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Abstract

Network slicing is considered as a key enabler for 5G and beyond mobile
networks for supporting a variety of new services, including enhanced mo-
bile broadband, ultra-reliable and low-latency communication, and massive
connectivity, on the same physical infrastructure. However, this technology
increases the susceptibility of networks to cyber threats, particularly Dis-
tributed Denial-of-Service (DDoS) attacks. These attacks have the potential
to cause service quality degradation by overloading network function(s) that
are central to network slices to operate seamlessly. This calls for an Intrusion
Detection System (IDS) as a shield against a wide array of DDoS attacks. In
this regard, one promising solution would be the use of Deep Learning (DL)
models for detecting possible DDoS attacks, an approach that has already
made its way into the field given its manifest effectiveness. However, one
particular challenge with DL models is that they require large volumes of la-
beled data for efficient training, which are not readily available in operational
networks. A possible workaround is to resort to Transfer Learning (TL) ap-
proaches that can utilize the knowledge learned from prior training to a target
domain with limited labeled data. This paper investigates how Deep Transfer
Learning (DTL) based approaches can improve the detection of DDoS attacks
in 5G networks by leveraging DL models, such as Bidirectional Long Short-
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Term Memory (BiLSTM), Convolutional Neural Network (CNN), Residual
Network (ResNet), and Inception as base models. A comprehensive dataset
generated in our 5G network slicing testbed serves as the source dataset for
DTL, which includes both benign and different types of DDoS attack traf-
fic. After learning features, patterns, and representations from the source
dataset using initial training, we fine-tune base models using a variety of TL
processes on a target DDoS attack dataset. The 5G-NIDD dataset, which
has a sparse amount of annotated traffic pertaining to several DDoS attack
generated in a real 5G network, is chosen as the target dataset. The results
show that the proposed DTL models have performance improvements in de-
tecting different types of DDoS attacks in 5G-NIDD dataset compared to
the case when no TL is applied. According to the results, the BiLSTM and
Inception models being identified as the top-performing models. BiLSTM
indicates an improvement of 13.90%, 21.48%, and 12.22% in terms of accu-
racy, recall, and F1-score, respectively, whereas, Inception demonstrates an
enhancement of 10.09% in terms of precision, compared to the models that
do not adopt TL.

Keywords:
5G Networks, Network Slicing, Intrusion Detection, DDoS Attacks, Deep
Transfer Learning, Fine-tuning

1. Introduction

5G and Beyond 5G (B5G) mobile networks are expected to support a
variety of emerging use-cases, such as holographic telepresence, immersive
extended-reality, control and automation procedures in Industry 4.0, au-
tonomous vehicles, Internet of Things (IoT), and remote telehealth [1]. Sup-
port for such a diverse set of applications imposes strict requirements on the
mobile network along several dimensions, such as throughput, latency, and
reliability. Network slicing has been envisaged as a key enabler to satisfy
these diverse requirements, by creating multiple isolated end-to-end virtual
networks dedicated to different services, on top of a common physical infras-
tructure. Some of the fundamental principles involved in realizing end-to-end
network slicing are Network Function Virtualization and Software Defined
Networking (SDN), which provide the necessary flexibility to tailor the net-
work according to specific requirements. To achieve end-to-end slicing, the
principles of NFV and SDN must be applied across the entirety of the mobile
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network, from the Radio Access Network (RAN) to the core. Nevertheless,
privacy and security concerns arising from the introduction of heterogeneous
types of devices, adoption of new technologies such as SDN and NFV, and
architectural changes, have eclipsed the advantages of the approaches men-
tioned above [2].

Similar to any other network infrastructure, 5G and B5G mobile networks
are vulnerable to cyberthreats, particularly DoS/DDoS attacks [3]. In fact,
the distributed deployment of network functions enabled by NFV and SDN
increases the number of attack surfaces that can be made target for DDoS
attacks. On the other hand, the scale and heterogeneity of User Equipments
(UEs), such as smartphones and Internet of Things (IoT) devices, make them
susceptible to be compromised easily and to be part of botnets that can be
utilized to orchestrate DDoS attacks. A DDoS attack exhausts the network’s
resources by inundating it with illegitimate and bogus traffic from the at-
tacker. The primary objective is typically to impede the network resource
from fulfilling and responding to requests from authorized users [2, 4]. Dif-
ferentiating between attack-generated and legitimate user traffic is necessary
to mitigate such DDoS attacks in 5G and B5G mobile networks [2].

