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Abstract—Optimizing routing in Software-Defined Networks
(SDNs) to meet Quality of Service (QoS) demands presents
notable challenges, particularly with traditional methods that
struggle with the dynamic nature of SDNs. Existing techniques
often fail to adapt efficiently to varying traffic patterns, resulting
in suboptimal network performance. Furthermore, the existing
routing methods typically prioritize either the infrastructure
provider or service provider benefits, neglecting a balanced
approach that ensures efficient utilization of network resources
while meeting QoS metrics for clients, such as guaranteed
latency and throughput. This paper proposes a multi-agent Deep
Reinforcement Learning (DRL)-based QoS-aware routing solu-
tion in SDN environments with intelligent network adaptation,
called MARINA. MARINA dynamically adjusts routing paths
for both existing and new incoming traffic flows in the network.
Moreover, MARINA simultaneously optimizes network resource
usage and meets QoS constraints such as latency and guaranteed
throughput in an SDN. MARINA is extensively evaluated on
real-world GEANT2 network topology. The results indicate that
our algorithm outperforms Open Shortest Path First (OSPF),
Equal Cost Multiple Path (ECMP), and single-agent DRL in
key performance metrics. Specifically, MARINA meets 51.4%,
29.4%, and 11.1% more QoS requirements than OSPF, ECMP,
and single-agent DRL-based approaches, respectively.

Index Terms—Software-defined Networking, Routing, Deep
Reinforcement Learning, Network Adaptivity.

I. INTRODUCTION

Software-Defined Networking has emerged as a transforma-
tive approach to managing and optimizing network resources.
By decoupling the control plane from the data plane, SDN
offers a centralized management system that enhances flex-
ibility, scalability, and the ability to dynamically respond to
varying network conditions [7]. However, ensuring Quality
of Service in SDN remains a significant challenge due to
the dynamic nature of modern network environments and
fluctuating traffic patterns [10]. Traditional routing methods
often fall short in addressing these challenges as they typically
lack the adaptability required to maintain QoS guarantees,
especially under conditions of high variability in network
demands [7], [14].

Recent advances have highlighted the potential of machine
learning-based methods to enhance SDN routing efficiency.
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DRL is an ideal approach to address decision-making and
optimization problems such as routing [11]. In recent years, a
growing trend of DRL approaches for routing in SDN has been
observed [14]. However, existing DRL-based strategies are not
generalizable and use limited information during routing. One
of the key challenges is the poor support for QoS and the lack
of adaptability to traffic variability in SDN, which restricts
their effectiveness in dynamic network environments. Among
these, DRL algorithms such as Deep Q-Networks (DQN)
have shown promise due to their ability to learn optimal
routing strategies in complex environments [11]. Nevertheless,
current DQN-based approaches often focus primarily on either
the infrastructure provider side or the service provider side,
neglecting an efficient way of ensuring effective utilization of
network resources while meeting QoS metrics for clients such
as guaranteed latency and throughput, which can significantly
impact overall network performance [3].

To address these challenges, this paper proposes a multi-
agent DRL-based dynamic routing solution in SDN with QoS
optimization that efficiently reroutes existing active traffic
flows and properly routes incoming traffic while satisfying
throughput and delay constraints and optimizing overall net-
work resource usage. We develop a Multi-Agent reinforcement
learning-based Routing with Intelligent Network Adaptation
(MARINA) as a QoS-aware SDN routing algorithm that lever-
ages a cooperative multi-agent DRL. The proposed MARINA
solution is designed to dynamically allocate the best paths for
incoming traffic flows while making QoS requirements more
responsive and capable of adapting to diverse network con-
ditions. Additionally, our proposed solution can enhance the
network’s ability to accommodate future requests by efficiently
utilizing network resources.

The main contributions of this paper are as follows: 1) We
introduce a multi-agent DRL-based QoS-aware SDN routing
algorithm that applies a cooperative multi-agent DRL solu-
tion to enhance routing decisions; 2) MARINA considers
both service provider requirements such as multiple QoS
constraints, including guaranteed throughput and delay, and
infrastructure provider requirements in terms of optimizing the



network resource usage; 3) Our proposed solution not only
identifies the optimal paths for incoming traffic flows but also
dynamically re-routes previously established traffic flows in
real time, ensuring efficient network resource utilization and
adaptibility.

