly with traditional methods that
struggle with the dynamic nature of SDNs. Existing techniques
often fail to adapt efficiently to varying traffic patterns, resulting
in suboptimal network performance. Furthermore, the existing
routing methods typically prioritize either the infrastructure
provider or service provider benefits, neglecting a balanced
approach that ensures efficient utilization of network resources
while meeting QoS metrics for clients, such as guaranteed
latency and throughput. This paper proposes a multi-agent Deep
Reinforcement Learning (DRL)-based QoS-aware routing solu-
tion in SDN environments with intelligent network adaptation,
called MARINA. MARINA dynamically adjusts routing paths
for both existing and new incoming traffic flows in the network.
Moreover, MARINA simultaneously optimizes network resource
usage and meets QoS constraints such as latency and guaranteed
throughput in an SDN. MARINA is extensively evaluated on
real-world GEANT2 network topology. The results indicate that
our algorithm outperforms Open Shortest Path First (OSPF),
Equal Cost Multiple Path (ECMP), and single-agent DRL in
key performance metrics. Specifically, MARINA meets 51.4%,
29.4%, and 11.1% more QoS requirements than OSPF, ECMP,
and single-agent DRL-based approaches, respectively.

Index Terms—Software-defined Networking, Routing, Deep
Reinforcement Learning, Network Adaptivity.

I. INTRODUCTION

Software-Defined Networking has emerged as a transforma-

tive approach to managing and optimizing network resources.

By decoupling the control plane from the data plane, SDN

offers a centralized management system that enhances flex-

ibility, scalability, and the ability to dynamically respond to

varying network conditions [7]. However, ensuring Quality

of Service in SDN remains a significant challenge due to

the dynamic nature of modern network environments and

fluctuating traffic patterns [10]. Traditional routing methods

often fall short in addressing these challenges as they typically

lack the adaptability required to maintain QoS guarantees,

especially under conditions of high variability in network

demands [7], [14].

Recent advances have highlighted the potential of machine

learning-based methods to enhance SDN routing efficiency.

DRL is an ideal approach to address decision-making and

optimization problems such as routing [11]. In recent years, a

growing trend of DRL approaches for routing in SDN has been

observed [14]. However, existing DRL-based strategies are not

generalizable and use limited information during routing. One

of the key challenges is the poor support for QoS and the lack

of adaptability to traffic variability in SDN, which restricts

their effectiveness in dynamic network environments. Among

these, DRL algorithms such as Deep Q-Networks (DQN)

have shown promise due to their ability to learn optimal

routing strategies in complex environments [11]. Nevertheless,

current DQN-based approaches often focus primarily on either

the infrastructure provider side or the service provider side,

neglecting an efficient way of ensuring effective utilization of

network resources while meeting QoS metrics for clients such

as guaranteed latency and throughput, which can significantly

impact overall network performance [3].

To address these challenges, this paper proposes a multi-

agent DRL-based dynamic routing solution in SDN with QoS

optimization that efficiently reroutes existing active traffic

flows and properly routes incoming traffic while satisfying

throughput and delay constraints and optimizing overall net-

work resource usage. We develop a Multi-Agent reinforcement

learning-based Routing with Intelligent Network Adaptation

(MARINA) as a QoS-aware SDN routing algorithm that lever-

ages a cooperative multi-agent DRL. The proposed MARINA

solution is designed to dynamically allocate the best paths for

incoming traffic flows while making QoS requirements more

responsive and capable of adapting to diverse network con-

ditions. Additionally, our proposed solution can enhance the

network’s ability to accommodate future requests by efficiently

utilizing network resources.

The main contributions of this paper are as follows: 1) We

introduce a multi-agent DRL-based QoS-aware SDN routing

algorithm that applies a cooperative multi-agent DRL solu-

tion to enhance routing decisions; 2) MARINA considers

both service provider requirements such as multiple QoS

constraints, including guaranteed throughput and delay, and

infrastructure provider requirements in terms of optimizing the



network resource usage; 3) Our proposed solution not only

identifies the optimal paths for incoming traffic flows but also

dynamically re-routes previously established traffic flows in

real time, ensuring efficient network resource utilization and

adaptibility.

