Automated orchestration of virtualized deployments of
mobile core networks.

Piotr Borylo®*, Wojciech Stasiak®, Piotr Piwowar®, Nashid Shahriar®

*AGH University of Krakow, Institute of Telecomunications, al. Mickiewicza
30, Krakow, 30-059, Poland
b University of Regina, 3787 Wascana Parkway, Regina, S4S 0A2, Canada

Abstract

Given the ongoing process of softwarization and virtualization of communica-
tions networks, including 5G and beyond 5G (B5G), automation has become
an inevitable part of network deployment. Ensuring a robust, efficient, and
zero-touch deployment process is expected to drive the advancement of B5G
and 6G technologies. Automation will become increasingly critical because
of increasing complexity and requirements on dynamic provisioning of these
networks. A well-designed automation process can streamline the deployment
of private mobile networks for Industry 4.0 or on-demand networks for mass
events, ensuring efficient video signal transmission and reducing the need for
physical wiring. This paper presents a Proof-of-Concept testbed tailored for
the automated orchestration of virtualized deployment of a 5G mobile core
network, along with insights into potential challenges and solutions. Further-
more, we compare two open-source core network implementations in terms
of feasibility for virtualization, automation and performance of user plane
(delay, throughput) and control plane (user equipment registration time and
PDU session establishment time). We evaluate the performance of auto-
mated deployment of 5G core network locally in the testbed and based on
the results we propose enhancements that reduce deployment time by 40%
on average for one of the implementations. We also present the process and
necessary tools to automatically orchestrate deployment of a virtualized 5G
core network in a cloud infrastructure. Finally, we performed preliminary
performance assessments of the automation process in the proposed cloud-

*Corresponding author
Email address: piotr.borylo@agh.edu.pl (Piotr Borylo)

Preprint submitted to Computer Networks April 10, 2025

based deployment.

Keywords: network softwarization, network deployment automation, 5G
core network, control plane performance, Proof-of-Concept testbed

2000 MSC': 9405, 94A99

1. Introduction

The emergence of bth Generation (5G) mobile network, as a successor
to LTE, offers higher data rates, reduced latency, and improved connection
density [1]. These advancements are made possible by leveraging Network
Function Virtualization (NFV), which allows for the virtualization of network
functions, separating them from underlying hardware and enabling software-
based implementations. This virtualized infrastructure presents an ideal op-
portunity for automation, as it provides flexibility, scalability, and eliminates
the need for costly hardware upgrades.

Automated orchestration of mobile core networks is further justified by
features like network slicing, which divides the network into isolated instances
tailored to specific challenges such as application support and Quality of Ser-
vice (QoS) parameters [1]. Automation is crucial for efficiently provisioning
and maintaining a vast number of slices, especially due to the challenges im-
posed by the increased number of services and complexity of future technolo-
gies like B5G and 6G [2]. Furthermore, components of the 5G network can
be deployed either in a centralized (monolithic) architecture or distributed
across several physical or virtual machines. Thus, automation can facilitate
the challenging placement of network functions at various locations, including
the cloud infrastructure and network edge with the use of Multi-access Edge
Computing (MEC), allowing for customized and low-latency services [3].

Automated cloud-based deployments of virtualized core networks is one
of the most emerging challenges. To the best of our knowledge, it has not
been properly addressed yet. By embracing automated service orchestration,
virtualized mobile core networks can address the challenges of dynamic in-
frastructure provisioning, as outlined below. Automation can be especially
beneficial in case of distributed deployments, which will be critical for B5G
and 6G deployments.

First, automation addresses challenges related to manual configuration
and intervention, minimizing human errors and streamlining the deployment
process. Second, automation is essential for managing the complexity of 5G

networks by orchestrating and coordinating various elements of the deploy-
ment process. Moreover, the dynamic nature of B5G and 6G networks, with
their varying traffic patterns and demands, necessitates adaptable deploy-
ments, adding further complexity and challenges. Additionally, the rapid
evolution of technology and the frequent introduction of new services and
features in the 5G ecosystem require quick and agile deployments to meet
these demands. Lastly, automating 5G network deployment helps address
business challenges by minimizing operational expenses and capital expendi-
tures through reduced manual labor, streamlined processes, and optimized
resource utilization.

As we move towards an era of on-demand deployment and increasingly
challenging use cases like vehicle to anything (V2X) communication, Indus-
try 4.0, temporary mobile networks for mass events, and Information Centric
Networking [4], automated orchestration of virtualized mobile core networks
becomes an inevitable and essential component. That is why, in this paper,
we address challenges of dynamic and robust provisioning of the 5G core net-
work. Specifically, we develop a comprehensive Proof-of-Concept testbed of
automated virtualized deployment of such network and make corresponding
automation scripts publicly available [5]. We provide valuable insights on
building similar infrastructures and additional hints about potential prob-
lems and solutions for them. We also propose a solution to automatically
deploy a virtualized 5G core network in a cloud infrastructure (e.g., OVH
Cloud?).

The contribution of our paper can be summarized as follows:

e an automation framework tailored for 5G core network deployment
comprising technology stack, configuration files and comprehensive de-
scriptions facilitating reproducibility of the environment and removing
the initial impediments in the 5G deployment process,

e performance evaluation of user plane (delay, throughput) and control
plane (user equipment registration time and Protocol Data Unit session
establishment time) of two open-source core network implementations

(Free5GC 2 and Open5GS ?),

thttps:/ /www.ovhcloud.com/
https://www.freebge.org/
3https://openbgs.org/

e performance evaluation of the automated 5G core network orchestra-
tion (e.g. time needed to deploy core network) and discussion on the
feasibility for virtualization and automation of aforementioned core net-
work implementations,

e modifications to the existing tools removing the initial impediments
in the automated 5G deployment process due to the required human
intervention and facilitating 5G core network deployment,

e original enhancements that reduce deployment time by 40% on average
for one of the tools (Open5GS),

e the process and necessary tools to automatically deploy a distributed
virtualized 5G core network in a cloud infrastructure and some prelim-
inary evaluation results (for this purpose we selected a more prominent
open-source core network implementation).

Our contribution enables rapid deployment of 5G mobile core networks
while facilitating analysis of critical aspects and informing architectural de-
cisions regarding tools and technology stack. Thus, our paper facilitates
industry and academia while experimenting and developing automated or-
chestration systems for mobile core networks. Our contribution is particu-
larly significant given the increasingly challenging requirements imposed by
B5G and 6G networks on these orchestrated deployments. Meeting these re-
quirements will be obligatory to provide emerging services and satisfy quality
of service requirements. The presented results and discussion inform archi-
tectural decisions and suggest future research directions.

In this work, we propose the automation framework for the deployment
of Standalone (SA) 5G core networks. The framework includes, among oth-
ers, technology stack, configuration files, images of virtual machines, modi-
fications to the virtualization environment, and configuration of kubernetes
cluster. All components are specifically designed for 5G networks, making
our solution tailored for this application. By developing a framework dedi-
cated to the 5G core network, we were able to address challenges overlooked
in the existing state of the art. For instance, we focused on ensuring seam-
less networking between the 5G architecture components distributed across
cloud locations, while incorporating specialized protocols. Additionally, the
automation process includes a comprehensive configuration of 5G network
elements.

The framework is further utilized to conduct an extensive experimental-
based performance assessment of the automation process, providing a com-
parison of different implementations of the 5G core network. In the sub-
sequent section, we provide an overview of existing works in the related
area and discuss how our paper contributes to the research field. Section 3
introduces the fundamentals of 5G networks and highlights the challenges
associated with automated deployment. In Section 4, we present our main
contribution, which is the automation framework for 5G mobile networks.
The section provides detailed insights into the design and implementation of
the framework. Furthermore, we present the experimental results obtained
and provide a comprehensive analysis in Section 5. Section 6 describes the
proposed deployment process and the tools we used to automatically deploy
a virtualized 5G core network in a cloud infrastructure. Based on the dis-
cussion and results presented in Sections 3 and 5, respectively, we selected
OpenbGS as a more prominent candidate for a cloud-based deployment. Sec-
tion 6 also contains preliminary performance assessments of the automation
process in the proposed cloud-based deployment. Finally, Section 7 con-
cludes the paper, summarizing our findings and discussing potential avenues
for future research.

2. Related works

This section provides an overview of related works based on the following
taxonomy. First, we discuss papers that specifically concentrate on evaluat-
ing the performance of 5G core network deployments and comparing different
implementations. Subsequently, we analyze works that focus primarily on the
automation aspects of 5G deployments. Finally, we explain the relationship
between our work and orchestrators of services and network functions.

Rischke et al. [6] conducted a measurement study on a campus 5G net-
work to compare the performance of Stand Alone (SA) and Non-Stand Alone
(NSA) 5G network deployments. The experiments involved Nokia radio
equipment and evaluated the performance of Nokia 5G core network in the
NSA scenario, as well as the Open5GS core network in the SA scenario. The
study focused on measuring and analyzing delays and losses in the network.
Similarly, authors of [7] introduced an innovative testbed that incorporates
both 4G and 5G mobile networks, leveraging open-source solutions. Deploy-
ments were compared with the respect to throughput, latency and received
signal strength. Achieved results were compared with commercial network.

While both papers offer valuable insights into the performance characteris-
tics of the network, it does not provide a direct comparison between different
SA 5G mobile core network implementations and does not address the au-
tomation issues. The performance issues are also considered for radio part
of 5G networks in [8]. The authors in [8] measure transmission parameters
in an interesting testbed of SA indoor 5G network. They utilize commodity
hardware and open source implementation of 5G control plane to measure
latency, data rate and coverage. Complementary, authors in [9] performed
a CPU profiling for software components of a particular implementation of
5G radio access network. The primary objective of this study was to identify
the resource-intensive software components within the distributed 5G RAN
architecture, enabling more efficient code optimization and hardware offload-
ing techniques. However, both [8] and [9] focus mostly on the RAN, while
mobile core networks and automation issues are neglected.

Neto et al. [10] conducted an assessment of open-source implementations
of the core network, specifically focusing on Open5GS, Free5GC, and Magma
Core projects. The paper provides a theoretical evaluation of these imple-
mentations, primarily discussing their functional aspects. The evaluation
encompasses various factors such as architecture, documentation, commu-
nity support, and management. A tutorial about selected communication
protocols used in the 5G networks is the main part of the work [11]. The
comprehensive analysis covers Non-Acces Stratum (NAS) and Next Gen-
eration Application Protocol (NGAP) concerning the protocol stacks and
functionalities related to session management and resource allocation. In
the theoretical part, the authors reviewed communication sequences for NAS
and NGAP. In the practical part, the authors applied a black-box testing
approach with the use of an original 5G tester. They evaluated the confor-
mance and robustness of three open-source 5GC projects. The aim was to
verify the quality of the control plane implementations. Thus, both works
should be considered complementary to our study, which is focused mostly
on the comparison of performance parameters of different 5G core network
implementations. Furthermore, none of these papers specifically address the
automation aspects of 5G networks.