Detecting DDoS attacks in 5G and B5G mobile networks is an intricate
task due to ever-changing network structures and the large-scale of network-
connected devices that produce an immense traffic load on these networks.
Furthermore, conventional IDSs face a deluge of increasingly complex attacks
that outpace their defensive efforts. Data-driven solutions such as DL models
have shown promise in dealing with voluminous traffic load and recognizing
complex attack patterns to detect possible DDoS attacks. Traditional DL-
based DDoS attack detection models are usually trained on a specific dataset
originated from a particular network. DL models developed by training on
a dataset from one network cannot be directly applied on another network
due to change in data distribution and pattern. Each network needs to go
through the same cycle of training a DL model from scratch for its own data
that is often a time-consuming and tedious task. This challenge is further
exacerbated by the scarcity of the required amount of labeled data needed for
generating efficient DL models without any over- and under-fitting. Transfer
Learning (TL) especially Deep Transfer Learning (DTL) strategies have been
successfully used in computer vision and Natural Language Processing (NLP)
to address similar challenges [5, 6].

DTL approaches involve repurposing a DL model developed for one do-
main—referred to as the source domain—to address a different but related
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task within another domain, known as the target domain [5]. Rather than
initiating a model’s development from scratch for each new domain, DTL
utilizes the knowledge and patterns learned from the source domain to im-
prove model performance in the target domain. This is particularly beneficial
when there is a shortage of data in the target domain and the information
collected from the source domain are relevant to the target domain. Addi-
tionally, DTL can expedite model convergence and mitigate the resources
needed to develop a custom-built DDoS attack detection models customized
for different networks. Motivated by these benefits, a limited number of
research studies have investigated the application of DTLs in DDoS attack
detection for different types of networks [7, 8, 9]. As an initial work [10] in
the related field, we proposed to utilize DTL based models to detect DDoS
attacks on 5G network slicing environment.

This paper expands on several aspects of the preliminary work presented
in [10]. First, we conduct comprehensive analysis of different DTL strate-
gies by varying the number of layers that are retrained and by introducing
different combination of new layers during the retraining process. Our anal-
ysis incorporates two distinct datasets encompassing both benign and ma-
licious traffic flows specific to two different 5G networks. However, the two
datasets that we utilized are highly skewed in the total number of samples;
one having around six million samples whereas the other dataset has only
a few hundred thousand samples. To ensure similar sizes for training/test
sets in both datasets, we employed two different sampling methods focus-
ing on consistency and reproducibility of our analysis in the first case and
investigating the effects of variability and adaptability in the second case.
Consequently, we iterate through both sample methods for each of our pro-
posed DTL strategies to understand different ways of knowledge transfer and
model enhancement. Finally, we expand our discussion of the related works
by including recent developments on the application of DTL and detection
of DDoS attacks in 5G and B5G networks.

The main contributions of this paper are as follows:

• We have generated a dataset comprising six million traffic flows (both
attack and benign) from a 5G laboratory testbed [11], which is utilized
as the source domain in developing our DTL models. The network
within our testbed is bifurcated into two distinct slices, and traffic
data is collated from both slices. On the other hand, the 5G-NIDD
[12] dataset is used as the target domain that has a small amount
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of annotated traffic data that is relevant to different DDoS attacks
generated in a real 5G network.

• We explore various DL models, including Bidirectional Long Short-
Term Memory (BiLSTM) [13], Convolutional Neural Network (CNN)
[14], Residual Network (ResNet) [15], and Inception [16] as potential
classifiers for DDoS attack detection. To do this, we use our dataset to
create pre-trained models and DTL methods for different algorithms in
the target dataset.