The rest of the paper is organized as follows: In Section II,

we discuss related work. We allocated Section III to the system

model and problem formulation. Section VI and Section V

are dedicated to describing the methodology and evaluating

the performance of MARINA, respectively. Finally, Section

IV concludes and outlines future work.

II. RELATED WORKS

Routing optimization in traffic engineering is a well-

established topic in the literature [11]. The purpose of routing

optimization algorithms is to control the behavior of the route

for data transmission to improve the network performance and

meet QoS requirements. There are a wide variety of studies

in the network routing realm, which are generally based on

analytical optimization [16], local-search heuristics [8], or

machine learning techniques [2], [3], [7]. In recent years, the

development of routing optimization algorithms for SDN with

machine learning-based techniques has received attention [11].

Within this context, DRL has emerged as a promising

approach for optimizing routing decisions in SDN environ-

ments [3], [7]. Although single-agent RL solutions have been

extensively applied in the SDN routing realm, these methods

often struggle with scalability and generalizability to adapt to

dynamic or large-scale networks, as the action space expands

exponentially with the network size. Recent solutions such as

DRSIR [3] address some of these challenges by leveraging

DQN; however, single-agent solution has limited adaptibility

in highly dynamic network environments and handling various

types of traffic flows.

Other approaches focus on energy efficiency by dynamically

adjusting routing paths to reduce energy consumption without

compromising QoS [13]. Most current DRL-based approaches

primarily focus on either service provider benefits or infras-

tructure provider benefits, often neglecting the other part. This

narrow focus can lead to suboptimal network performance in

scenarios where multiple QoS requirements must be balanced

or focus is on efficiently utilizing network resources and

ignoring QoS metrics. Additionally, as the size and complexity

of the network increase, the state and action spaces in DRL

expand exponentially, making it difficult to learn efficiently

and converge to an optimal policy [14]. Despite these ad-

vancements, existing DRL-based routing methods in SDN face

several challenges and gaps [7], [10].

Rischke et al. [12] proposed a flow routing solution which is

quite different from traditional routing solutions. The authors

presented a model-free Q-learning-based RL solution in SDN

named QR-SDN. QR-SDN operates on a per-flow basis which

means that it preserves the flow integrity while providing

multipath routing. Hence, QR-SDN helps reduce out-of-order

packets and complexities to some extent. Casas-Velasco et al.

[3] used DRL-based approaches to improve routing adaptation

to traffic variability and effectively support QoS required in

SDN. In [3], DRL and SDN Intelligent Routing (DRSIR) is

presented as a routing optimization approach to overcome the

limitations of RL-based routing. DRSIR provides intelligent,

efficient and proactive routing paths by considering path-state

metrics. Considering path-state metrics in routing has enabled

DRSIR to adapt to dynamic traffic changes.

Dhandapani et al. [4] proposed CoopAI-Route, a Multi-

Agent RL (MARL) framework designed for QoS-aware rout-

ing in multi-domain SDNs. By leveraging hierarchical SDN

architecture, CoopAI-Route integrates message-passing neural

networks (MPNNs) with the twin-delayed deep deterministic

policy gradient (TD3) algorithm to enable intelligent and

cooperative routing decisions. In their work, the main focus is

on multi-domain structures, and one agent is responsible for

a certain domain of the network.

In summary, existing DRL-based routing approaches, such

as DRSIR and CoopAI-Route, focus on improving adaptabil-

ity, scalability, or specific QoS metrics like delay or energy

efficiency but often fail to holistically address the balance

between current and previous traffic flows or dynamic network

conditions. Unlike these methods, we propose MARINA that

introduces a novel cooperative multi-agent framework that

simultaneously finds the best routing path for incoming traffic

flow and reroutes currently active traffic flows in the network.

This enables MARINA to adapt to changing network condi-

tions, optimize resource utilization and comprehensively meet

the QoS requirements of diverse traffic flows.

III. SYSTEM MODEL AND PROBLEM DEFINITION

The proposed framework for optimizing SDN routing lever-

aging multi-agent reinforcement learning is depicted in Fig.1.