The works [12] and [13] primarily focus on experimental performance as-
sessment. Galibondo et al. [12] specifically present the deployment of a 5G
private network using open-source solutions, encompassing both radio and
core network components (including Open5GS, which is further explored in
this paper). The authors validate the interoperability of the composed sys-

6

tems by combining different RANs with different core networks. Multiple
tests were conducted, including measurements of latency and packet loss,
with all cases showing a packet loss rate of 0%. The authors also exam-
ine various implementations of the core network. A recent work presented
in [13] primarily focuses on comparing the performance of two open-source
implementations of the 5G core network, namely Free5GC and OpenbGS.
While the paper introduces an original test tool, our study utilizes a well-
known and popular simulator for the 5G access network. The conclusions
drawn in [13] suggest that Free5GC exhibits better user plane performance,
whereas OpenbGS is regarded as a more stable solution with a more reliable
registration process. Although our work and [13] employ similar metrics such
as UE registration time, user plane throughput (we additionally measured la-
tency), and resource usage (RAM in our case and CPU in [13]), both studies
complement each other due to their exploration of core networks deployed us-
ing different techniques. Moreover, while [13] and the aforementioned works
primarily focus on deployment performance, our paper has a greater em-
phasis on the automation of 5G core network deployment and its robustness.
Namely, we propose the framework to automatically deploy a distributed vir-
tualized 5G core network in a cloud infrastructure, evaluate the automation
performance, and propose a solution to enhance the automation process.

Lake et al. [14] conducted a comprehensive survey focusing on the soft-
warization and programmability, which are key drivers for automation in this
field. The authors provide a detailed overview of the existing technologies
and tools that facilitate the deployment of 5G networks, encompassing both
the core and radio aspects. Notably, they highlight two core implementa-
tions, namely FreebGC and Open5GS, which serve as prominent platforms
in this domain. One crucial observation made by the authors is the need
to strike a balance between the efficiency and flexibility of 5G deployments
in order to achieve interoperable solutions. This trade-off underscores the
complexity inherent in designing and implementing 5G networks. The sur-
vey further showcases a wide variety of tools that can be potentially utilized
in this context, from which we narrow down and select components for the
framework in our work.

Wiranata et al. [15] propose an approach to automate a 5G network uti-
lizing Kubernetes and Mosaic 5G Operator. Their framework comprises both
the radio and core components of the network. Notably, the authors employ
a 4G core network in conjunction with 5G wireless equipment. The pri-
mary focus of their study lies in the orchestration of the deployment, with

7

particular emphasis on evaluating the throughput. The architectural design
presented in the paper incorporates monitoring functionalities facilitated by
ElasticSearch and Kibana. However, it is important to note that while this
work offers solutions for automation of 4G network, it lacks a comprehensive
analysis of the performance of the automation process itself. Additionally,
the paper does not provide any comparative assessment of available SA 5G
core network implementations. Although the presented results are impor-
tant and meaningful, they tend to be more qualitative and selective rather
than quantitative. Similarly, a github repository [16] contains helm charts
automatically deploying Free5GC with UERANSIM and My5G-RANTester.
However, as it is solely a repository, it can be considered only as a sup-
plementary tool that does not allow comparing different implementations of
5GC.

Several works in the literature focus on offering tools and solutions that fa-
cilitate the automated deployment and orchestration of 5G mobile networks,
albeit not specifically targeting automation itself. For example, in [17] au-
thors propose the architecture enabling topology discovery in 5G multi-tenant
environment. It considers networks virtualization as the main driving factor.
The process of topology discovery outlined in [17] is extensive, covering vari-
ous network layers and components. Thus, it may provide a significant input
for the automated orchestration. In a recent study [18], an interesting testbed
was introduced. The authors integrated the emulation of the 5G radio ac-
cess network and mobile core network with the simulation of user equipment.
Their approach utilized container-based deployment and primarily empha-
sized the generation of realistic traffic patterns based on pre-collected data.
The objective of this research was to facilitate future experiments conducted
on 5G infrastructure. While the study offers a valuable dataset and pro-
poses a framework for obtaining such datasets, which can be instrumental in
validating and assessing automation processes, it does not directly provide
solutions for automation. Chun et al. [19] recognized the potential benefits of
orchestrating Kubernetes with 5G network functions as a means to automate
the process. In their study, they presented several proposed enhancements
for Kubernetes that have the potential to enhance the performance of the 5G
core network. These contributions offer valuable insights and pave the way
for automating 5G network deployments. However, it is important to note
that the study does not specifically investigate the implementations of 5G
networks or provide a comprehensive performance evaluation. Furthermore,
in [20] authors propose a Machine Learning-based approach to predict the

8

number of selected network functions to efficiently handle varying number of
end users registrations in the mobile core network. Solutions like that should
be considered as a source of information triggering automation processes and
tools.

Table 1: Summary of related works.

Work Performance Automation aspects of
assessment 5G core deployment
User plane Control Tools, Original ~ Performance
plane surveys solution assessment
[6] v
[7] v
8] v
[9] v
[10] v v
[11] v v
[12] v v
[13] v v
[14] v
[15] v
[16] v
[17] v
[18] v
[19] v
[20] v v v
This paper v v v v v

Table 1 qualitatively compares the contribution of this paper with respect
to the state-of-the-art. Based on the content of Table 1, it is possible to high-
light the originality of our work. Works [6], [7], [8] and [9] focus mostly on
the user plane performance of 5G networks. The study in [6] compares NSA
and SA architectures, while the paper [7] compares 4G and 5G open-source
deployments with a commercial network. Similarly, the study in [8] ana-
lyzes transmission parameters in the 5G indoor testbed, while [9] considers
software engineering aspects. On the other hand, [10], [11], [12] and the
recent study [13] are focused on the assessment of the 5G core network im-
plementations and deployments including control plane aspects. The study
in [10] provides some theoretical evaluations and discussions, [11] evaluates

conformance and robustness of NAS and NGAP protocols implementation,
while [12] and [13] are devoted to the performance assessment and comparing
5G core network implementations. However, none of these works address the
automation process, which is the primary focus of this paper.

On the other hand, the survey [14] presents tools that can be used to
build a framework for automating the deployment and orchestration of 5G
mobile networks. In our work, we select tools and provide a Proof-of-Concept
of such a framework. Work by Wiranata et al. [15] and repository [16] pro-
pose approaches for automating the deployment of a 5G network, but do
not discuss SA 5G network deployment and lack an in-depth performance
assessment of the automation process comparing different implementations
of the 5G core network. Therefore, our work contributes by filling this gap.
Finally, works [17], [18], [19] and [20] do not propose solutions on automation
but rather discuss tools that can facilitate the automated deployment and
orchestration of 5G mobile networks, which is the aim of our work.

Based on the comparison presented above and summarized in Table 1,
the following conclusions can be drawn. Our work is the first to propose an
original solution for automated deployment of a standalone 5G core network.
What is important is that the processes and tools presented in this work
enable fully automated deployment in a public cloud infrastructure. Sim-
ilar contributions were not provided in any previous works. Furthermore,
we provide a unique efficiency assessment of the automation process for the
deployment of 5G networks in both local and cloud environments, and aug-
ment it with 5G data and control plane performance assessment. Finally, we
propose unique enhancements that reduced the deployment time for one of
the 5G core network implementations.

Automation of the deployment process is strongly related to the service
orchestration, for which a dedicated framework and tools were proposed.
Service orchestrators are frameworks that facilitate the processes of design-
ing, creating, delivering, monitoring and managing of end-to-end IT services.
With the introduction of the NF'V approach, service orchestrators are respon-
sible for, among other things, deploying and interconnecting virtual network
functions, managing the lifecycle of NF's, autoscaling, and fault management.
These activities are denoted as network function orchestration and service
orchestrators are capable to perform them also in public clouds. As a result,
service and network function orchestrators are an important component in
ensuring automated service provisioning, applicable also in the domain of
virtualized 5G networks. The aim of our work is not to compete with or

10

replace orchestration frameworks, but rather to propose a solution for a spe-
cific use case, which is the automated deployment of the 5G core network.
Our contribution comprises additional activities that must be performed,
e.g., preparing specific virtual machines, selecting proper configuration for
5G network functions, and modifying scripts to exclude a need for human
intervention. Our contribution should be considered as a supplement to the
service and network function orchestrators. Service orchestrators are not
intended to create and configure public cloud infrastructure; instead, their
primary role is to deploy network functions onto pre-existing cloud resources.

The problem of network function orchestration is widely addressed in the
literature. Thus, there exists not only a tremendous number of transactional
papers proposing novel solutions, but also a significant number of surveys.
The latter often propose handy taxonomy and summarizing conclusions that
facilitate getting familiar with the current state-of-the-art. Thus, instead of
providing a superficial survey, we suggest referring to the existing compre-
hensive works [21, 22, 23, 24].

3. Background

In this section, we provide some background regarding the 5G networks
to facilitate replicating our original environment and understanding of the
experiments. We also indicate challenges and limitations regarding the pro-
posed automated 5G core network orchestration.

3.1. 5G network architecture

5G networks are usually perceived from the perspective of mobile tech-
nology. However, 5G consists of the two crucial components that coexist
together: 5G New Radio (NR) and the core network. In our work we fo-
cus on the core part, however, we provide also brief summary on the radio
component.

3.1.1. 5G New Radio Access Network

Radio Access Network (RAN) is a part of the communication system that
connects the wireless equipment with the wired core network. RAN is re-
sponsible for maintaining the frequency spectrum to assure efficient usage
and satisfy the quality of service. RAN in 5G is also often called NR and it
consists of multiple base stations. A base station in 5G is called Next Gener-
ation NodeB (gNB). The gNB transmits and receives radio signals from the

11

User Equipment (UE) and then exchanges them with the core network. gNB
handles both control plane and user plane traffic. NR uses numerous features
to improve bandwidth and data rates. It supports the massive multiple-input
multiple-output (MIMO), a technology that allows to transmit and receive
the data over multiple antennas. Additionally, 5G heavily uses beamforming
to improve spectral efficiency. Narrow beams are sent directly to the receiver,
ensuring a better signal-to-noise ratio and thus providing higher bandwidth.
Besides, gNB can be split into gNB Distributed Unit (DU) and gNB Central-
ized Unit (CU) [25]. DU delivers features of the physical layer and Medium
Access Control (MAC), while CU takes care of mobility management and
radio resource allocation. Moreover, DU supports devices within one cell.
Multiple DUs are then aggregated and controlled by a single CU. DU can be
placed closer to the end-user, improving the latency. On the other hand, CU
can be deployed in the data center on more powerful hardware [26]. The divi-
sion of CU and DU improves the flexibility of the network and customization
options for various applications.