• We propose our methodology called DTL-5G based on two objectives.
Objective 1 refers to consistency and reproducibility when using fixed
samples and training/test sets. Objective 2 investigates the effects
of variability and adaptation using dynamic resampling and changed
training sets.

• We apply two different DTL strategies according to our objectives.
Strategy 1 refers to fine-tuning without adding a new layer and only
by freezing one or more layers and then retraining the model. Strategy
2 achieves fine-tuning by removing the last layer, adding one or more
layers, and then retraining the model. Each strategy has three different
scenarios by varying the number of layers that are retrained during fine-
tuning.

• We perform a thorough evaluation to show the effectiveness of DL mod-
els in our generated dataset. Specifically, the BiLSTM model consis-
tently outperforms other models and achieves an accuracy of 98.74%,
a recall of 97.90%, a precision of 99.62%, and an F1-score of 98.75%
for Objective 1. This indicates that the LSTM-based model is effective
in detecting DDoS attacks in 5G networks. On the other hand, CNN-
based models also show strong performance, particularly in terms of
recall and F1-score for Objective 1, with the Inception achieving an ac-
curacy of 97.23% and an F1-score of 97.27%. However, the CNN models
required longer training times compared to LSTM based model.

• We evaluate both LSTM- and CNN-based models’ performance on the
5G-NIDD dataset as a baseline for our DTL scenarios. For Objective 1,
the Inception achieves the highest accuracy and F1-score, with values of
87.31% and 87.72%, respectively. This indicates that DL based models
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perform well when sufficient amount training data is available like our
generated dataset. However, the performance of the same DL based
models deteriorates significantly when there is lack of sufficient amount
training data such as the case of 5G-NIDD dataset.

• We conduct extensive evaluation to demonstrate the effectiveness of
DTL strategies that enhance the performance of DL models on the
5G-NIDD dataset. In our evaluation, the DTL-based BiLSTM model
demonstrates an enhancement of 13.90%, 21.48%, and 12.22% in accu-
racy, recall, and F1-score, respectively, compared to the baseline perfor-
mance on the 5G-NIDD dataset. Furthermore, DTL-based Inception
model demonstrates a 10.09% enhancement in precision compared to
the same baseline.

The organization of this paper is structured as follows: Section 2 explores
the current DTL-based techniques for 5G networks and also discusses exist-
ing research related to DDoS attacks on 5G networks. Section 3 introduces
the fundamentals of DTL and the methodology of attack detection and clas-
sification based on DTL. Section 4 outlines the results and discussions. The
paper is concluded with future direction in Section 5.

2. Related Work

This section discusses some previous works related to DTL and DDoS
attack detection in the 5G network literature. As TL is a well-studied area of
DL in other domains, such as computer vision and NLP, there are a multitude
of research studies in the literature [17, 18]. However, little research has been
done on applying TL, especially DTL, to DDoS detection problems in 5G
networks. Hence, this paper studies the application of DTL in the context
of IDS in 5G networks to detect DDoS attacks.

2.1. DTL Techniques on 5G-based Networks

The papers [19] and [20] both focus on improving IoT data classifica-
tion and resource optimization in 5G networks, particularly under limited
data conditions. The paper [19] introduces a method using TL with the
AdaBoost algorithm to enhance classification accuracy, spectrum usage, and
network throughput. Similarly, the paper [20] addresses network traffic clas-
sification challenges in 5G IoT systems by employing DTL with optimized
pre-trained models like EfficientNet and Big Transfer (BiT) and achieving
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near-complete accuracy with just 10% of labeled data. Experiments using the
USTC-TFC2016 dataset further validate the effectiveness of this approach
in data-restricted scenarios.

The study [21] explores the integration of IoT and 5G in the Industrial
Internet of Things (IIoT), proposing TL to reduce the data and resources
needed for training new models. TL is applied at two levels—machinery and
networking— to enhance predictive maintenance and fault detection with
pre-trained models on similar equipment and optimize the 5G infrastructure
supporting IIoT. Similarly, the paper [22] examines network slicing in IIoT
using a Deep Deterministic Policy Gradient (DDPG) algorithm enhanced by
TL. The method optimizes slicing parameters like bandwidth and transmis-
sion power to improve QoS, energy efficiency, and reliability. TL accelerates
learning across multiple gateways by leveraging knowledge from previously
optimized contexts and ensuring faster convergence and better slice perfor-
mance in dynamic environments.