This figure provides an overview of the system architec-

ture and highlights the interactions between various modules,

which work in tandem to achieve efficient network routing

under dynamic traffic conditions and QoS constraints. The core

of this architecture is BNNetSimulator [6]. BNNetSimulator is

not inherently designed to operate within SDN environments;

thus, we developed custom modules and a DRL environment

integrated into the SDN controller, which will be further

detailed in Section V. Mininet 1 was another option considered

for the SDN environment. We found Mininet with a critical

limitation in simulating transmission and queuing latencies

and packet drops over some experiments. Hence, we utilize

BNNetSimulator which is a packet-level simulator and aligns

with latency and packet drop network behaviour.

BNNetSimulator requires three configuration text files as

inputs to run each round of simulation, including a routing

matrix file that contains routing paths between each pair of

source and destination nodes; a topology graph file, which

contains the graph of network topology; and a traffic matrix

file, which contains all existing traffic flows’ characteristics

between sources and destinations in each point in time. To

1https://mininet.org/



clarify, the traffic matrix file specifies all the required char-

acteristics of flows in the network. For instance, one row of

the traffic matrix file, namely a traffic flow string, specifies

a traffic flow with its source, destination, bandwidth demand,

and packet size.

We configure and feed the network topology, routing matrix,

and traffic matrix files to BNNetSimulator in each round

of simulation. It then generates detailed statistics for each

execution round. Each round, considered as a timestep, in-

volves adding new traffic demands or removing expired traffic

demands from the traffic matrix file and updating the routing

configuration to reflect changes in network conditions. The

simulator then processes these updates and outputs compre-

hensive statistics, capturing the impact of the current routing

and traffic on network performance. This iterative process

allows for continuous evaluation and optimization of routing

decisions based on real-time feedback from the network.

In this paper, we define the network topology as G =
(V,E,C), representing the SDN controller’s viewpoint of the

network using real-time statistics to address the problem of

jointly efficient network resource utilization and QoS-aware

routing optimization. Here, the set of nodes is considered as

V = {v1, v2, . . . , vi, . . . , v|V |}, and the set of links (edges) is

considered as E = {e(i,j)|∀vi, vj ∈ V } in graph G. According

to this definition, a node i is denoted by vi, and e(i,j) is

the link between vi and vj . Meanwhile, let |x| denote the

number of elements in a vector x. C = {c(i,j)|∀vi, vj ∈ V }
is the unoccupied bandwidth capacity of the link e(i,j). At

each timestep t, the set of characteristics of active traffic

flow requests is shown as T = {τ1, τ2, . . . , τi} where i ≤ t.
This indicates that the number of active traffic flows at any

timestep depends on the expiration of their respective lifetimes.

Here, τi = (s, d, bw, lat, los, tt, pkt, lt) represents the i-th
traffic flow request, s and d are the source and destination

nodes of the request, respectively. Here, bw, lat, los, and

tt indicate the requested bandwidth, the tolerable latency, the

tolerable packet loss ratio, and the type of traffic, respectively,

for the request. All QoS requirments including the requested

bandwidth, tolarable latency and packet loss ratio vary for

different types of traffic. Also, pkt indicates the length of the

packet and lt indicates the lifetime of traffic.

IV. METHODOLOGY

Although we implemented our solution on top of BNNet-

Simulator, the simulator is not designed to directly interact

with DRL agents. To make this happen, we have developed a

framework containing a routing, a network environment, and

a traffic generator module, responsible for both feeding the

input files (topology, routing matrix, and traffic matrix) and

preparing the environment wrapper module for communicating

with DRL agents. The simulator also generates network/link

level and End-to-End(E2E) level statistics. We parse and

record these statistics in the Network/E2E metrics repository

and send them to the environment wrapper module.

We have also developed a customized graph-based environ-

ment wrapper tailored for routing optimization. It encapsulates

the network environment module and facilitates seamless

communication with network environment, routing, and traffic

generator modules. The Environment Wrapper dynamically

constructs the state space, action space, and reward function

essential for training and deploying the DRL agent. The DRL

agent and the abstracted environment within the wrapper are

both implemented on the SDN controller’s control plane,

ensuring efficient coordination and decision-making.