The rest of the paper is organized as follows: In Section II,
we discuss related work. We allocated Section III to the system
model and problem formulation. Section VI and Section V
are dedicated to describing the methodology and evaluating
the performance of MARINA, respectively. Finally, Section
IV concludes and outlines future work.

II. RELATED WORKS

Routing optimization in traffic engineering is a well-
established topic in the literature [11]. The purpose of routing
optimization algorithms is to control the behavior of the route
for data transmission to improve the network performance and
meet QoS requirements. There are a wide variety of studies
in the network routing realm, which are generally based on
analytical optimization [16], local-search heuristics [8], or
machine learning techniques [2], [3], [7]. In recent years, the
development of routing optimization algorithms for SDN with
machine learning-based techniques has received attention [11].

Within this context, DRL has emerged as a promising
approach for optimizing routing decisions in SDN environ-
ments [3], [7]. Although single-agent RL solutions have been
extensively applied in the SDN routing realm, these methods
often struggle with scalability and generalizability to adapt to
dynamic or large-scale networks, as the action space expands
exponentially with the network size. Recent solutions such as
DRSIR [3] address some of these challenges by leveraging
DQN; however, single-agent solution has limited adaptibility
in highly dynamic network environments and handling various
types of traffic flows.

Other approaches focus on energy efficiency by dynamically
adjusting routing paths to reduce energy consumption without
compromising QoS [13]. Most current DRL-based approaches
primarily focus on either service provider benefits or infras-
tructure provider benefits, often neglecting the other part. This
narrow focus can lead to suboptimal network performance in
scenarios where multiple QoS requirements must be balanced
or focus is on efficiently utilizing network resources and
ignoring QoS metrics. Additionally, as the size and complexity
of the network increase, the state and action spaces in DRL
expand exponentially, making it difficult to learn efficiently
and converge to an optimal policy [14]. Despite these ad-
vancements, existing DRL-based routing methods in SDN face
several challenges and gaps [7], [10].

Rischke et al. [12] proposed a flow routing solution which is
quite different from traditional routing solutions. The authors
presented a model-free Q-learning-based RL solution in SDN
named QR-SDN. QR-SDN operates on a per-flow basis which
means that it preserves the flow integrity while providing
multipath routing. Hence, QR-SDN helps reduce out-of-order
packets and complexities to some extent. Casas-Velasco et al.
[3] used DRL-based approaches to improve routing adaptation

to traffic variability and effectively support QoS required in
SDN. In [3], DRL and SDN Intelligent Routing (DRSIR) is
presented as a routing optimization approach to overcome the
limitations of RL-based routing. DRSIR provides intelligent,
efficient and proactive routing paths by considering path-state
metrics. Considering path-state metrics in routing has enabled
DRSIR to adapt to dynamic traffic changes.

Dhandapani et al. [4] proposed CoopAl-Route, a Multi-
Agent RL (MARL) framework designed for QoS-aware rout-
ing in multi-domain SDNs. By leveraging hierarchical SDN
architecture, CoopAl-Route integrates message-passing neural
networks (MPNNs) with the twin-delayed deep deterministic
policy gradient (TD3) algorithm to enable intelligent and
cooperative routing decisions. In their work, the main focus is
on multi-domain structures, and one agent is responsible for
a certain domain of the network.

In summary, existing DRL-based routing approaches, such
as DRSIR and CoopAl-Route, focus on improving adaptabil-
ity, scalability, or specific QoS metrics like delay or energy
efficiency but often fail to holistically address the balance
between current and previous traffic flows or dynamic network
conditions. Unlike these methods, we propose MARINA that
introduces a novel cooperative multi-agent framework that
simultaneously finds the best routing path for incoming traffic
flow and reroutes currently active traffic flows in the network.
This enables MARINA to adapt to changing network condi-
tions, optimize resource utilization and comprehensively meet
the QoS requirements of diverse traffic flows.