3.1.2. 5G core network

The core network provides the backbone connection between RAN and
the external network. It provides control and user plane connectivity for
the subscribers. With the higher data rate demands and rising requirements
for the networks, the traditional approach with a monolithic core network
faces numerous challenges in terms of flexibility and scalability. 5G core
leverages Network Function Virtualization (NFV), a technology that allows
for the deployment of particular network functions independently on com-
modity hardware. NFV usage enables Control and User Plane Separation
(CUPS) as a step to improving the flexibility of the network. For exam-
ple, we can independently scale the user plane without a need to interfere
with the control plane. Diverse 5G use-cases require various functionalities
and performance levels. 5G tailors the network to the customer’s needs by
leveraging network slicing. It allows building a set of logical networks on
top of the physical equipment. Each logical network can consist of different
components that support particular applications. Moreover, slices can be
easily scaled up/down depending on the current number of users. Network
slicing also improves the reliability of the network. Slices are isolated from
each other, which means that over utilization of one component will not in-
fluence another application deployed in a different slice. The problem is even
more challenging as core network deployments and slice provisioning must be

12

done on-demand in B5G and 6G technologies to support automated network
provisioning. Therefore, automated 5G core network orchestration proposed
in this work is an inevitable part of these technologies and must be mature
enough to meet these challenges.

3.1.3. Network Function Virtualization of 5G Network Functions

e Control

N1 N2
{ UE H GNB]7?%3

Figure 1: Architecture of 5G core network.

UPF ——nNe— Data Network <) SGANR

5G Core

The 5G core network implements Service-Based Architecture (SBA) that
allows providing a control plane in the form of interconnected network func-
tions, which are independent of each other. These functions interact to pro-
vide crucial 5G capabilities and can be deployed in a centralized (monolithic)
architecture or distributed across several physical and virtual machines. The
modularity enabled by SBA can be leveraged in the cloud-native deploy-
ments of the 5G core, either in distributed or centralized form. Furthermore,
network functions can be deployed on any hardware platfrom. This con-
cept enables the 5G core to be rolled out in the virtualized environment
as a microservice-based application. Such deployments can easily take ad-
vantage of load balancing and scale resources according to the needs [27].
These properties, despite providing obvious advantages, also impose chal-
lenging requirements on the deployment process. It is crucial to provide an
automated way of deployment. The automation can be especially challeng-
ing and beneficial in the case of distributed cloud-based deployments. For
these architectures, the orchestration of all distributed components should
also be automated. Function separation also impacts upgrade time, allowing
NFV upgrades to be performed frequently without any user disruption. This
is because each function can be upgraded separately, and new versions can

13

be carefully prepared without affecting the current version. Additionally, the
implementation of NFV enables 5G core networks to support network slicing.

Figure 1 depicts the 5G network architecture, including core network and
RAN functions and connections between them. Orange and red components
belong to core and RAN parts, respectively. The blue component repre-
sents an external network, typically the Internet or corporate network. More
details can be found in the specification [28].

3.2. Open-source implementations of 5G network

The most popular and widely used implementations of 5G core network
(FreebGC and OpenbGS) are described and compared in this section. To
properly test the 5G core, the radio part is also required, we leveraged UER-
ANSIM tool [29] for this purpose.

3.2.1. Free5GC

An open-source implementation of a 5G core network. It is written in
the Go language and implements Release 15 and some parts of the Release
16. Moreover, it assumes the implementation of CUPS and SBA. Free5GC
requires the Linux kernel in versions 5.0.x (end of life) or 5.4.x. Free5GC
provides satisfactory documentation and offers a dedicated forum for com-
munity. The authors embedded a couple of tests into the source code to
verify core network deployment. Moreover, a paid membership is also of-
fered to assure priority support and early access. FreebGC does not deliver
a containerized version of the software, but there are community projects
enabling this feature.

3.2.2. Opend5GS

OpendGS is an open-source 5G core network written in C language. It
implements Release 17 of 5G standard. This core implementation follows
the most important principles of the 5G networks. It implements CUPS and
SBA [30] and following network functions: Session Management Function
(SMF), User Plane Function (UPF), Policy Control Function (PCF), Net-
work Repository Function (NRF), Authentication Server Function (AUSF),
Binding Support Function (BSF), Unified Data Management (UDM), Unified
Data Repository (UDR), Access and Mobility Management Function (AMF),
Network Slice Selection Function (NSSF). OpenbGS facilitates distributed
cloud-native deployments by providing Docker images for all available net-
work functions. It is a significant advantage in the context of automated

14

mobile core network orchestration. Additionally, it adopts support for IPv6,
multiple PDU sessions, and Voice over NR. On the other hand, it does not in-
clude roaming capabilities. It is worth mentioning that Open5GS maintains
extensive documentation that includes detailed platform-specific installation
guides, troubleshooting steps, and community articles.

In the Table 2 we present our original comparison of both 5G core network
implementations. We especially indicate if the tool facilitates automation and
orchestration of distributed deployment. The conclusion is that OpenbGS is
a more mature implementation in most of the aspects, including automation.
Thus, it is a better candidate when considering B5G and 6G in the future,
as the software will, more probably, support upcoming releases.

15

Table 2: The comparison of Open5GS and Free5GC.

Property

Free5GC

Open5GS

Documentation

Supported platforms

Additional

requirements

Implemented functions

Community and tests

Facilitates
automation and
orchestration

Basic, sufficient to
start using the
software

Ubuntu, other Linux
distributions that
support kernel 5.0.x or
5.4.x

gtpbg, a customized
Linux kernel module

SMF, UPF, PCF,
NRF, AUSF, UDM,
UDR, AMF, NSSF

Community forum,
tests embedded

Only community
provides
containerized
version

Extensive, covering
multiple scenarios

Debian/Ubuntu,
CentOS,
MacOSX(Intel and
Apple Silicon),
FreeBSD, Alpine

SMF, UPF, PCF,

NRF, SCP, AUSF,

UDM, UDR, AMF,
NSSF, BSF

Community support,
additional materials

Built-in
containerized
implementation

3.2.8. UERANSIM

UERANSIM is an open-source UE and gNB implementation written in
C++ language. UERANSIM simulates a 5G mobile phone and a base station

[29] and realizes the NR functionalities. UERANSIM delivers three interfaces
that are crucial in communication between RAN and core:

1. Control Interface (between RAN and AMF)

2. User Interface (between RAN and UPF)
3. Radio Interface (between UE and RAN)

UE also implements initial and periodic registrations. The term initial refers
to a process during which UE, after being powered on, registers in the 5G core

16

network. Periodic registration is used by UE to inform the core that, despite
recent inactivity, UE is still up and ready to transmit data [31]. UERANSIM
supports the authorization of UE based on Authentication and Key Manage-
ment procedure, PDU session establishment and release. gNB implements
PDU Session Resource setup and release. Additionally, it provides both UE
Context modification and release. However, it does not support PDU session
authorization and its modification as well as IPv6. UERANSIM is compat-
ible with multiple 5G core implementations, including both Open5GS and
FreebGC.

4. The proposed automation framework for local testbed

In this section, we present the Proof-of-Concept testbed for the automated
virtualized deployment of a core mobile network. Section 4.1 provides details
on the configuration of the testbed and research environment. Sections 4.2
and 4.3 describe how we pre-prepared and configured virtual machines and
Kubernetes cluster, respectively. Finally, the importance of Helm charts and
Ansible playbooks in the context of automation is described in Sections 4.4
and 4.5, respectively. The same sections also provide details on our im-
plementation of these components, which is an original contribution of this
article.

4.1. Testbed configuration

HPE physical server is used as a foundation of the whole setup. It in-
cludes 6 CPUs x Intel(R) Xeon(R) E-2236 CPU @ 3.40GHz together with
64 GB of RAM. In order to establish a suitable environment, the virtual
machine is deployed using ESXi, a hypervisor developed by VMware [32].
Ubuntu 20.04 is a base operating system for all deployments and tests. It is
selected due to proven support the Open5GS project [33] and also because
Free5GC authors provide tests of their software against Ubuntu [34]. These
5G core implementations are deployed on a virtual machine together with a
UERANSIM. Each virtual machine is granted 6 virtual cores and 4 GB of
RAM. VMs are connected to the external network via VMXNET Generation
3 (VMXNETS3) interfaces. VMXNETS is a para-virtualized Network Inter-
face Card (NIC). Figure 2 presents an overview of the environment, where
Open5GS, Free5GC and UERANSIM building blocks represent a set of con-
tainers hosting 5G network functions (every function in a separate container).

17

Additionally, we equipped the VMs with Docker, Kubernetes, Helm,
and Ansible tools, which were utilized to automate the deployment process.
Docker was used as software that divides a monolithic application into sev-
eral containers by configuring and building them. These containers were
deployed with the use of Kubernetes, which further also ensures connectiv-
ity between them. To accelerate deployment, we leveraged Helm charts and
adapted them to the underlying network conditions within the ESXi host.
This approach enabled us to deploy Free5GC and Open5GS within seconds.
The cluster formation, application deployment, and Helm chart deployment
were achieved using original Ansible playbooks proposed as a part of this
Proof-of-Concept [5]. These efforts significantly reduced the time needed to
prepare the environment from hours to minutes.

Physical server

VMware ESXi
Ubuntu 20.04 Ubuntu 20.04
UERANSIM UERANSIM
I I
Open5GS Free5GC
{ eth0 | { eth1 eth0 eth1

Figure 2: General overview of an environment to conduct experiments. OpenbGS,
FreebGC and UERANSIM are deployed in the form of containers, each hosting a sep-
arate network function.

In the following sections, we present our proposed automated orchestra-
tion for virtualized mobile core networks. The main aim is to simplify and
speed up the deployment to meet the requirements of mobile core deploy-
ments. Consecutive subsections provide details about virtual machine im-
age preparation, automation tools usage, and cluster configuration. It also
presents troubleshooting required during the development and configuration
phase to facilitate future works in similar environment.

18

4.2. Virtual Machine

We prepared a dedicated Virtual Machine image. The base operating
system was enriched by dependencies that allow running both 5G core im-
plementations within seconds. The image uses a specific kernel version —
5.4.0-58-generic because the gtpbg kernel module used by Free5GC develop-
ers was built and tested only against 5.0.x and 5.4.x kernel versions [35]. Due
to FreebGC constraints, the Go language libraries were preinstalled. A vir-
tual machine also includes additional tools crucial for automation — Docker,
Kubernetes, Ansible, and Helm. Moreover, it contains pre-configuration of
the virtual machine interfaces, repositories with stable versions of both 5G
core implementations, and Ansible playbooks.

4.3. Kubernetes cluster

Kubernetes cluster is the key component of the proposed Proof-of-Concept.
It orchestrates virtualized mobile core in the form of containers that contain
images of particular 5G network functions. Kubernetes takes care of healing
unresponsive containers by automatically deploying new ones. It may also
perform automatic horizontal scaling. Moreover, Kubernetes also provides
the networking layer of the setup by allocating appropriate IP addresses for
pods and containers. A single-node cluster with all NFs deployed on the mas-
ter node is used. Every NF container is deployed in a single pod, however,
instance scaling up can be done effortlessly if needed.