A. State Space
Considering the traffic generator and all the network and

E2E metrics stored in the repository, the state st in our en-

vironment is a combination of incoming traffic characteristics

such as s, d, tt and the current state of candidate paths in the

network. The first part of each state st in a topology with n
nodes is the traffic characteristics, and the second part of the

state is a vector of all candidate paths utilization, E2E latency,

and packet loss ratio.

B. Action Space
The DRL agent selects the best path index among the

finite set of predefined candidate paths. Therefore, the size

of the action space is equal to |A| = i, where A =
P = {p1, p2, . . . , pi} indicates the list of possible actions,

which are predefined candidate i-shortest paths. Accordingly,

i determines the number of possible routing decisions available

to the agent.

C. Reward Function
Reward function is the key part of any RL problem, as it

guides the learning process of the agent with proper positive

or negative feedback on the agent’s actions. In this paper,

we define the reward function as a function of current traffic

requirements, such as tolerable latency dtt and tolerable packet

loss ratio ltt, and the resulted statistics from the selected path

pi, including the latency delaypi , packet loss ratio losspi , and

utilization of the selected path upi
. upi

denotes the utilization

level of the most congested queue at the source node of a link

in the path pi and is quantified in Eq. 1, where ulink is the

utilization of an individual link.

upi
= max

link∈pi

(ulink) (1)

Therefore, the reward function attempts to minimize the max-

imum link utilization by selecting the path with the lowest

maximum utilized link and helps balance traffic across the

network. In addition, the reward function encourages the

agent to select paths that meet the latency and loss tolerance

requirements. Eq. 2 represents the total reward signal at each

time step that consists of components of utilization, latency,

and loss.

Rt = rutil + rlat + rloss (2)

where, rutil defined in Eq. 3:

rutil =

⎧⎪⎨
⎪⎩
+1 upi < 0.5

1− upi 0.5 ≤ upi < 0.95

−1 upi
≥ 0.95

(3)
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Fig. 1: Overview of the proposed framework

And rlat defined in Eq. 4:

rlat =

⎧⎪⎨
⎪⎩
max(0,

dtt−delaypi

dtt
) delaypi

< dtt

−delaypi
−dtt

dtt
dtt ≤ delaypi < 2dtt

−1 Otherwise

(4)

And rloss defined in Eq. 5:

rloss =

⎧⎪⎨
⎪⎩
max(0,

ltt−losspi
ltt

) losspi < ltt

− losspi−ltt
ltt

ltt ≤ losspi
< 2ltt

−1 Otherwise

(5)

rutil rewards the RL agent for selecting paths with lower

maximum utilized links, which leads to balancing traffic across

the network. Similarly, rlat and rloss encourage the agent to

select paths that adhere to latency and packet loss tolerance

requirements according to different traffic types.

This reward function formulation directs the agent towards

selecting the best network paths while optimizing network

resources usage through incentivising paths with lower max-

imum utilized links and meeting QoS requirements such as

latency and packet loss ratio. Ultimately, the total reward Rt

is the sum of these three components rutil, rlat, and rloss, each

of which is bounded between [−1, 1]. This reward structure

allows the agent to adapt dynamically to varying network

conditions and traffic demands. By combining positive re-

inforcement for compliance with QoS metrics and penalties

for deviations, the reward function ensures a balance between

meeting individual traffic requirements and optimizing overall

network performance.

D. Single Agent DQN Routing

According to the environment and due to the very large

state space, analyzing the quality of every state-action pair, as

commonly used in tabular RL approaches, becomes imprac-

tical. To cope with this challenge, employing Deep Learning

(DL) has demonstrated significant potential in estimating the

Quality-value (Q-value) of state-action pairs. In this paper,

we developed DQN-based agents with two main and target

Neural Networks (NNs) to enhance the training process.

Moreover, we applied prioritized experience replay [15] to

accelerate the training process. DQN is particularly well-suited

for environments with large state spaces and discrete action

spaces [18].

As depicted in Fig. 1 and considering a single DQN agent,

the training process of the DQN agent begins with receiving

the current environment state St, including the incoming traffic

flow and all the candidate paths’ metrics from the environment

wrapper module. Based on this state, the DQN agent needs

to select an action At using decaying ε-greedy exploration-

exploitation action selection policy. The objective of this pol-

icy in the DQN is to achieve a balance between exploration and

exploitation by selecting either a random action (exploration)

or the action recommended by the Q-network (exploitation).