III. SYSTEM MODEL AND PROBLEM DEFINITION

The proposed framework for optimizing SDN routing lever-
aging multi-agent reinforcement learning is depicted in Fig.1.
This figure provides an overview of the system architec-
ture and highlights the interactions between various modules,
which work in tandem to achieve efficient network routing
under dynamic traffic conditions and QoS constraints. The core
of this architecture is BNNetSimulator [6]. BNNetSimulator is
not inherently designed to operate within SDN environments;
thus, we developed custom modules and a DRL environment
integrated into the SDN controller, which will be further
detailed in Section V. Mininet ! was another option considered
for the SDN environment. We found Mininet with a critical
limitation in simulating transmission and queuing latencies
and packet drops over some experiments. Hence, we utilize
BNNetSimulator which is a packet-level simulator and aligns
with latency and packet drop network behaviour.

BNNetSimulator requires three configuration text files as
inputs to run each round of simulation, including a routing
matrix file that contains routing paths between each pair of
source and destination nodes; a topology graph file, which
contains the graph of network topology; and a traffic matrix
file, which contains all existing traffic flows’ characteristics
between sources and destinations in each point in time. To

Uhttps://mininet.org/



clarify, the traffic matrix file specifies all the required char-
acteristics of flows in the network. For instance, one row of
the traffic matrix file, namely a traffic flow string, specifies
a traffic flow with its source, destination, bandwidth demand,
and packet size.

We configure and feed the network topology, routing matrix,
and traffic matrix files to BNNetSimulator in each round
of simulation. It then generates detailed statistics for each
execution round. Each round, considered as a timestep, in-
volves adding new traffic demands or removing expired traffic
demands from the traffic matrix file and updating the routing
configuration to reflect changes in network conditions. The
simulator then processes these updates and outputs compre-
hensive statistics, capturing the impact of the current routing
and traffic on network performance. This iterative process
allows for continuous evaluation and optimization of routing
decisions based on real-time feedback from the network.

In this paper, we define the network topology as G =
(V, E, (), representing the SDN controller’s viewpoint of the
network using real-time statistics to address the problem of
jointly efficient network resource utilization and QoS-aware
routing optimization. Here, the set of nodes is considered as
V ={v1,va,...,0;,.. .,UM}, and the set of links (edges) is
considered as £/ = {e(; j)|Vv;, v; € V' } in graph G. According
to this definition, a node 7 is denoted by v;, and €(i,f) 18
the link between v; and v;. Meanwhile, let x| denote the
number of elements in a vector x. C' = {c(; ;)|Vvi,v; € V}
is the unoccupied bandwidth capacity of the link e; ;). At
each timestep ¢, the set of characteristics of active traffic
flow requests is shown as T' = {71y, 7,...,7;} where ¢ < ¢.
This indicates that the number of active traffic flows at any
timestep depends on the expiration of their respective lifetimes.
Here, 7; = (s,d,bw,lat,los,tt, pkt,lt) represents the i-th
traffic flow request, s and d are the source and destination
nodes of the request, respectively. Here, bw, lat, los, and
tt indicate the requested bandwidth, the tolerable latency, the
tolerable packet loss ratio, and the type of traffic, respectively,
for the request. All QoS requirments including the requested
bandwidth, tolarable latency and packet loss ratio vary for
different types of traffic. Also, pkt indicates the length of the
packet and [t indicates the lifetime of traffic.

IV. METHODOLOGY

Although we implemented our solution on top of BNNet-
Simulator, the simulator is not designed to directly interact
with DRL agents. To make this happen, we have developed a
framework containing a routing, a network environment, and
a traffic generator module, responsible for both feeding the
input files (topology, routing matrix, and traffic matrix) and
preparing the environment wrapper module for communicating
with DRL agents. The simulator also generates network/link
level and End-to-End(E2E) level statistics. We parse and
record these statistics in the Network/E2E metrics repository
and send them to the environment wrapper module.

We have also developed a customized graph-based environ-
ment wrapper tailored for routing optimization. It encapsulates

the network environment module and facilitates seamless
communication with network environment, routing, and traffic
generator modules. The Environment Wrapper dynamically
constructs the state space, action space, and reward function
essential for training and deploying the DRL agent. The DRL
agent and the abstracted environment within the wrapper are
both implemented on the SDN controller’s control plane,
ensuring efficient coordination and decision-making.