4.4. Helm charts
Helm charts are the foundation of the rapid deployment of any microservice-

based application. In this deployment, they provide a quick and repetitive
way of setting up a containerized implementation of the 5G core network.
Thus, Helm charts directly address the needs of future B5G and 6G deploy-
ments. Helm charts define and manage multi-container applications to be
deployed on the Kubernetes cluster. It allows running the whole virtualized
mobile core network using just one command. During tests, we used two
different Helm charts:

e TowardsbG-Helm — an open-source project providing on-click 5G core
network and RAN Kubernetes deployment based on Free5GC and UER-
ANSIM [36],

e Openverso Charts — an open-source project providing charts for OpenbGS
deployment [37].

19

As a contribution of our work, we made numerous configuration changes
to the abovementioned Helm charts. The aim of these modifications is to
allow deploying Open5GS and FreebGC without a need for human inter-
vention. Modifications included test specific 5G core network configuration
adjustments. Moreover, we also added changes required by the ESXi environ-
ment, for example, adapting network-specific elements to the charts. Charts
prepared in this way are ready to ensure fully automated orchestration on
the Kubernetes cluster.

4.5. Ansible playbooks

Ansible playbooks play an important role in the automation process and
are available in the public repository [5]. They speed up the deployment
process of the whole core network by executing a set of commands on the
remote system. Playbooks are responsible for managing and deploying all
configuration items, which can not be embedded into the virtual machine’s
image and would typically have to be configured manually. Thus, a tool
similar to the Ansible is an inevitable part of the automated orchestration in
the context of mobile core networks.

As an original contribution of this work, we developed four Ansible play-
books that facilitate 5G core network deployment (two playbooks for each
mobile core implementation). The first playbook creates a Kubernetes cluster
on the virtual machine, edits Helm charts, and deploys the 5G core network
using the charts. The second one sets up the UERANSIM subscriber. Se-
lected, the most important, parts of the proposed playbooks are explained
below:

e We properly prepared the operating system to run Kubernetes cluster
in terms of swap memory, iptable and arp tables, and installation of
Kubernetes with kubelet, kubeadm, kubectl tools. We also automated
installation of Helm.

- name: Install helm
unarchive:
src: "https://get.helm.sh/helm-v{{ helm_version }}
-linux-amd64.tar.gz"
dest: /usr/local/bin
extra_opts: "--strip-components=1"
owner: root
group: root
mode: 0755
remote_src: true

20

e We ensured networking layer between all components with the use of
Flannel Container Network Interface (CNI) [38] together with Multus
CNI [39]. We previously automated the download and installation of
both plugins.

- name: "Apply Kubernetes routing - Flannel and Multus CNI"
shell: |
kubectl apply -f flannel.yaml
kubectl taint nodes $(hostname) node-role.kubernetes.io/
master:NoSchedule-
kubectl create ns openbgs
cd multus-cni
cat ./deployments/multus-daemonset.yml | kubectl apply -f -

e Automatically deploying the complete and fully operational virtualized
mobile core network using prepared Helm charts.

- name: "Create dir for Helm charts"
ansible.builtin.file:
path: /opt/charts
state: directory
owner: root
group: root
mode: 0755

- name: "Get Helm chart for openverso"
ansible.builtin.git:
repo: https://github.com/Gradiant/5g-charts.git
dest: /opt/charts/openverso-charts

- name: "Deploy Open5GS Core Network"
shell: |
cd ~/openverso-charts/charts/openbgs/
helm dependency update
cd ~/openverso-charts/charts/
helm -n openbgs install vl ./openbgs/

e To propose complete Proof-of-Concept the automation process covers
also radio part simulated by the UERANSIM. The playbook determines
IP address of WEBUI service required to register a mobile subscriber.
Without our proposal, the user would need to find the WEBUI pod,
investigate its networking details and then proceed with registration.

- name: "Find IP address of WEBUI and ask user to register the
subscriber"

21

shell: |
WEBUI=kubectl get pods -n openbgs | grep web | grep -oE ~.*\-.7
WEBIP=kubectl describe pod $WEBUI -n openbgs | grep -oE
"\b([0-9]1{1,3}\.){3}[0-91{1,3}\b" | tail -1
echo "Go to $WEBIP:3000, log in with admin/1423 and
register your UE(s)"

e The gNB requires the IP address of AMF to register to the network.
However, as this address is assigned during deployment it should be
automatically injected to the gNB chart. To achieve that we also pro-
posed a playbook.

- name: "Find IP address of AMF and supply Hgls{gNB} chart with it"
shell: |
AMF_pod=kubectl get pods -n openbgs | grep amf | grep -oE ~.*\-.7
AMF_IP=kubectl describe pod $AMF_pod -n openbgs | grep -oE
"\b([0-91{1,3}\.){3}[0-91{1,3}\b" | tail -1
cd ~/openverso-charts/charts/ueransim/resources
sed -i "s/\(address:\).x/\1 $AMF_IP/g" gnb.yaml

5. Evaluation results

Based on the presented Proof-of-Concept, we further verify performance
of both implementations of virtualized mobile core networks: Free5GC and
OpenbGS. Each subsection begins with a detailed explanation of the setup.
For this study, we conducted tests using a single UE communicating through
an isolated PDU session. This approach ensures that the results are not
influenced by external factors. We conducted ten consecutive measurements
for each test, followed by statistical analyses to calculate and present 95%
confidence intervals.

5.1. User plane delay

User plane delay is one of the most crucial metrics from the end-user
perspective, as it pertains to the transmission of traffic in the user plane,
crucial for data network operations. It directly impacts the delay experienced
by customers, which is especially critical given the emerging applications
offered through B5G and 6G networks. Therefore, the primary objective
is to minimize delay as much as possible for selected applications. In this
context, we measured the delay introduced by the UPF during data transfer
from the UE to the external network. To ensure reliable measurements,

22

..

..

x"‘ N3 N6 Internet
UE Bemooeaneoog > gNB ---------- > UPF [---------- Node [---------- >

Figure 3: Topology with capture points for the purpose of user plane delay test.

packets were captured on four interfaces highlighted in red and labeled as
t1, to, t3 and t4 in Figure 3. The Node component in Figure 3 represents
a virtual machine on which Kubernetes cluster was deployed (as detailed in
Figure 2), thus, it should be considered as a point at which traffic leaves 5G
core network deployment.

Figure 4a presents uplink delay reported by the UPFs of Free5GC and
OpendGS tools. The single result was obtained by analyzing the time dif-
ference between packet arrival time and the time when a packet reached the
egress interface of UPF (difference between time measured in t3 - t5). It
can be observed that average delay introduced by Free5GC UPF is twice
higher than the analogous delay in case of OpenbGS. These results depend
on the particular implementation and software stack (including programming
language) being used by both tools.

23

0.035

0.030

0.025

0.020

Time [ms]
Time [ms]

0.015
0.010 02

0.005 01

0.000 0.0
0OpensGS Free5GC 0OpensGS Free5GC

(a) Time difference between packet sending out (b) Time difference between packet arrival on
of UPF egress (t3) and packet arrival on UPF node ingress (t4) and sending the packet out of
ingress (t2) interface. UE egress (t1) interface.

0.6 0.06

Time [ms]
o ° ° o
~ w s o
Time [ms]
14 14 e e
o ° > °
N & g &

o
14
o
2

Open5GS Free5GC Open5GS Free5GC

(c) Time difference between packet arrival on (d) Time difference between packet arrival on
UPF egress (t3) and sending the packet out of node ingress (t4) and packet arrival on UPF
UE egress (t1) interface. ingress (t2) interface.

Figure 4: User plane delay measurements for Open5GS and Free5GC based on the time
differences between various actions.

However, one must note that packets are captured after they are received
on the ingress interface. It does not include the delay introduced by the
kernel and the egress interface. To verify which 5G core implementation
introduces a lower delay, we captured packets on the UE egress interface and
node ingress interface (difference between time measured in t4 - ¢;). Figure
4b depicts the delay reported by the next-hop devices and can be considered
as an end to end latency in the user plane of the 5G core network. This
test reveals that, OpenbGS imposes the delay that on average is slightly
higher than the one introduced by Free5GC. However, taking into account
confidence intervals, results can be considered as statistically equal. This
conclusion is contrary to previous observations. The absolute delay value

24

can’t be compared with previous measurements, as this test includes more
components.

We performed additional analysis of the achieved values to explore which
part (ingress or egress) of UPF is mostly responsible for introducing the de-
lay. For this purpose, Figures 4c and 4d should be analyzed together. Figure
4c depicts the time difference between packet arrival on UPF egress inter-
face and sending the packet out of UE egress interface (difference between
time measured in t3 - t1). Figure 4d shows time difference between packet
arrival on node ingress interface and packet arrival on UPF ingress interface
(difference between time measured in ¢, - ¢3). It can be observed that packet
processing takes ten times longer on the path from UE to UPF than between
UPF and node. This is expected behavior as there is also gNB involved in
packet forwarding between UE and UPF.

Figure 4c shows that OpenbGS introduced on average approximately 0.2
ms more delay on the path between UE and UPF than FreebGC. Please also
note that UE and gNB modules are the same for Open5GS and Free5GC,
thus, any differences originate from the implementation of the UPF compo-
nent. On the path UPF — node (shown in Figure 4d), both implementations
performed equally. Thus, based on the results presented in Figures 4c and
4d, it can be concluded that Open5GS core network processes packets inter-
nally faster than FreebGC. However, it takes Open5GS more time to deliver
a packet from the ingress interface to the main computing component. These
measurements also allowed us to understand better results seen in Figure 4a.

5.2. Throughput

Another critical indicator of the user plane performance is throughput.
In addition to the previous setup, we provisioned a supplementary virtual
machine with Ubuntu. This Virtual Machine (VM) was used solely for mea-
surement purposes, as shown in Figure 5.

The experiment is conducted using iPerf3 that works in the client-server
architecture. In this test, the additional VM provides the server role while
UE acts as a client. During the first attempt, all parameters are set to
default. Traffic is sent in both directions between the machines.

Figure 6 depicts throughput achieved during experiments. TCP was used
as a transport protocol, with 128 KB as a datagram size. During tests,
Open5GS achieved around 375 Mb/s on average. Gabilondo et. al. in
work [12] also studied the throughput of various 5G cores, and for Open5GS
the reported throughput was two times lower compared to our results. The

25

VMware ESXi

VM1
"""""""""""""""""""""" Kubernetes cluster |
UERANSIM |<------ > SGCore | >| ethO/eth
Network

VM2

l€-mmmmm s >l ethO/eth1

iPerf3
server

Figure 5: Topology used to measure throughput.

most significant difference in our setups is the type of UE/RAN device. We
used UERANSIM, while Gabilondo et al. used a physical wireless UE de-
vice. Comparing Free5GC and Open5GS it can be observed that Open5GS
achieves, on average, around 3.5 times higher throughput than FreebGC.