The research [23, 24] proposes FortisEDoS, a framework to mitigate Eco-
nomical Denial of Sustainability (EDoS) attacks in 5G network slicing. It
combines a CG-GRU anomaly detection model with DTL to detect malicious
behaviors and prevent unnecessary resource scaling. FortisEDoS includes a
surveillance system for continuous monitoring, an auto-scaling module for
real-time resource adjustment, and an EDoS Mitigator to validate scaling
requests and block malicious ones. The framework effectively identifies com-
plex EDoS attacks that mimic real traffic and reduce the risk of financial
damage.

2.2. DDoS Attack Detection Techniques on 5G-based Networks

In a prior work [3], we evaluated the impact of DoS/DDoS attacks on 5G
network slices, specifically on key performance indicators such as bandwidth
and latency. Additionally, we created a new DoS attack detection system
called SliceSecure, utilizing the LSTM model. The model demonstrated an
impressive detection accuracy on the recently developed 5G dataset. We
showcased the slice implementation using a 5G simulated testbed employ-
ing Free5GC [25] and UERANSIM [26]. This configuration enabled the re-
searchers to both execute and quantify the immediate effects of DDoS attacks
on network performance.

Several studies have proposed various models and frameworks to enhance
DDoS detection in 5G and B5G networks. For instance, [2] employed a
multilayer perceptron model with Pearson Correlation Coefficient (PCC) for
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feature selection and achieved a high accuracy of 99.66% and a very low loss
rate of 0.011 in classifying DDoS attacks in 5G and B5G networks. Similarly,
[27] developed a detection method to protect infrastructure, tenants, and
users across both the edge and core of 5G networks. The system, tested
in real multi-tenant 5G infrastructure scenarios, demonstrated scalability,
flexibility, and effectiveness in identifying and mitigating DDoS attacks.

Other research has focused on specific aspects of DDoS detection, such
as traffic flow monitoring and anomaly detection. The paper [28] presented
a method for detecting network devices involved in flood-based DDoS at-
tacks by analyzing traffic flows at their origin and achieved high accuracy
in distinguishing between normal operations and DDoS attacks, even with
varying attack intensities. In a related study, [29] compared optimized indi-
vidual ML models with ensemble learning models. Algorithms like Decision
Trees, Random Forest, K-Nearest Neighbors, and Support Vector Machines
were fine-tuned for accuracy. The results indicate that the optimized single
ML model achieves a high detection accuracy and is at least 34 times faster
than ensemble methods in detection time. The study [30] also proposed a
framework for protecting MEC-based 5G networks from DDoS attacks by in-
tegrating anomaly detection with deep packet inspection. The orchestration
technique ensures efficient resource allocation, allows the network to quickly
adapt to security threats, and reduces the risk of compromising services for
legitimate users.

DL-based approaches have also been explored extensively for DDoS de-
tection. The paper [31] introduced DeepSecure, which uses an LSTM model
to analyze traffic characteristics and predict normal or malicious behavior in
a 5G network slicing environment. The method achieved a detection accu-
racy of 99.970% and a slice prediction accuracy of 98.798% and outperforms
traditional approaches used in previous studies. The Secure5G model by
[32] also utilized DL techniques to identify and mitigate DDoS attacks in
a 5G network slicing environment. Secure5G effectively manages incoming
connection requests, actively controls network slices, and pre-emptively iso-
lates threats and redirects them to a quarantine slice to protect the 5G core
network. Simulation results show a detection accuracy of over 98% using a
limited dataset.

Other advanced techniques include the Modified Equilibrium Optimiza-
tion Algorithm combined with DL for DDoS attack categorization in 5G
networks, as presented in [33] and achieved a maximum accuracy of 97.60%.
In addition, the works [34, 35] presented a method for detecting DDoS at-
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tacks by managing network resources and isolating malicious traffic into a
sinkhole-type slice. The DL models are trained in a 5G prototype built on
the OpenAirInterface platform and the FlexRAN controller, which allows
for dynamic control of RAN resources. The results show high detection ac-
curacy and a significant reduction in throughput for malicious users, while
maintaining high throughput for benign users.