A. State Space

Considering the traffic generator and all the network and
E2E metrics stored in the repository, the state s; in our en-
vironment is a combination of incoming traffic characteristics
such as s, d, tt and the current state of candidate paths in the
network. The first part of each state s, in a topology with n
nodes is the traffic characteristics, and the second part of the
state is a vector of all candidate paths utilization, E2E latency,
and packet loss ratio.

B. Action Space

The DRL agent selects the best path index among the
finite set of predefined candidate paths. Therefore, the size
of the action space is equal to |A| = 4, where A =
P = {p1,p2,...,pi} indicates the list of possible actions,
which are predefined candidate i-shortest paths. Accordingly,
1 determines the number of possible routing decisions available
to the agent.

C. Reward Function

Reward function is the key part of any RL problem, as it
guides the learning process of the agent with proper positive
or negative feedback on the agent’s actions. In this paper,
we define the reward function as a function of current traffic
requirements, such as tolerable latency d;; and tolerable packet
loss ratio 4, and the resulted statistics from the selected path
D, including the latency delay,,, packet loss ratio loss,,, and
utilization of the selected path u,,,. u,, denotes the utilization
level of the most congested queue at the source node of a link
in the path p; and is quantified in Eq. 1, where u;;,; is the
utilization of an individual link.

max (u; 1
l?ﬁnk‘Epi( lznk) ( )

Up, =
Therefore, the reward function attempts to minimize the max-
imum link utilization by selecting the path with the lowest
maximum utilized link and helps balance traffic across the
network. In addition, the reward function encourages the
agent to select paths that meet the latency and loss tolerance
requirements. Eq. 2 represents the total reward signal at each
time step that consists of components of utilization, latency,
and loss.

Ry = rutit + Tiat + Tioss 2

where, 7,;; defined in Eq. 3:

+1 Uup, < 0.5
Tutitl = § 1 —up, 0.5 <wup,, <095 3)
-1 up, > 0.95
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Fig. 1: Overview of the proposed framework

And 7, defined in Eq. 4:

dyy—delay,,
mazx (0, %) delay,, < dy
delay,, —d
Tlat = -= azjii; - dtt S delaypi < tht (4)
-1 Otherwise
And 7,5 defined in Eq. 5:
lyy—lossy,
max(0, %iss“) lossy, <ly
lossy, —1
Tloss = —% Ztt S ZOSSpi < QZtt (5)

-1 Otherwise

ruti; rewards the RL agent for selecting paths with lower
maximum utilized links, which leads to balancing traffic across
the network. Similarly, 7;,; and 7,55 encourage the agent to
select paths that adhere to latency and packet loss tolerance
requirements according to different traffic types.

This reward function formulation directs the agent towards
selecting the best network paths while optimizing network
resources usage through incentivising paths with lower max-
imum utilized links and meeting QoS requirements such as
latency and packet loss ratio. Ultimately, the total reward R,
is the sum of these three components 7,7, T1q¢, and 7,55, €ach
of which is bounded between [—1, 1]. This reward structure
allows the agent to adapt dynamically to varying network
conditions and traffic demands. By combining positive re-
inforcement for compliance with QoS metrics and penalties
for deviations, the reward function ensures a balance between
meeting individual traffic requirements and optimizing overall
network performance.

D. Single Agent DON Routing

According to the environment and due to the very large
state space, analyzing the quality of every state-action pair, as
commonly used in tabular RL approaches, becomes imprac-
tical. To cope with this challenge, employing Deep Learning
(DL) has demonstrated significant potential in estimating the

Quality-value (Q-value) of state-action pairs. In this paper,
we developed DQN-based agents with two main and target
Neural Networks (NNs) to enhance the training process.
Moreover, we applied prioritized experience replay [15] to
accelerate the training process. DQN is particularly well-suited
for environments with large state spaces and discrete action
spaces [18].