400 -

350 -

— 300 1
"
o)

Z 2501
”
>
Q

5 200 -
3
e

£ 150

100 -

50 A

0 m

Open5GS

Free5GC

Figure 6: Throughput achieved by one UE for both 5G core implementations.

5.3. Memory usage

Such a significant difference in terms of throughput initiated further com-
parative studies on memory and CPU usage. For that purpose, we installed

26

the Kubernetes metrics-server — the component responsible for collecting
metrics from the individual containers. Figures 7 and 8 illustrate memory
consumption during the throughput test. One square on the images corre-
sponds to one mebibyte (1024 * 1024 bytes).

Both tests revealed that the most utilized is UPF container, what is rea-
sonable as the measurements were done during network saturation. Other
functions consume significantly less memory, and the amount is roughly equal
for each function (with the except for SMF function in Open5GS). Further-
more, the difference in overall memory usage can be observed — 461 Mi for
Open5GS, while FreebGC uses only 103 Mi. In general, every single net-
work function consumes more memory in the implementation provided by
OpenbGS than by FreebGC. Simultaneously, the proportions of memory con-
sumed by the network functions is the same for both tools. Therefore, the
difference is most probably the result of the implementation method, software
stack and memory management.

I AMF

Il AUSF
EES. N EEEESEEEEEEEEEEEESEEE -
EEE. §H° EEEE-EEEEEEEEEEEEEEEE .
EEEE § EEEE- EEEEEEEEEEEEEEEE
EESE § EEEN EEEEESEEEEEEEEEE =
ENEECE" EEEESEEEEEEEEEEEEEEEE NRF
ENEECE" EEEESEEEEEEEEEEEEEEEE NSSF
R B T T T T T [| ——
ENEE-E. EEEESEEEEEEEEEEEEEEEE b
T NN
EEEE EEEEC NN T sowc
EECE EEE EEEEEEEEEEEEE NN .- oW
EEEN] EEEEEEEEEEEEEEE - s
EEEE" § HSEEEEEEEEEEEEEEENEEEE .. ov
EEEN T T ———
ENEE" N EEEEEEEEEEEEEEEEESEES T

|

Figure 7: Memory allocation for Open5GS. One square on the image corresponds to one
mebibyte (1024 * 1024 bytes).

27

AMF
AUSF
NRF
NSSF
PCF
SMF
UDM
UDR
UPF
WEBUI

Figure 8: Memory allocation for Free5GC. One square on the image corresponds to one
mebibyte (1024 * 1024 bytes).

5.4. Study on scalability

Due to the differences observed in the previous experiment, we conduct
some additional studies on scalability of FreebGC trying to improve its perfor-
mance. Scalability is also a critical feasibility indicator in relation to mobile
core networks. We removed any restrictions on CPU and memory applied to
Free5GC by default configuration of Towards5GS-helm charts which utilize
limits Kubernetes feature against the UPF container to provide it with 0.5 of
CPU unit and 500 mebibytes of memory. Removed limitations are especially
important in the context of the UPF, being responsible for forwarding users’
data through the 5G core network.

Figure 9 presents achieved throughput after configuration tuning. Free5GC
achieved almost 1.5 more throughput than in the previous experiment, how-
ever, the difference to the Open5GS result is still noticeable (see Figure 6).
Interestingly, the memory usage for FreebGC grew from 103 Mi to 124 Mi,
while UPF was consuming 48 Mi (38 Mi previously). Thus, we can con-
clude that the customization process should be performed before any single
deployment to meet the requirements.

28

160 +

140 +

120 4

100 4

80 4

Throughput [Mby/s]

60

40 -

201

Free5GC Customized Free5GC

Figure 9: Throughput achieved by one UE using Free5GC implementations with default
and optimized configuration.

5.5. Control plane performance

In this experiment, we focus on the performance of the control plane, in
contrast to the user plane considered in all previous subsections. We will
examine the UE registration procedure. For end-users, a robust registration
process is critical for quickly accessing the network, a factor that becomes
even more important when considering on-demand network provisioning in
the case of B5G deployments. Time measurement begins with the UE’s
registration request and concludes when the PDU session is established. To
provide comprehensive results, we measured the time needed to handle UE
registration and establish a PDU session between the 5G core network and
the UE. For both core deployments, we used analogous UERANSIM charts
to deploy virtual UEs to ensure the credibility of the results.

29

I Registration time
B PDU session establishment time
2.0 1
1.5 A
)
Q
£
'_
1.0 A
0.5 1
0.0 -

Open5GS Free5GC

Figure 10: Time needed for UE registration and PDU session establishment.

Figure 10 depicts the registration time and PDU establishment time.
Results in consecutive runs were similar and stable, causing confidence in-
tervals to be in the sub-second domain. OpenbHGS was faster than FreebGC
by around 1.5 s on average. The first component of the total time — the
registration time, took approximately 0.45 s for OpenbGS, whereas Free5GC
registered the subscriber in more than 1.5 s. This significant difference can
be already noticed by the end user. Open5GS also offers a faster session
establishment time than Free5GC, by only approximately 0.1 s. It is worth
noticing that the registration time to PDU session establishment time ratio
varies in both implementations. For OpenbGS, registration time was only
28% longer than PDU establishment time, whereas Free5GC registration
time was almost four times longer.

5.6. Performance evaluation of the automated 5G core network orchestration

Mobile core networks are designed with the assumption that particu-
lar network functions will be virtualized. Both Free5GC and Openb5GS im-
plement this concept. The programmatic character of the network allows
running it on the cloud, deploy it on-demand, and scale it with the use of

30

60 1

50 1

40 -

30 A

Time [s]

20 A

10 1

Open5GS Open5GS with wait mongo Free5GC
Figure 11: Time needed to automatically deploy virtualized 5G core network.

automated orchestration. Thus, the time needed to set up the network on-
demand is an important parameter for emerging use cases.

This experiment verifies the time needed to get the fully operational 5G
core network. Time was measured since applying the Helm command, start-
ing the deployment, until all core network pods are up and running.

The initial set of experiments revealed that Open5GS requires approxi-
mately 50 seconds to create, while the Free5GC network can be deployed in
just around 25 seconds. The origins of this behavior come from the Helm
chart implementations. Namely, some network functions in 5G networks
need to be created before others, for example, the database needs to be
created earlier than AMF, which is responsible for the registration of sub-
scribers. Default Kubernetes restart policy will try to reschedule pods with
an exponential back-off delay (10 s, 20 s, 40 s, etc.) [40]. The deployment
of OpendGS utilizes this mechanism, which causes additional delay trying
to reschedule some containers accordingly to the back-off time. In every
OpenbGS deployment, containers: HSS, PCF, PCRF, and UDR restarted
twice, what strongly exceeds the deployment time. Helm charts for Free5GC
leverage a couple of init containers deployed prior to a container with desired

31

network function: wait mongo and wait NRF. These containers are busybox
instances, which are executables that incorporate Unix utilities [41]. Both
containers work in a loop checking, respectively, if the MongoDB and NRF
pods are running. If not, containers wait 2 seconds before the next iteration.
Dependent network functions are deployed once wait mongo and Wait NRF
detect that MongoDB and NRF are up and running, respectively.

Similar mechanism is not implemented (besides wait NRF container in
BSF) in Openverso charts for Open5GS. Thus, we decided to implement
an original enhancement: the wait mongo container for HSS, PCF, PCRF,
and UDR pods in Open5GS deployment. Our contribution created the same
pods’ startup conditions. Hence, the comparison of the deployment time
of Openb5GS and FreebGC is reliable. Figure 11 depicts deployment time
for three setups: Open5GS,; Open5GS with our original enhancement wait
mongo, and Free5GC. Our implementation of the init containers reduced the
Open5GS deployment time by 40% on average. Despite proposed improve-
ments to OpendGS charts, Free5GC deployment is still around 16% faster
on average.

5.7. Discussion

The results of the tests conducted in our work offer insights that are
valuable from the broader perspective of future automated orchestration for
mobile core deployments. In summary, Open5GS seems to be more suitable
for commercial use. It delivers significantly greater throughput and better
support for the automation. Moreover, Open5GS supports higher amount
of operating systems and does not introduce any kernel limitations. Our
experiments revealed that UPF in both OpenbGS and FreebGC introduces
a similar delay. In the stable core network environment, Open5GS ensures
faster registration for UE and PDU establishment time. However, Free5GC
is more suitable for educational and testing environments, provisioning the
network faster than Open5GS and consuming less memory.

When considering automation, it is crucial to examine and understand the
architecture specific to deployment while analyzing deployment time. More-
over, each automation tool should be customized to the specific environment.
Taking into consideration deployment time and total registration time, we
can observe various applications for particular 5G core implementations. Due
to its shorter deployment time, Free5GC appears more suitable for educa-
tional purposes, while OpenbGS prioritizes faster registration of UEs, which
is crucial in a production environment.

32

Open5GS OE;?‘?SS Open5GS Open5GS
UPF e UPF UPF
BHS5 DE1 WAW1
UE gNB

Local environment in Krakow

Figure 12: Architecture of cloud-based 5G core network deployment.

6. Automation of cloud-based 5G network deployment

Due to the widespread availability of cloud providers’ resources, cloud-
based deployment is a natural next step as an underlying infrastructure for
the 5G network components. In case of the cloud, 5G functions can also
be deployed in the centralized or distributed manner, in which physical and
virtual machines hosting network functions can be placed in different physical
locations. Automation can be especially beneficial in such distributed and
complex cloud-based architectures, it should also comprise more aspects (e.g.,
creating infrastructure, orchestration, or ensuring connectivity).

In this section, we propose the process and necessary tools to automat-
ically deploy a virtualized 5G core network in a cloud infrastructure. OVH
Cloud was chosen because it allows access to the Openstack platform, enables
the launch of services in many locations around the globe, and is attractively
priced. Multiple UPFs are separated from the control plane and deployed in
different cloud regions to ensure geographical proximity for the end-users.

Based on the discussion and results presented in Sections 3 and 5, respec-
tively, we selected OpenbGS as a more prominent candidate for a cloud-based
deployment. The proposed deployment process comprises the following steps:

33

e creation of the cloud computing infrastructure and preparing its initial
configuration (Section 6.1),

e preparing images of virtual machines (Section 6.2),
e installing and configuring a virtualized 5G network (Section 6.3).

We designed an architecture in which UPF functions (user plane of 5G
core network) are separated from the rest of the 5G core functions (control
plane). Furthermore, multiple UPFs are deployed in different cloud regions
to ensure geographical proximity for the end-users. We utilized the following
regions of the OVH Cloud infrastructure, WAW1 - Warsaw, DE1 - Frankfurt
and BHS5 - Beauharnois. For evaluation, we also considered a reference,
centralized scenario in which the entire core of the 5G network (control and
user planes) is deployed on a single virtual machine in one location (DET).
Similar fully automated cloud-based deployments are not currently available,
even with the use of service orchestrators.