Initially, the value of ε ∈ [0, 1] is fixed to a high level in

order to promote exploration. The adjustable parameter ε in

decaying ε-greedy policy specifies the level of exploitation of

the agent, as defined in Eq. 6.

At =

{
max
A

Qt(St, A) x < ε

RandomChoice(A) Otherwise
(6)

where x is a is a random value ranging within [0, 1] that

defines the agent’s strategy for exploiting or exploring, while

ε decreasing over time as Eq. 7:

ε =

{
εmax − (steps× decay) ε ≥ εmin

εmin Otherwise
(7)

where decay is the decay rate parameter and identifies the

amount of ε decrease after each step.

Next, the agent passes At to the environment, and after

executing the prepared St, At pair in the environment, the

agent receives the reward feedback Rt based on Eq.2 and the

environment transits to the next state S′
t.



Meanwhile, the agent forms the < St, At, Rt, S
′
t > tuple,

namely the experience tuple, and stores it in the experience

replay buffer. During training, the DQN uses mini-batches

sampled from this buffer using an adaptive sampling strat-

egy (switching between random and prioritized sampling) to

update the Q-values. In prioritized experience replay, the prob-

ability of choosing experience tuples with a larger Temporal

Difference (TD) error is higher. TD error is the difference

between the main NN output and the target NN output and

defined in Eq. 8 as follows:

TDerr = |Qtarget(St, At)−Qmain(St, At)|,
prexp = (TDerror + ζ)α

(8)

We store a priority value for each experience with prexp
by adding ζ = 0.01 to TDerr to avoid it becoming zero

and powered by α which controls how much prioritization

is required. For example, α = 0 means that the agent behaves

as random sampling. Qtarget(St, At) is calculated in Eq.9 as

follows:

Qtarget(St, At) = Rt+(1−ter)γ max
A′

Qtarget(St′ , A
′) (9)

where γ is the discount factor and ter is terminal state and

indicates that the episode is over. During the training process,

the loss function minimizes the square TDerror. It is also

noteworthy that the weights of main NN are copied to target

NN after every targetupdate number of steps.

Although SA-DQN works well in optimizing routing de-

cisions in our system model, it has two key limitations.

First, it struggles to handle scenarios where multiple traffic

flows arrive simultaneously, as the single-agent design cannot

manage concurrent routing decisions efficiently. Second, when

routing paths are updated even for existing active flows, it

reveals opportunities for further improvements in network

performance and resource utilization.

E. Cooperative MARL Routing

In the MARINA framework, while all DRL agents, each

of which is responsible for one traffic flow routing decision,

cooperate to optimize routing, a key aspect is the division of

responsibilities among the agents. Specifically, one designated

agent is still responsible for finding a routing path for new

incoming traffic flow. The remaining agents are responsible

for rerouting previously active flows, monitoring their status

and updating paths as needed to adapt to dynamic network

conditions such as changes in traffic, congestion, or QoS

requirements. In MARINA, multiple DRL agents cooperate

with each other to update routing decisions in a distributed

manner while being trained centrally using the shared priori-

tized experience replay buffer as illustrated in Fig. 2. In this

paper, the Centralized Training and Decentralized Execution

(CTDE) paradigm [17] enables our DRL agents to access

global network metrics and the status of traffic flows during

the training phase. In the execution phase, each agent operates

independently to reroute an existing traffic flow in the network,

as well as an agent that routes the newly arrived traffic flow.

Shared Experience
Replay Buffer

DRL Agent

Shared Policy

...DRL Agent DRL Agent

Fig. 2: Shared Prioritized Experience Replay Buffer in

MARINA

As Fig. 2 illustrates, all existing agents in the environment

store their own experience combined with all other agents in

a shared prioritized experience replay buffer. In order to avoid

confusion, we used Ut notation for concatenated actions at

time t. MARINA shows improvements in terms of efficiently

utilizing the underused links and satisfying QoS requirements

of more traffic flows. Agents analyse the global network

state and identify opportunities for either maintaining the

current path or assigning a new path to the traffic flows. This

cooperative approach enhances the adaptability of the routing

algorithm, enabling it to handle varying traffic patterns and

unexpected network changes while minimizing disruptions and

maintaining QoS for all flows.