Furthermore, Federated learning has been proposed as a novel approach
to improve DDoS detection while preserving data privacy. The paper [36]
introduced an unsupervised federated learning model that leverages the col-
lective intelligence of devices to detect DDoS attacks in 5G core networks.
The results showed improvements in detection rates in real-world scenarios.

In another work, the paper [37] proposed an autonomic security method
for multi-tenant 5G networks, using a self-regulating control loop to manage
DDoS attacks, even in scenarios with 256 attackers. The study [38] also in-
troduced an inter-slice isolation mechanism to defend against DDoS attacks
in the 5G core network. Tested through simulations and real experiments,
the model effectively limits the impact of DDoS attacks, enhances network
slice availability, and maintains network functionality. In addition, [39] ad-
dressed the issue of time-consuming authentication during inter-slice han-
dovers, which can be exploited for DDoS attacks by analyzing UEs switching
rates. Experimental results show that the method detects DDoS attacks with
91% accuracy and identifies compromised users with 96% accuracy.

Existing research in DTL, particularly within 5G and B5G networks,
faces several significant limitations and gaps. One major challenge is the
lack of a universal strategy for applying DTL across different domains, since
its effectiveness is highly context-dependent and needs a trial-and-error ap-
proach, especially when determining how many layers to freeze and fine-
tune. Additionally, while TL has been well-studied in fields like image and
speech recognition, its application in emerging wireless technologies, such as
5G and B5G, remains relatively unexplored. Moreover, despite TL’s poten-
tial to mitigate data scarcity, its success still hinges on the availability of
suitable source domain data and reveals a need for methods that perform
well in data-constrained environments. Finally, the scalability and computa-
tional complexity of DTL models pose challenges for real-time deployment in
resource-limited settings like edge devices, which indicates a need for more
efficient and lightweight models tailored to the constraints of 5G-based net-
works [6]. Addressing these gaps positions the current study as a critical
contribution to advancing the field. This paper not only employs an ex-
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tensive dataset and different DTL strategies, but it also specifically focuses
on analyzing the enhancement of DL models in 5G-based networks. This
study proposes valuable insights into the potential of these models to adapt
to different network conditions.

3. Methodology

This section presents the DTL-5G methodology of the paper, fundamen-
tals of DTL, data collection and pre-processing, base model construction, the
proposed method, and DTL scenarios.

3.1. Fundamentals of DTL

Definition 1 (Task): Let us consider the feature space, denoted as
χ, and the label space, labeled as γ. The dataset, represented as X =
{x1, . . . , xn} ⊂ χ and linked to labels Y = {y1, . . . , yn} ⊂ γ. A task is a
conditional distribution P (Y | X) and defined by T = {Y, F (X)}, where F
represents the learning objective predictive function. Within the framework
of DTL, task refers to initial knowledge and also unknown knowledge in the
learning process. DTL divides tasks into two categories: the source task
represented as TS, and the target task represented as TT [40, 41].

Definition 2 (Domain): The marginal probability distribution over the
dataset X = {x1, . . . , xn} is denoted as P (X). The domain is represented
as D = {X,P (X)}. In other words, the target domain, denoted as DT , is
defined as the set of elements XT and P(XT ). Similarly, the source domain,
denoted asDS, is defined as the set of elementsXS and P(XS). DTL revolves
around two crucial domains: the source domain, represented as DS, and the
target domain, represented as DT [40, 41].