The infrastructure comprises also local resources run in Krakow with the
use of Dell Inspiron 5505 laptop with an AMD Ryzen 7 4700U processor,
16 GB RAM and a 512 GB SSD. The local environment was used solely to
simulate UE and gNB using UERANSIM access network simulator. Figure 12
presents the designed architecture.

In the following, we outline the necessary steps to deploy 5G core in the
cloud and provide some tools and solutions enabling automation. In Sec-
tion 6.4 we summarize the differences between local testbed and cloud-based
deployment. We also perform some preliminary performance assessments
and analyze the results in Section 6.5.

6.1. Creating and configuring cloud infrastructure

In our deployment, we utilized infrastructure of OVH Cloud. In the case
of OVH, creating the infrastructure for the deployment had to be preceded
by configuring the project. For this purpose, the project—setup module was
created. The module is responsible for creating and configuring the network
between the data centers in different geographical locations.

All resource definitions created by this module are included in the single
Terraform? file automating the process (called Terraform module). Listing 1

4https://www.terraform.io/

34

shows the example of a resource for creating a network in the OVH Cloud
project. The network has been configured in several selected regions and has
been assigned VLAN ID 30, distinguishing the networks in the project.

resource "ovh_cloud_project_network_private" "network" {

service_name = local.ovh_project_id
name = "private_network_30"
regions = ["WAW1", "DE1", "BHS5"]
vlan_id = 30

}

Listing 1: Network configuration for the project

A subnet was then configured for each region. An example resource that
creates a subnet for the WAWI1 region is shown in Listing 2. The entire
network had a pool of addresses of 10.30.0.0/16, and the address pools se-
lected for the configuration of the presented subnet starting from 10.30.0.2
and ending with 10.30.0.254. Parameter network_id associates the subnet to
the previously created network.
resource "ovh_cloud_project_network_private_subnet" "subnet_waw" {

service_name = local.ovh_project_id

network_id = ovh_cloud_project_network_private.network.id
start = "10.30.0.2"

end = "10.30.0.254"

network = "10.30.0.0/16"

dhcp = true

region = "WAW1"
no_gateway = true

Listing 2: Subnet configuration for the selected region

The project—setup module is also responsible for creating a user for
project management. The resource responsible for creating this user is shown
in Listing 3. The configuration includes roles corresponding to user rights.

After configuring the project, the infrastructure for deployment can be
created. To automate the process, we also used Terraform modules. These
modules are responsible for, among others: adding an SSH key used to pro-
vide access to virtual machines, guaranteeing the placement of virtual ma-
chines on different physical machines, creating virtual machines.

The contents of the automation file is shown in Listing 4.

The variable vms, is used to configure the virtual machines being cre-
ated in each region. We created a distributed infrastructure for the 5G core

35

resource "ovh_cloud_project_user" "terraform" {

service_name = local.ovh_project_id

description = "terraform"

role_names = [
"administrator",
"authentication",
"backup_operator",
"compute_operator",
"image_operator",
"infrastructure_supervisor",
"network_operator",
"network_security_operator",
"objectstore_operator",
"volume_operator",

]
}
Listing 3: Configuration of user for project management
locals {
vms = {
DE1 = [
{name = "openbgs-core-de", image_id = "69e11759-6988-4ad1-a533-2f4d4ae36b39",
flavor = "b2-7", fixed_ip_v4 = "10.30.1.10"},
{name = "openbgs-upf-de-1", image_id = "69e11759-6988-4ad1-a533-2f4d4ae36b39",
flavor = "b2-7", fixed_ip_v4 = "10.30.1.40"},
{name = "lb-de-1", image_id = "b754al116-dffb-4e3c-bbfe-0778£34b6304",
flavor = "b2-7", fixed_ip_v4 = "10.30.1.11"},
] 3
WAWL = [
{name = "openbgs-upf-waw-1", image_id = "£51863dd-1655-4949-blcd-33509delcede",
flavor = "b2-7", fixed_ip_v4 = "10.30.0.13"},
1,
BHS5 = [
{name = "openbgs-upf-bhs-1", image_id = "d398f2fb-387d-45f3-bda2-2f111f603e22",
flavor = "b2-7", fixed_ip_v4 = "10.30.4.14"},
]
}
}

Listing 4: Terraform module to automatically create a cloud infrastructure for the 5G
deployment

network deployment. Namely, the UPF network function was automatically
deployed in several regions. The following variables were used to define the
created virtual machines:

e name - name of the virtual machine,

36

e image - name of the virtual machine image, used when starting the
machine with the base operating system,

e image_id - image ID of the virtual machine, used when starting a ma-
chine with a pre-installed image,

e flavor - an identifier representing the specification of the virtual ma-
chine, for example the amount of available RAM?,

e fixed ip_v4 - static IP address assigned to the virtual machine.

A separate module defines resources in each region. An example for DE1
region is shown in Listing 5. The resource type openstack_compute_keypair_v2
was used to create the SSH key. The resource type openstack_compute_
servergroup_v2 was used to create a group with the policy anti-affinity. To
create virtual machines, the openstack_compute_instance_v2 type was used.
The count configuration parameter was used to avoid repeating the same
block of code for each separate machine and determines the number of re-
sources to be created. Based on the vms local variable, the virtual machine
settings were configured. Additionally, an output variable ansible_host is cre-
ated, which stores the public IP addresses of the created virtual machines.

The last step is to ensure proper connectivity between the gNB and UE
simulators and the 5G core network. This communication requires direct
visibility between machines, and this is not possible when Internet access
is provided via NAT. Additionally, communication between the base sta-
tion simulator and the core network uses the SCTP protocol, which is often
blocked by public cloud and Internet providers. To mitigate these obstacles
we used the WireGuard tunnels and automated the process of establishing
them with the use of ansible playbooks.

6.2. Creating images of virtual machines

Creating virtual machine images with pre-installed software facilitates
and accelerates the process of automated deployment of virtualized 5G core
network in a cloud infrastructure. For this purpose, we used Packer® tool.
Listing 6 shows a fragment of a Packer configuration file for a virtual machine
hosting Open5GS core network. The source block defines the machine from

Shttps://www.ovhcloud.com/pl/public-cloud/prices/
Chttps://www.packer.io/

37

resource "openstack_compute_keypair_v2" "piotr_keypair_de" {
name = "piotr_keypair_region_de"
region = "DE1"
public_key = file("../../../ansible/files/ssh_keys/piotr.pub")
}
resource "openstack_compute_servergroup_v2" "anit-affinity-compute-group-de" {
region = "DE1"
name = "compute-group-anti-affinity-de"
policies = ["anti-affinity"]
}
resource "openstack_compute_instance_v2" "instances" {
count = length(local.vms.DE1)
region = "DE1"
name = local.vms.DE1[count.index].name
image_name = try(local.vms.DE1[count.index].image, null)
image_id = try(local.vms.DE1l[count.index].image_id, null)
flavor_name = local.vms.DE1[count.index].flavor
key_pair = openstack_compute_keypair_v2.piotr_keypair_de.id
security_groups = ["default"]
stop_before_destroy = true
scheduler_hints {
group = openstack_compute_servergroup_v2.anit-affinity-compute-group-de.id
}
network {
name = "Ext-Net"
}
network {
name = "private_network_30"
fixed_ip_v4 = local.vms.DE1[count.index].fixed_ip_v4
}
}
output "ansible_host" {
value = {

@ instance openstack_compute_instance_v2.instances : instance.name =E]

"ansible_host=${instance.access_ip_v4} internal=${instance.network.l.fixed_ip_v4}"

}

Listing 5: Resource definition for the selected region.

which the virtual machine image will be created. The image building process
is based on using a running virtual machine and then configuring it using the
prepared Ansible playbook file. The Ansible file selection and the variables
passed to it are defined using the provisioner ”ansible—local” block. All
machines were configured to run the Ubuntu 20.04 operating system.

6.3. Configuration of the virtualized 5G network

To enable automated deployment of virtualized 5G core network in the
cloud infrastructure, we had to modify configuration files of the AMF, UPF
and SMF network functions. All default configurations can be found in the

38

"openstack" "openbgs" {

identity_endpoint = var.0S_AUTH_URL
password = var.0S_PASSWORD

region = var.0S_REGION_NAME
tenant_name = var.0S_TENANT_NAME
tenant_id = var.0S_TENANT_ID
username = var.0S_USERNAME
domain_name = "default"

flavor = "b2-7"

image_min_disk = 20

image_name = "openbgs"
source_image_name = "Ubuntu 20.04"
ssh_username = "ubuntu"
ssh_ip_version = 4
ssh_handshake_attempts = 20
networks = [var.network_id]

}

build {
sources = [
"source.openstack.openbgs",
]
provisioner "shell" {
inline = [
"sudo apt-get update",
"sudo apt-get install -y software-properties-common",
"sudo apt-add-repository --yes --update ppa:ansible/ansible",
"sudo apt-get install -y ansible"
]
}
provisioner "ansible-local" {
only = ["openstack.openbgs"]
playbook_dir = "../../ansible/"
playbook_file = "../../ansible/playbooks/packer_openbgs.yml"
role_paths = [".../../ansible/roles"]
galaxy_roles_path = "../../ansible/roles"
extra_arguments = [
"--extra-vars",
"ovh_region=\"${var.dc_name}\""
]
}

Listing 6: A fragment of a Packer configuration file for a virtual machine hosting Open5GS

core network.

Open5GS project repository”. We changed the value of NGAP interface IP
address to make it available to the base station simulator. The local tunnel

address value was used.

"https://github.com/open5gs/open5gs

39

logger:
file: /var/log/openbgs/amf.log

sbi:
server:
no_tls: true
client:
no_tls: true

smf :
sbi:
- addr: 127.0.0.4
port: 7777
pfcp:
- addr: {{ smf_address }}
gtpc:
- addr: {{ smf_address }}
gtpu:
- addr: {{ smf_address }}
metrics:
- addr: 127.0.0.4
port: 9090
subnet:
{Ji- for hostname, subnets in upf_subnets.items() %}
{i for subnet in subnets %}

- addr: {{ subnet.addr }}
dnn: {{ subnet.dnn }}

{Jj endfor %}

{i—endfor %}

dns:

.8
.4

o

- 8.8.
- 8.8.
mtu: 140
ctf:

enabled: auto

o

upf:

pfcp:
{}j- for hostname, subnets in upf_subnets.items() 4}

- addr: "{{ upf_pfcp_address[hostname] }}"
dnn: [{E for subnet in subnets %}{{subnet.dnn}}{n— if not loop.last %},
{{}- endif Y}{f| endfor %}]
{J- endfor J}

Listing 7: Modified SMF configuration file to enable automated deployment in cloud
infrastructure.