As depicted in Fig. 1 and considering a single DQN agent,
the training process of the DQN agent begins with receiving
the current environment state S, including the incoming traffic
flow and all the candidate paths’ metrics from the environment
wrapper module. Based on this state, the DQN agent needs
to select an action A; using decaying e-greedy exploration-
exploitation action selection policy. The objective of this pol-
icy in the DQN is to achieve a balance between exploration and
exploitation by selecting either a random action (exploration)
or the action recommended by the Q-network (exploitation).
Initially, the value of € € [0,1] is fixed to a high level in
order to promote exploration. The adjustable parameter ¢ in
decaying e-greedy policy specifies the level of exploitation of
the agent, as defined in Eq. 6.

xr <e€

Ay = {mgf B (6)

RandomChoice(A) Otherwise

where z is a is a random value ranging within [0, 1] that
defines the agent’s strategy for exploiting or exploring, while
€ decreasing over time as Eq. 7:

Emaz — (Steps X decay) € > €min

€ =

)

Emin Otherwise
where decay is the decay rate parameter and identifies the
amount of e decrease after each step.

Next, the agent passes A; to the environment, and after
executing the prepared S;, A; pair in the environment, the
agent receives the reward feedback R; based on Eq.2 and the
environment transits to the next state Sj.



Meanwhile, the agent forms the < Sy, Ay, Ry, S; > tuple,
namely the experience tuple, and stores it in the experience
replay buffer. During training, the DQN uses mini-batches
sampled from this buffer using an adaptive sampling strat-
egy (switching between random and prioritized sampling) to
update the Q-values. In prioritized experience replay, the prob-
ability of choosing experience tuples with a larger Temporal
Difference (TD) error is higher. TD error is the difference
between the main NN output and the target NN output and
defined in Eq. 8 as follows:

TDerr - |Qtarget(st; Af) - Qmain(Sta At)|a
Plrexzp = (TDeTTor + C)a

We store a priority value for each experience with preg,
by adding ¢ = 0.01 to T'D.,, to avoid it becoming zero
and powered by « which controls how much prioritization
is required. For example, & = 0 means that the agent behaves
as random sampling. Qqrget(St, A¢) is calculated in Eq.9 as
follows:

Qtarget(St, Ar) = Ry +(1—ter)y max Qtarget(Sv, A") (9)

(®)

where ~ is the discount factor and ter is terminal state and
indicates that the episode is over. During the training process,
the loss function minimizes the square T Degypor. It is also
noteworthy that the weights of main NN are copied to target
NN after every target,pdqate number of steps.

Although SA-DQN works well in optimizing routing de-
cisions in our system model, it has two key limitations.
First, it struggles to handle scenarios where multiple traffic
flows arrive simultaneously, as the single-agent design cannot
manage concurrent routing decisions efficiently. Second, when
routing paths are updated even for existing active flows, it
reveals opportunities for further improvements in network
performance and resource utilization.

E. Cooperative MARL Routing

In the MARINA framework, while all DRL agents, each
of which is responsible for one traffic flow routing decision,
cooperate to optimize routing, a key aspect is the division of
responsibilities among the agents. Specifically, one designated
agent is still responsible for finding a routing path for new
incoming traffic flow. The remaining agents are responsible
for rerouting previously active flows, monitoring their status
and updating paths as needed to adapt to dynamic network
conditions such as changes in traffic, congestion, or QoS
requirements. In MARINA, multiple DRL agents cooperate
with each other to update routing decisions in a distributed
manner while being trained centrally using the shared priori-
tized experience replay buffer as illustrated in Fig. 2. In this
paper, the Centralized Training and Decentralized Execution
(CTDE) paradigm [17] enables our DRL agents to access
global network metrics and the status of traffic flows during
the training phase. In the execution phase, each agent operates
independently to reroute an existing traffic flow in the network,
as well as an agent that routes the newly arrived traffic flow.
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Fig. 2: Shared Prioritized Experience Replay Buffer in
MARINA

As Fig. 2 illustrates, all existing agents in the environment
store their own experience combined with all other agents in
a shared prioritized experience replay buffer. In order to avoid
confusion, we used U; notation for concatenated actions at
time t. MARINA shows improvements in terms of efficiently
utilizing the underused links and satisfying QoS requirements
of more traffic flows. Agents analyse the global network
state and identify opportunities for either maintaining the
current path or assigning a new path to the traffic flows. This
cooperative approach enhances the adaptability of the routing
algorithm, enabling it to handle varying traffic patterns and
unexpected network changes while minimizing disruptions and
maintaining QoS for all flows.