V. PERFORMANCE ANALYSIS

In this paper, we compare the performance of MARINA

with other approaches including single-agent DQN, OSPF,

and ECMP [1]. In our experiments, we initially analyzed the

convergence of MARINA‘s reward values in the training phase

and then evaluated the performance of four algorithms in terms

of overall network links utilization and percentage of flows that

meet QoS requirements in terms of throughput, latency, and

combined metrics.

A. Experiments Setup

The experiments were carried out on a server equipped with

64GB of RAM, a 12th generation Intel Core i9 processor,

and an NVIDIA RTX A5000 GPU. The operating system

was Ubuntu 20.04 LTS. Python version 3.10 was used for

developing our scripts. Furthermore, we used Numpy version

2.0.2, and PyTorch version 2.5.0 for developing the DRL agent

employed on our simulated SDN controller. For the simulation

environment, we used BNNetSimulator [6], a packet-level net-

work simulator built on the OMNeT++ framework, to interact

with the DRL agent. We set DRL agents’ hyperparameters

according to [3].



B. Topology and Traffic Flows Specifications

To evaluate the performance of our proposed method, a

comprehensive experimental setup was designed, focusing on

realistic network conditions and topology. The simulations

were performed on the real-world GEANT2 topology from

the TopoHub repository [9] commonly used in SDN research

[3], [11]. The GEANT2 topology consists of 24 nodes and 38

undirected links connecting various pairs of nodes.

In this topology, each link has a 3 Gbps bandwidth capacity.

The queue length of each node is equal to 32 packets inspired

from [5]. The ingress-egress pairs for this topology are selected

randomly. The nodes are interconnected in a way that includes

multiple paths between source and destination pairs, allowing

for dynamic and adaptive routing decisions. We consider three

different traffic flow characteristics, which are aligned with 3

different network slices (eMBB, URLLC, and mMTC) com-

monly used in 5G networks. These traffic types are selected

uniformly, and the order of these requirements, stringent to

lenient QoS requirements, is inspired from [5]. In this setting,

traffic type 1, representing eMBB traffic, requires 80 Mbps

bandwidth, and tolerates up to 50 ms latency and a 0.25%

packet loss ratio. Similarly, these characteristics, respectively,

for type 2 and type 3 traffic flows, characterizing uRLLC and

mMTC classes, are 40 mbps and 20 mbps for bandwidth, up

to 15 ms and 1 s for latency tolerance, and up to 0.1% and

1% in terms of packet loss ratio.

In our experiments, these flow types are randomly chosen

with a uniform distribution. Moreover, to evaluate the per-

formance of the proposed algorithm under varying network

loads, the lifetime of traffic flows are specified based on

an exponential distribution with λ rates set to 75 and 100

steps. These different λ values represent how long traffic

flows remain in the network and reflect varying levels of

network traffic intensity, enabling us to simulate and analyze

the algorithm’s behavior under light and heavy load condi-

tions. This approach ensures a comprehensive assessment of

the algorithm’s adaptability and efficiency in diverse traffic

scenarios. Also, in order to ensure reliability of the results,

each reported result is an average of 20 independent runs.

C. Experiments Results

In this section, results of various experiments are reported.

We initially analyzed the effect of prioritized experience replay

buffer on the convergence time of the DRL agent. Fig. 3

illustrates the DRL agent convergence using random sampling

experience replay buffer (α = 0) and prioritized experience

replay buffer (α = 1) over the designed reward function.

The convergence rate is a critical factor in reinforcement

learning, as it determines how quickly the agent learns an

effective policy for optimizing routing decisions. The average

reward values stabilize after around 1000 episodes, indicating

that the agent has effectively learned to balance QoS require-

ments and network resource usage.

Fig. 3 illustrates the MARINA agent’s reward convergence

over 2000 training episodes. Each point is a moving average

of 20 episodes, and the reported value for each episode is the

average of all the rewards gained at the end of the episode.