The configuration file for the SMF is shown in Listing 7. We significantly
modified it to enable the automation process. The smf section configures
[P addresses for the service-based interface, PFCP interface, GTP interface,

40

upf_subnets:
openbgs-upf-waw-1:

- addr: 10.45.0.1/16
subnet: 10.45.0.0/16
dnn: internet-waw
dev: ogstun

openbgs-upf-bhs-1:

- addr: 10.46.0.1/16
subnet: 10.46.0.0/16
dnn: internet-bhs
dev: ogstun

openbgs-upf-de-1:

- addr: 10.47.0.1/16
subnet: 10.47.0.0/16
dnn: internet-de
dev: ogstun

upf_pfcp_address:
openbgs-upf-waw-1: 10.30.0.13
openbgs-upf-bhs-1: 10.30.4.14
openbgs-upf-de-1: 10.30.1.40

Listing 8: Variables used in the SMF configuration file.

and exported metrics. This section also automatically defines all available
subnets along with the DNN (Data Network Name) using dedicated loops.
The upf section is used to specify the UPF instances spawned in the network
and what data networks they support. Communication sessions for UPF data
are created using the addresses provided in this section. The variables used
to generate the configuration are shown in Listing 8. Each UPF supports a
different subnet and data network name depending on the region in which it
was launched.

We also significantly modified the configuration file for the UPF function
shown in Listing 9. Similarly, we prepared a dedicated loop to fully automate
the deployment process. The template uses the same variables to generate the
configuration of possible subnets that were used to generate the configuration
for SMF'. The upf section defines access addresses. The PFCP address is used
for communication with the SMF, and user communication takes place via
the GTPU address. Subnet specifies the available subnets along with data
network access.

Finally, we also automated the deployment process for the UERANSIM
tool comprising a base station simulator component and a user terminal sim-

41

logger:
file: /var/log/openbgs/upf.log
sbi:
server:
no_tls: true
client:
no_tls: true

upf:
pfcp:
- addr: {{ upf_address_pfcp }}
gtpu:
- addr: {{ upf_address_gtpu }}
subnet:
{J/- for subnet in upf_subnets[inventory_hostname] J}

- addr: {{ subnet.addr }}
dnn: {{ subnet.dnn }}
dev: {{ subnet.dev }}

{%- endfor %}
metrics:

- addr: 127.0.0.7
port: 9090

Listing 9: Modified UPF configuration file to enable automated deployment in cloud
infrastructure.

ulator component that can be run independently. The Vagrant® integration
with Ansible was used to configure the newly created virtual machines host-
ing both components. For this purpose, a playbook was prepared, the task of
which was to install the UERANIM software and properly configure the ter-
minals. The machines were created using the vagrant up command (locally)
or with the use of Docker containers (in the cloud environment). The pro-
posed automation method facilitates the expansion of the deployment with
more UEs and gNB components to easily conduct studies on the scalability
of the 5G infrastructure. The terminal configuration is shown in Listing 10.

6.4. Comparison of local testbed and cloud-based deployment

Both infrastructures differ significantly in numerous aspects. Firstly, a
local testbed comprises a single node. In the cloud, we deployed virtual ma-
chines distributed over physically separated regions and a physical host to
take full advantage of the cloud infrastructure. Thus, the automation process,
in cloud-deployment case, must comprise the configuration of cloud resources,

8https://www.vagrantup.com/

42

supi: 'imsi-999700000000003'

mcc: '999'

mnc: '70'

protectionScheme: O
homeNetworkPublicKey: '5a8d38864820197c3394b92613b20b91633cbd897119273bf8e4abf4eec0ab50'’
homeNetworkPublicKeyId: 1
routingIndicator: '0000'

key: '465B5CE8B199B49FAASFOA2EE238A6BC'
op: 'ES8ED289DEBA952E4283B54E8S8E6183CA'
opType: 'OPC'

amf: '8000'

imei: '356938035643803'

imeiSv: '4370816125816151"'

gnbSearchList:
- 192.168.0.74

uachic:
mps: false
mcs: false

uacAcc:
normalClass: 0O
classll: false
class12: false
class13: false

sessions:
- type: 'IPv4'
apn: 'internet-waw'
slice:
sst: 1
configured-nssai:
- sst: 1

default-nssai:
- sst: 1
SD: 1

integrity:
IAl: true
TA2: true

ciphering:
EA1l: true
EA2: true

integrityMaxRate:

uplink: 'full'
downlink: 'full'

Listing 10: Modified UE configuration file to enable automated deployment in cloud in-
frastructure.

43

management plane and connectivity between the components through the
partially restricted public network. Furthermore, additional tools may be
useful to properly monitor distributed cloud infrastructure, for example,
Prometheus?, Telegraf'® and Grafana!!. Due to the increased number of
virtual machines, cloud-based deployment benefits from the Packer tool au-
tomating also the creation of images.

Local testbed and cloud-based deployment do not differ significantly con-
cerning the configuration files of 5G core network implementation. Once the
infrastructure is properly configured (e.g. connectivity between regions and
WireGuard tunnels) only TP addresses must be specified. However, there are
significant, architectural differences between the environments. In the local
testbed, all network functions are deployed within a single Kubernetes clus-
ter. On the contrary, in a cloud-based deployment control and user planes
as well as radio access network simulator are physically separated. It must
not be the case, but we selected a fully distributed deployment architecture
to present the advantages of cloud infrastructure. Finally, 5G network com-
ponents are installed from the source files in the cloud environment, while in
the local testbed Helm charts were used.

To sum up, the automation of cloud-based deployment is significantly
more complex, requires additional steps, and comprises many more compo-
nents, especially in the form of proposed distributed architecture.

6.5. Preliminary performance evaluation

We performed some preliminary performance evaluation of the proposed
automation process for a cloud-based virtualized 5G network. To measure
command execution time, the system command time was used. Ten measure-
ments were performed for each test scenario to ensure statistical reliability.
Based on the collected data, the maximum, minimum, average and median
values were determined.

We measured the time needed to create the server infrastructure using
Terraform modules, namely, the execution time of the terraform apply com-
mand. The measurement was performed for two scenarios:

e centralized (all network functions deployed in a single region of the

https://prometheus.io/
Whttps:/ /www.influxdata.com /time-series-platform /telegraf/
Uhttps://grafana.com/oss/grafana/

44

cloud infrastructure),

e distributed (instances of UPF network function are distributed across
several regions).

The results are presented in the Table 3.

Table 3: Environment creation time in minutes

Minimum | Maximum | Average | Median

Centralized scenario 03:49 06:46 05:08 05:06

Distributed scenario 03:57 09:20 07:14 07:17

Terraform creates independent resources in parallel, so the command ex-
ecution time was influenced by the time of the slowest resource created. The
resource creation time depends on the performance of the cloud infrastruc-
ture. During testing, the resources that occasionally took the longest to
create were virtual machines running in the BHSS region. It affects maxi-
mum, average and median times for distributed scenario. For example, the
average creation time was two minutes longer for the distributed scenario, as
in the centralized one no machine was deployed in the BHS5 region. Simul-
taneously, when the performance of the whole cloud infrastructure was not
deteriorated, both scenarios provided similar results (minimum environment
creation time). To sum up, it is critical to properly select regions and be
aware that the time needed to create the infrastructure may change depend-
ing on the performance of the cloud infrastructure.

We also measured the execution time of Ansible playbook considered as
an execution time of the ansible—playbook command performed in the dis-
tributed scenario. We compared the times needed to deploy a virtualized
core network with the use of virtual machines using:

e the base operating system (all the software must be installed during
the deployment process),

e pre-installed images of virtual machines created with Packer (possible
based on scripts proposed in Section 6.2).

The results are presented in Table 4.
The operations defined by a given playbook are performed sequentially.
The average execution time difference was approximately ten minutes, as

45

Table 4: Execution time of the ansible-playbook command in minutes

Minimum | Maximum | Average | Median
Base image 18:06 19:41 19:01 19:10
Pre-installed image 07:59 09:19 08:37 08:35

shown in Table 4. Consequently, minimum, average and median times are
significantly different. It resulted from a smaller number of operations to be
performed in the pre-installed case. In the case of the pre-installed image, all
that was required was to configure the network and update the configuration
of all tools. It shows the advantages of using pre-installed images of virtual
machines as we proposed in this paper.

A significant reduction in the deployment time can be observed when
using pre-installed virtual machine images. Such an optimization can be
particularly important in the context of the automation of the deployment
of virtualized 5G network. However, the use of pre-installed images also has
its consequences, for example, it involves the use of a previously prepared
version of the software, which may limit the flexibility of this solution.

7. Conclusions

This paper addresses the problem of automating deployment of virtu-
alized mobile core for 5G and beyond mobile networks. 5G deployments
will require automation to ensure robust, efficient and zero-touch deploy-
ment processes because of the increasing complexity and requirements on
dynamic provisioning. Automation can be especially beneficial in the case
of distributed deployments in complex cloud-based infrastructures. Typical
use-cases are, for example, private mobile networks in Industry 4.0 or tempo-
rary networks for mass events to ensure effective transmission of video signals
and reduce necessity of setting up wires.

The main goal of this paper was to describe a Proof-of-Concept testbed
for automating the virtualized deployment of core mobile networks in a self-
managed infrastructure, with additional insights about potential problems
and solutions. The PoC includes, among others, technology stack, configu-
ration files, images of virtual machines, modifications to the virtualization
environment, configuration of kubernetes cluster, and comprehensive descrip-
tions, facilitating reproducibility of the environment. All components are
specific solely to 5G networks, and our solution is tailored specifically for

46

this application. Designing a framework specifically for the 5G core network
allowed us to tackle challenges that are often neglected in current research.
For example, we ensured interconnectivity between 5G components spread
across multiple cloud environments and incorporated support for specialized
protocols. Furthermore, the automation solution provides extensive configu-
ration of the various 5G network elements.

Furthermore, we provided comprehensive tests and analysis for the au-
tomated deployments of Free5GC and OpenbGS implementations in the 5G
core network. The implementations were tested in terms of the throughput,
the delay introduced by the UPF, and the time of UE registration. We com-
pared two open-source core network implementations in terms of feasibility
for virtualization and automation, an aspect overlooked in previous studies.
We provided detailed descriptions explaining, for example, the preparation
of the virtual environment, the process of creation and configuration of the
Kubernetes cluster or Helm charts adoption to the underlying infrastructure.
We also proposed modifications to Helm charts to remove the initial imped-
iments in the automated 5G deployment process due to the required human
intervention. All automation components were deployed and configured us-
ing Ansible playbooks, another original contribution of our work [5]. These
playbooks create a Kubernetes cluster on the virtual machine, edit Helm
charts, deploy the 5G core network using the charts, as well as, determine IP
address of WEBUI service required to register a mobile subscriber and set
up the UERANSIM subscriber.