Definition 3 (TL): TL refers to the process of using knowledge gained
from a source domain DS and a source task TS to improve performance on
a target domain DT and a target task TT . The primary objective of TL is
to enhance the performance of the target task by leveraging the knowledge
gained from the source domain and task. This is especially pertinent when
the source and target domains DS ̸= DT or the source and target tasks
or TS ̸= TT are dissimilar. If there is a disparity between DS and DT , it
means that XS ̸= XT and/or P (XS) ̸=P(XT ) [6]. This issue is referred
to as heterogeneous TL. On the other hand, when XS = XT , but P (XS)
̸=P(XT ), this situation is called homogeneous TL [42, 5]. When TS ̸= TT ,
it indicates that the tasks are distinct. In addition, when DS ̸= DT , the
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Domain adaptation (DA) is the utilization of the source model’s function FS

to enhance the target model’s function FT by incorporating knowledge from
both DS and DT [40, 43].

Definition 4 (DTL): DTL aims to enhance the efficiency of the target
function FT by leveraging knowledge from FS, which represents the source
domain prediction function. It is especially important when the target do-
main DT and the source domain DS are different, or when the target task
TT differs from the source task TS. In fact, when DS ̸= DT or TS ̸= TT . The
primary obstacle in DTL is to adjust to disparities between DS and DT or
between TS and TT [40]. The formula for DTL, as described by [40], is given
as follows:

DS = {XS, P (XS)}, TS = {YS, P (YS | XS)}

→ DT = {XT , P (XT )}, TT = {YT , P (YT | XT )}

3.1.1. TL Techniques

The main goal of TL is to apply acquired information from the source
domain to enhance the learning process in the target domain. Three key
factors must be considered to ensure optimal transfer performance, as follows
[6]:

• What to transfer: This stage entails determining the specific com-
ponents of the acquired knowledge from the source domain that should
be transferred to the destination domain. Not all information derived
from the source domain is advantageous for the target domain.

• When to transfer: It is crucial to ascertain the optimal moment
for transferring knowledge. Transferring knowledge can be detrimental
when the source and target domains are not closely related.

• How to transfer: The transfer procedure involves the actual transfer
of identified information to the target domain.

The categorization of TL according to the factors mentioned leads to
diverse methodologies [5, 6, 40, 42]:

• Feature-based TL, is a technique that entails generating a new fea-
ture representation by utilizing the existing features. There are two

11



methods to accomplish this: symmetrically, which involves transform-
ing both the target and source features into a new representation, or
asymmetrically, which involves transforming only the source features
to align with the target features.

• Parameter-based TL, is an approach that focuses on transferring
parameters, such as hyper-parameters or information, from the source
model.

• Relational-based TL, refers to the process of transferring knowledge
by comprehending the shared relationships between the source and tar-
get domains.

• Instance-based TL, refers to the process of modifying the weights of
data samples from the source domain to reduce disparities between the
source and target distributions.

As we mentioned earlier, ”What to transfer” refers to the specific knowl-
edge, such as features or parameters, that should be moved from the source to
the target domain. This is closely linked to Feature-based TL, which trans-
forms features to better align the source and target domains, and Parameter-
based TL, which transfers model parameters that are beneficial to the target
task. ”When to transfer” involves determining the optimal timing for trans-
ferring knowledge and ensuring it only occurs when it’s likely to be effective.
This is addressed by Instance-based TL, which reweights data samples to
align source and target distributions, and Relational-based TL, which trans-
fers knowledge based on the similarity of relationships between domains.
Finally, ”How to transfer” focuses on the methodology used to implement
the transfer. Feature-based TL and Parameter-based TL methods address
this by either creating new feature representations or applying learned pa-
rameters directly to the target domain and optimizing the transfer process
to enhance learning outcomes [5, 6, 40, 42].

In addition, TL can be categorized into three separate types according to
the perspective of the problem [5, 6, 40, 42]:

• Inductive TL, refers to the process of utilizing knowledge from a
source task to improve performance on a distinct target task.

• Transductive TL, is a situation in which the source and target tasks
are identical, but they are applied in different domains.
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• Unsupervised TL, is the method of acquiring knowledge from data
without the use of labeled data in either the source or target domains.

3.1.2. DTL Techniques

The information stored in the structure and settings of a trained DNN
can be applied to new tasks that are closely related to the field of DTL.
Currently, there are three common strategies used in DTL, as follows [6]:

• Utilizing ready-made pre-trained models: It refers to models that
have been trained on extensive datasets and may be used for related
tasks without the need for additional training.