V. PERFORMANCE ANALYSIS

In this paper, we compare the performance of MARINA
with other approaches including single-agent DQN, OSPF,
and ECMP [1]. In our experiments, we initially analyzed the
convergence of MARINA ‘s reward values in the training phase
and then evaluated the performance of four algorithms in terms
of overall network links utilization and percentage of flows that
meet QoS requirements in terms of throughput, latency, and
combined metrics.

A. Experiments Setup

The experiments were carried out on a server equipped with
64GB of RAM, a 12th generation Intel Core i9 processor,
and an NVIDIA RTX A5000 GPU. The operating system
was Ubuntu 20.04 LTS. Python version 3.10 was used for
developing our scripts. Furthermore, we used Numpy version
2.0.2, and PyTorch version 2.5.0 for developing the DRL agent
employed on our simulated SDN controller. For the simulation
environment, we used BNNetSimulator [6], a packet-level net-
work simulator built on the OMNeT++ framework, to interact
with the DRL agent. We set DRL agents’ hyperparameters
according to [3].



B. Topology and Traffic Flows Specifications

To evaluate the performance of our proposed method, a
comprehensive experimental setup was designed, focusing on
realistic network conditions and topology. The simulations
were performed on the real-world GEANT?2 topology from
the TopoHub repository [9] commonly used in SDN research
[3], [11]. The GEANT?2 topology consists of 24 nodes and 38
undirected links connecting various pairs of nodes.

In this topology, each link has a 3 Gbps bandwidth capacity.
The queue length of each node is equal to 32 packets inspired
from [5]. The ingress-egress pairs for this topology are selected
randomly. The nodes are interconnected in a way that includes
multiple paths between source and destination pairs, allowing
for dynamic and adaptive routing decisions. We consider three
different traffic flow characteristics, which are aligned with 3
different network slices (eMBB, URLLC, and mMTC) com-
monly used in 5G networks. These traffic types are selected
uniformly, and the order of these requirements, stringent to
lenient QoS requirements, is inspired from [5]. In this setting,
traffic type 1, representing eMBB traffic, requires 80 Mbps
bandwidth, and tolerates up to 50 ms latency and a 0.25%
packet loss ratio. Similarly, these characteristics, respectively,
for type 2 and type 3 traffic flows, characterizing uRLLC and
mMTC classes, are 40 mbps and 20 mbps for bandwidth, up
to 15 ms and 1 s for latency tolerance, and up to 0.1% and
1% in terms of packet loss ratio.

In our experiments, these flow types are randomly chosen
with a uniform distribution. Moreover, to evaluate the per-
formance of the proposed algorithm under varying network
loads, the lifetime of traffic flows are specified based on
an exponential distribution with A rates set to 75 and 100
steps. These different A values represent how long traffic
flows remain in the network and reflect varying levels of
network traffic intensity, enabling us to simulate and analyze
the algorithm’s behavior under light and heavy load condi-
tions. This approach ensures a comprehensive assessment of
the algorithm’s adaptability and efficiency in diverse traffic
scenarios. Also, in order to ensure reliability of the results,
each reported result is an average of 20 independent runs.

C. Experiments Results

In this section, results of various experiments are reported.
We initially analyzed the effect of prioritized experience replay
buffer on the convergence time of the DRL agent. Fig. 3
illustrates the DRL agent convergence using random sampling
experience replay buffer (o« = 0) and prioritized experience
replay buffer (o« = 1) over the designed reward function.

The convergence rate is a critical factor in reinforcement
learning, as it determines how quickly the agent learns an
effective policy for optimizing routing decisions. The average
reward values stabilize after around 1000 episodes, indicating
that the agent has effectively learned to balance QoS require-
ments and network resource usage.