We conduct a thorough performance evaluation of the automated 5G core
network orchestration in a local environment (e.g. time needed to deploy core
network) and based on the results, we propose enhancements that reduce de-
ployment time by 40% on average for one of the implementations. We also
present the process and necessary tools to automatically deploy a virtualized
5G core network in a cloud infrastructure. This contribution comprises, for
example: creating and configuring cloud infrastructure, creating images of
virtual machines, ensuring connectivity between distributed locations, and
configuration of the virtualized 5G network. Similar fully automated cloud-
based deployments are not currently available, even with the use of service
orchestrators. The Open5GS open source implementation of the 5G core
network was selected as a more prominent choice for cloud-based deploy-
ment. Finally, we performed preliminary performance assessments of the
automation process in the proposed cloud-based deployment.

The contribution is expected to be useful for industry and academia in

47

experimenting with and developing automated orchestration systems for mo-
bile core networks. Presented results may be especially important as require-
ments of consecutive generations of mobile networks become increasingly de-
manding. Meeting these requirements enables providing emerging services
and satisfying end-users. The discussion of results may utilize architectural
decisions and catalyze future research efforts.

Possible future research directions include providing a reliable comparison
of open-source 5G core network implementations to commercial solutions.
Additionally, we plan to extend the performance evaluation in the cloud-
based deployment to better assess the automation process and also verify the
performance of the geo-distributed user plane. Finally, to make our Proof-
of-Concept more scalable to accommodate growing demands, a multi-node
cluster with multiple UEs should be considered to host a virtualized mobile
core network. Finally, the proposed automation framework can be further
generalized, as it is currently tightly coupled to the 5G network workload.

Acknowledgement

This work was supported by the Polish Ministry of Science and Higher
Education with the subvention funds of the Faculty of Computer Science,
Electronics and Telecommunications of AGH University of Science.

References

[1] S. Zhang, An Overview of Network Slicing for 5G, IEEE Wireless Com-
munications 26 (3) (2019) 111-117. doi:10.1109/MWC.2019.1800234.

[2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Toward 6G
Networks: Use Cases and Technologies, IEEE Communications Maga-
zine 58 (3) (2020) 55-61.

[3] Azure Private 5G Core, https://azure.microsoft.com/en-us/prod
ucts/private-5g-core, description of charts directory - Helm (2024).

[4] R. Ullah, M. A. U. Rehman, M. A. Naeem, B.-S. Kim, S. Mastorakis,
ICN with edge for 5G: Exploiting in-network caching in ICN-based edge

computing for 5G networks, Future Generation Computer Systems 111
(2020) 159-174.

48

[5]

[6]

[10]

[11]

[12]

Ansible playbooks automating deployment of Free5GC and Open5GS,
https://github.com/wojt3ek140/5g_core_automation (2023).

J. Rischke, P. Sossalla, S. Itting, F. H. P. Fitzek, M. Reisslein, 5G
Campus Networks: A First Measurement Study, IEEE Access 9 (2021)
121786-121803. doi:10.1109/ACCESS.2021.3108423.

M. Chepkoech, N. Mombeshora, B. Malila, J. Mwangama, Evaluation
of open-source mobile network software stacks: A guide to low-cost de-
ployment of 5g testbeds, in: 2023 18th Wireless On-Demand Network
Systems and Services Conference (WONS), 2023, pp. 56—63.

A. Sahbafard, R. Schmidt, F. Kaltenberger, A. Springer, H.-P. Bernhard,
On the performance of an indoor open-source 5g standalone deployment,
in: 2023 ITEEE Wireless Communications and Networking Conference

(WCNC), 2023, pp. 1-6.

C. Wei, A. Kak, N. Choi, T. Wood, bgperf: Profiling open source 5g ran
components under different architectural deployments, Association for
Computing Machinery, New York, NY, USA, 2022, p. 43-49.

F. J. De Souza Neto, E. Amatucci, N. A. Nassif, P. A. Mar-
ques Farias, Analysis for Comparison of Framework for 5G Core
Implementation, in: 2021 International Conference on Information

Science and Communications Technologies (ICISCT), 2021, pp. 1-5.
do0i:10.1109/ICISCT52966.2021.9670414.

L. B. Silveira, H. C. de Resende, C. B. Both, J. M. Marquez-Barja,
B. Silvestre, K. V. Cardoso, Tutorial on communication between access
networks and the 5g core, Computer Networks 216 (2022) 109301.

A. Gabilondo, Z. Fernandez, A. Martin, R. Viola, M. Zorrilla,
P. Angueira, J. Montalban, 5G SA Multi-vendor Network Interoper-
ability Assessment, in: 2021 IEEE International Symposium on Broad-
band Multimedia Systems and Broadcasting (BMSB), 2021, pp. 1-6.
doi:10.1109/BMSB53066.2021.9547167.

G. Lando, L. A. F. Schierholt, M. P. Milesi, J. A. Wickboldt, Evalu-
ating the performance of open source software implementations of the
5G network core, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS 2023), 2023, pp. 1-7.

49

[14]

[15]

[18]

[19]

[20]

[21]

[22]

D. Lake, N. Wang, R. Tafazolli, L. Samuel, Softwarization of 5G Net-
works—Implications to Open Platforms and Standardizations, IEEE Ac-
cess 9 (2021) 88902-88930. doi:10.1109/ACCESS.2021.3071649.

F. A. Wiranata, W. Shalannanda, R. Mulyawan, T. Adiono, Automa-
tion of Virtualized 5G Infrastructure Using Mosaic 5G Operator over
Kubernetes Supporting Network Slicing, in: 2020 14th International

Conference on Telecommunication Systems, Services, and Applications
(TSSA, 2020, pp. 1-5. doi:10.1109/TSSA51342.2020.9310895.

5G-all-in-one Helm, https://github.com/my5G/5G-all-in-one-hel
m, 5G-all-in-one Helm (2024).

I. Sanchez-Navarro, A. Serrano Mamolar, Q. Wang, J. M. Alcaraz
Calero, 5GTopoNet: Real-time topology discovery and management on

5G multi-tenant networks, Future Generation Computer Systems 114
(2021) 435-447.

C.-D. Phung, N.-E.-H. Yellas, S. B. Ruba, S. Secci, An Open Dataset
for Beyond-5G Data-driven Network Automation Experiments, in: 2022
Ist International Conference on 6G Networking (6GNet), 2022, pp. 1-4.

B. Chun, J. Ha, S. Oh, H. Cho, M. Jeong, Kubernetes Enhancement
for 5G NFV Infrastructure, in: 2019 International Conference on Infor-

mation and Communication Technology Convergence (ICTC), 2019, pp.
1327-1329. doi:10.1109/ICTC46691.2019.8939817.

I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, P. Bertin, Improving traffic
forecasting for bg core network scalability: A machine learning approach,
IEEE Network 32 (6) (2018) 42-49.

Mijumbi, Rashid and Serrat, Joan and Gorricho, Juan-Luis and
Bouten, Niels and De Turck, Filip and Boutaba, Raouf, Net-
work function virtualization: State-of-the-art and research challenges,
IEEE Communications Surveys & Tutorials 18 (1) (2016) 236-262.
do0i:10.1109/COMST.2015.2477041.

R. Viola, A. Martin, M. Zorrilla, J. Montalban, P. Angueira, G.-M.
Muntean, A Survey on Virtual Network Functions for Media Stream-
ing: Solutions and Future Challenges, ACM Comput. Surv. 55 (11) (feb
2023). doi:10.1145/3567826.

50

23]

[28]

[29]

[30]

[31]

I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. Nour,
Y. Wang, A Survey of Network Virtualization Techniques for Internet
of Things Using SDN and NFV, ACM Comput. Surv. 53 (2) (apr 2020).
doi:10.1145/3379444.

N. F. Saraiva de Sousa, D. A. Lachos Perez, R. V. Rosa,
M. A. Santos, C. Esteve Rothenberg, Network Service Orchestra-
tion: A survey, Computer Communications 142-143 (2019) 69-94.
doi:https://doi.org/10.1016/j.comcom.2019.04.008.

NG-RAN Architecture, https://www.3gpp.org/news-events/2160-n
g_ran_architecture (2022).

D. Mrozinski, M. Klinkowski, K. Walkowiak, Cost-aware du placement
and flow routing in 5g packet xhaul networks, IEEE Access 11 (2023)
12710-12726. doi:10.1109/ACCESS.2023.3241751.

R. Goscien, Traffic-aware service relocation in software-defined and
intent-based elastic optical networks, Computer Networks 225 (2023)
109660.

3GPP, 3rd Generation Partnership Project; 5G; System architecture for
the 5G System (5GS) (Relase 16), Tech. Rep. TS 23.501 version 16.6.0,
3GPP (2020).

Github page of UERANSIM project, https://github.com/aligungr/
UERANSIM (2022).

Quickstart, https://openbgs.org/openbgs/docs/guide/01-quickst
art/, introduction to Open5GS (2022).

S. Rommer, P. Hedman, M. Olsson, L. Frid, S. Sultana, C. Mulligan,
Chapter 15 - selected call flows, in: S. Rommer, P. Hedman, M. Ols-
son, L. Frid, S. Sultana, C. Mulligan (Eds.), 5G Core Networks, Aca-
demic Press, 2020, pp. 395-429. doi:https://doi.org/10.1016/B978-0-08-
103009-7.00015-6.

URL https://www.sciencedirect.com/science/article/pii/B978
0081030097000156

ESXi Wikipedia page, https://en.wikipedia.org/wiki/VMware_ES
Xi, eSXi wikipedia page (2022).

51

[33] Open5GS Ubuntu support, https://openbgs.org/openbgs/docs/pla
tform/01-debian-ubuntu/, open5GS Ubuntu support (2022).

[34] Free5GC Environmental testing, https://github.com/freebgc/fre
ebgc/wiki/Environment, free5GC Environmental testing (2022).

[35] GTP5G kernel module, https://github.com/freebgc/gtpsg, gTP5G
kernel module (2022).

[36] Towards5GS Free5GC Helm Charts, https://github. com/Orange-0pe
nSource/towardsbgs-helm, towards5GS Free5GC Helm Charts (2022).

[37] Openverso Open5GS Helm Charts, https://github.com/Gradiant/
openverso-charts, openverso Open5GS Helm Charts (2022).

[38] Flannel is a network fabric for containers, designed for Kubernetes, ht
tps://github.com/flannel-io/flannel, flannel (2023).

[39] Using the Multus CNI in OpenShift, https://cloud.redhat.com/b
log/using-the-multus-cni-in-openshift, types of CNI plugins
(2022).

[40] Kubernetes Pod Lifecycle, https://kubernetes.io/docs/concepts/
workloads/pods/pod-lifecycle/, kubernetes Pod Lifecycle (2022).

[41] BusyBox: The Swiss Army Knife of Embedded Linux, https://busy
box.net/about.html, details about busybox (2022).

52