• Utilizing pre-trained models as feature extractors: In this con-
text, pre-trained models are used to extract distinctive features from
data, which are subsequently fed into a separate learning algorithm
explicitly designed for the desired objective.

• Fine-tuning pre-trained models: This method entails using a pre-
existing model and enhancing its performance by training it on the
specific facts of the current task. Typically, the early layers of the
pre-trained model remain unchanged, while only the latter levels are
fine-tuned using the target data to prevent overfitting. Within this
paper, we employed this particular technique.

3.2. Data Collection and Pre-processing

Source Dataset: Our research employs an extensive dataset [11, 3, 44,
10] created in a controlled 5G testbed environment, which serves as the source
domain. The dataset comprises a diverse range of traffic types, encompassing
both benign and malicious data, gathered from two network slices. The mod-
eling of 5G network slicing scenarios utilized two opensource software, namely
Free5GC and UERANSIM. In order to replicate benign internet traffic, we
utilized an automated headless browser Python script to visit 500 various
visited websites. This involved engaging in various online activities such as
streaming movies, regular file copying and transfer activities, downloading
and modifying data, conducting ICMP pings, SSH and other typical internet
tasks. The dataset consists of around six million flow-based instances. In ad-
dition, the dataset contains 84 network traffic parameters and encompasses
eight distinct types of DDoS attacks as follows: UDP flood, TCP syn, TCP
push, TCP ack, TCP fin, TCP urg, TCP xmas, and TCP ymas. The data was
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Figure 1: The Overall Architecture for the Methodology used on our dataset

collected with the hping3 [45] tool with precise parameters (i=120, d=350)
and transformed into CSV format using the CICFlowMeter [46] traffic gen-
erator. These tools were selected because they are widely recognized and
commonly used in DDoS attack research and provide a solid foundation for
our experiments. Hping3, in particular, is favored for its flexibility and com-
prehensive documentation and makes it easy to configure for various types
of network traffic generation, which is essential for simulating DDoS attacks.
CICFlowMeter was chosen due to its effectiveness in extracting flow-based
features, which are crucial for analyzing network traffic in DDoS scenarios.
The parameters employed in our study are also well-established in the lit-
erature and ensure that our methodology aligns with standard practices in
the field [3, 10, 12, 47, 48]. This careful selection of tools and parameters
enhances the reliability and replicability of our results. Our dataset under-
goes a meticulous conversion process from packet-level captures to flow-level
forms for data processing. The overall architecture for the methodology used
in our dataset is shown in Figure 1.

Target Dataset: The 5G-NIDD [12], or 5G Network Intrusion Detection
Dataset, serves as our target domain. The dataset offered is meticulously cu-
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Table 1: Number of instances in each Source and Target dataset

Our Dataset 5G-NIDD Dataset

Attack Type Flow
Instances

Attack Type Flow
Instances

Benign 967567 Benign 15212
UDP flood 381073 UDP Flood 194946
TCP YMas 524288 SYN Flood 7566
TCP XMas 524288 GoldenEye 72499
TCP Urg 470757 ICMP flood 2
TCP SYN 405774 Slowloris 8669
TCP ACK 499729 UDP scan 33
TCP Push 524288 SYN scan 75
TCP FIN 916050 TCP Connect 189

TorShammer 31686

rated and originates from a genuine 5G testing setting. This dataset offers
comprehensive insights into the intricate patterns exhibited by both benign
and malicious data traffic within a fully functional 5G network. The be-
nign traffic, comprising protocols such as HTTP, HTTPS, SSH, and SFTP,
is generated using authentic mobile devices to ensure the authenticity and
reliability of the data. The dataset encompasses many attack scenarios, en-
compassing multiple types of DoS attacks and port scans. The types of
DoS attacks include ICMP flood, UDP flood, SYN flood, HTTP flood, and
Slowrate DoS. The authors conduct three different forms of scan attack dur-
ing the process of data collection. The types of attacks being used are SYN
scan, TCP connect scan, and UDP scan. This comprehensive technique en-
hances the dataset’s pertinence to current research and its appropriateness
for developing efficient AI/ML-based IDSs. The 5G-NIDD dataset, like our
dataset, undergoes a rigorous conversion process where packet-level captures
are transformed into flow-level forms to facilitate data processing. The 5G-
NIDD protocol encompasses attacks at both the application layer and the
transport layer, but our dataset exclusively includes attacks at the transport
layer. The number of flow samples in 5G-NIDD is much smaller than those
in our dataset, making 5G-NIDD suitable for the target dataset in DTL sce-
narios. Table I displays the quantity of benign and attack traffic occurrences
in both our dataset and the 5G-NIDD dataset.