Fig. 3 illustrates the MARINA agent’s reward convergence
over 2000 training episodes. Each point is a moving average

of 20 episodes, and the reported value for each episode is the
average of all the rewards gained at the end of the episode.
We consider the number of steps per episode equal to 200 to
make sure the lifecycle of traffic flows is properly simulated
in the training environment.

As Fig. 3 depicts, the prioritized experience replay buffer
(v = 1) significantly accelerates the convergence in com-
parison with the random sampling experience replay buffer
(v = 0) strategy. This is because prioritized sampling ensures
the agent focuses on high-impact transitions, improving learn-
ing efficiency. However, both approaches stablize after 1000
episodes indicating that the agent has effectively learned an
optimal policy.

Fig. 4 highlights the superiority of MARINA over single-
agent DQN (SA-DQN), ECMP, and OSPF in terms of overall
network links utilization. The utilization of the network links
for both A = 75 and A = 100 shows how efficiently
traffic flows are distributed throughout the network. MARINA
consistently achieves higher link utilization by dynamically
spreading traffic across underutilized links, avoiding conges-
tion on static paths commonly seen with OSPF and ECMP.

As depicted in Fig. 4, OSPF and ECMP fail to distribute the
load across the network due to inadaptibility to dynamic traffic
conditions, with OSPF yielding the lowest utilization due to
its reliance on shortest paths and ECMP achieving moderate
improvement through equal-cost path splitting. Although SA-
DQN approach adapts to the dynamic nature of incoming
traffic flows, it focuses solely on new traffic and neglects
existing active flows. In contrast, MARINA’s cooperative
multi-agent framework enhances adaptability by efficiently
balancing traffic across underutilized links while meeting QoS
requirements. The low overall utilization values, such as 20%
and 30%, are attributed to the smaller queue sizes in the
network, which limit the amount of traffic that can be buffered
and transmitted through the links.

Table I compares the percentage of flows that meet QoS
requirements achieved by four routing algorithms—OSPEF,
ECMP, SA-DQN, and MARINA—under two traffic loads in
terms of throughput, latency, and combined metrics. Through-
put reflects the impact of the packet loss ratio, indicating

0 250 500 750 1000 1250 1500 1750 2000
Episode #

Fig. 3: MARINA agent training (moving average of 20
episodes)
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TABLE I: Percentage of flows that meet QoS requirements
in terms of throughput, latency, and combined metrics.

Algorithm Throughput (%) Latency (%) Combined (%)
A=T75 [ A=100 | A=75 | A=100 | A=75 | A=100

OSPF 76.92 62.43 74.28 70.33 56.58 44.50

ECMP 77.65 69.20 82.50 79.92 62.95 55.33

SA-DQN 80.48 75.03 88.38 81.00 71.85 65.92

MARINA 83.50 78.13 90.10 84.50 80.78 72.23

the percentage deducted from the requested bandwidth while
still meeting acceptable QoS requirements and ensuring the
service remains unaffected by packet loss in the network. MA-
RINA consistently achieves the highest performance, meeting
83.50% throughput, 90.10% latency, and 80.78% combined
QoS at A = 75, and maintains strong results under higher load
(A = 100). SA-DQN follows closely outperforming OSPF and
ECMP. In contrast, OSPF shows the lowest QoS satisfaction,
particularly under high load, highlighting the effectiveness of
MARINA and SA-DQN in dynamic and congested networks.

VI. CONCLUSION

In this paper, we have introduced MARINA, a multi-
agent RL-based QoS-aware routing algorithm for SDN that
combines multi-agent DQN with shared prioritized experience
replay buffer techniques. Our approach effectively addresses
the limitations of existing routing methods by providing
a more adaptive and comprehensive solution to managing
multiple QoS constraints, including throughput, and latency,
and efficiently utilizing network resources. The experimental
results on GEANT?2 real-world network topology demonstrate
that MARINA consistently outperforms traditional routing al-
gorithms in key performance metrics. Additionally, MARINA

improves network resource efficiency by intelligently selecting
optimal paths, increasing the network’s capacity to handle
future traffic demands. Future work will focus on further
refining the algorithm and employing Graph Neural Networks
and exploring its applicability in diverse network scenarios to
continue improving routing efficiency and QoS management.
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