We consider the number of steps per episode equal to 200 to

make sure the lifecycle of traffic flows is properly simulated

in the training environment.

As Fig. 3 depicts, the prioritized experience replay buffer

(α = 1) significantly accelerates the convergence in com-

parison with the random sampling experience replay buffer

(α = 0) strategy. This is because prioritized sampling ensures

the agent focuses on high-impact transitions, improving learn-

ing efficiency. However, both approaches stablize after 1000

episodes indicating that the agent has effectively learned an

optimal policy.

Fig. 4 highlights the superiority of MARINA over single-

agent DQN (SA-DQN), ECMP, and OSPF in terms of overall

network links utilization. The utilization of the network links

for both λ = 75 and λ = 100 shows how efficiently

traffic flows are distributed throughout the network. MARINA

consistently achieves higher link utilization by dynamically

spreading traffic across underutilized links, avoiding conges-

tion on static paths commonly seen with OSPF and ECMP.

As depicted in Fig. 4, OSPF and ECMP fail to distribute the

load across the network due to inadaptibility to dynamic traffic

conditions, with OSPF yielding the lowest utilization due to

its reliance on shortest paths and ECMP achieving moderate

improvement through equal-cost path splitting. Although SA-

DQN approach adapts to the dynamic nature of incoming

traffic flows, it focuses solely on new traffic and neglects

existing active flows. In contrast, MARINA’s cooperative

multi-agent framework enhances adaptability by efficiently

balancing traffic across underutilized links while meeting QoS

requirements. The low overall utilization values, such as 20%

and 30%, are attributed to the smaller queue sizes in the

network, which limit the amount of traffic that can be buffered

and transmitted through the links.

Table I compares the percentage of flows that meet QoS

requirements achieved by four routing algorithms—OSPF,

ECMP, SA-DQN, and MARINA—under two traffic loads in

terms of throughput, latency, and combined metrics. Through-

put reflects the impact of the packet loss ratio, indicating

Fig. 3: MARINA agent training (moving average of 20

episodes)
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(b) λ = 100

Fig. 4: Overall Links Utilization ( λ = 75, and λ = 100)

TABLE I: Percentage of flows that meet QoS requirements

in terms of throughput, latency, and combined metrics.

Algorithm Throughput (%) Latency (%) Combined (%)
λ = 75 λ = 100 λ = 75 λ = 100 λ = 75 λ = 100

OSPF 76.92 62.43 74.28 70.33 56.58 44.50
ECMP 77.65 69.20 82.50 79.92 62.95 55.33

SA-DQN 80.48 75.03 88.38 81.00 71.85 65.92
MARINA 83.50 78.13 90.10 84.50 80.78 72.23

the percentage deducted from the requested bandwidth while

still meeting acceptable QoS requirements and ensuring the

service remains unaffected by packet loss in the network. MA-

RINA consistently achieves the highest performance, meeting

83.50% throughput, 90.10% latency, and 80.78% combined

QoS at λ = 75, and maintains strong results under higher load

(λ = 100). SA-DQN follows closely outperforming OSPF and

ECMP. In contrast, OSPF shows the lowest QoS satisfaction,

particularly under high load, highlighting the effectiveness of

MARINA and SA-DQN in dynamic and congested networks.

VI. CONCLUSION

In this paper, we have introduced MARINA, a multi-

agent RL-based QoS-aware routing algorithm for SDN that

combines multi-agent DQN with shared prioritized experience

replay buffer techniques. Our approach effectively addresses

the limitations of existing routing methods by providing

a more adaptive and comprehensive solution to managing

multiple QoS constraints, including throughput, and latency,

and efficiently utilizing network resources. The experimental

results on GEANT2 real-world network topology demonstrate

that MARINA consistently outperforms traditional routing al-

gorithms in key performance metrics. Additionally, MARINA

improves network resource efficiency by intelligently selecting

optimal paths, increasing the network’s capacity to handle

future traffic demands. Future work will focus on further

refining the algorithm and employing Graph Neural Networks

and exploring its applicability in diverse network scenarios to

continue improving routing efficiency and QoS management.
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