15



3.2.1. Maximum Mean Discrepancy (MMD)

The Maximum Mean Discrepancy (MMD) is a metric used to quantify
the difference between two distributions [49]. We calculate the MMD score,
which compares the distribution of the source and target datasets. The
distributions are identical when the MMD score is 0, and distinct when the
MMD number exceeds 0. In our experiments, we compute the MMD score
for the two datasets that we have chosen. The MMD score of 0.2605 indicates
the level of dissimilarity between the two distributions in both datasets.

3.2.2. Feature Extraction and Optimization

In this section, CICFlowMeter was employed to carry out an initial pro-
cessing step on the dataset and convert the collected .pcap files to the .csv
format, in which 84 distinct traffic features could be identified. These char-
acteristics were vital for detecting potential DDoS attacks. As was the case
with other research studies, the research involved the identification and se-
lection of important features based on their relation to patterns of DDoS
attacks. Improving the feature set resulted in more precise predictions by
the model, which led to feature optimization. Significance in detecting DDoS
attacks was the criterion for the initial selection of eight features from the
original collection. Metadata aspects were removed to prioritize intrinsic
data attributes with a higher predictive value for network threats. Principal
Component Analysis (PCA) helped identify the most important features, in-
cluding flow duration, forward packet length, standard deviation, etc. The
PCA highlighted their variability and impact on the model’s ability to distin-
guish between normal and DDoS attack traffic. Finally, eight features were
selected in total, which are presented in Table 2 [10, 44].

3.2.3. Data Cleaning

This section aims to remove duplicate and unnecessary features. For
this purpose, we removed abnormalities such as infinite values and modified
them to ”NaNs” to ensure clean data. Ensuring the quality and relevance of
the data inputted into the model is crucial to optimizing the accuracy and
efficiency of subsequent phases.

3.2.4. Data Resizing and Resampling

Data resizing is the process of changing the dimensions of the input data
to match a specific shape required for the model. In this paper, since our

16



Table 2: Network Features Description

Serial Feature Description

1 Flow duration Duration of the flow in Microseconds
2 Total Fwd Packet Total number of packets in the forward

direction
3 Total Bwd packets Total number of packets in the back-

ward direction
4 Total Length of Fwd Packet Total size of packet in forward direc-

tion
5 Total Length of Bwd Packet Total size of packet in backward direc-

tion
6 ACK Flag Cnt Number of packets with ACK flag
7 Fwd Packet Length Std Standard deviation of packet length in

the forward direction
8 Protocol Network protocol used

network traffic shape is one-dimensional (1D), we resized the data shape for
DL models to 1D.

In addition, to address the imbalance between benign and attack traffic
samples, the data for each attack type is downsampled to a lower size that
is proportional to the benign traffic. This helps mitigate model bias towards
the class, which occurs more frequently. This process resamples each cate-
gory of attack traffic samples to reduce the number of samples, aiming for
a dataset that is approximately one-eighth the size of the benign samples
in order to generate a more balanced dataset. For this purpose, given the
unique characteristics of the target domain, which is the 5G-NIDD dataset
in this instance, the size of the test set in the source domain was reduced by
downsampling. This adaptation helps to make the test set size more closely
match the size of the target domain. Using random shuffling and selection
of indices guarantees that the test subset is both representative and truly
random.

3.2.5. Data Rescaling

Data rescaling is the process of adjusting the scale of the input data so
that it fits within a predetermined range. It is very important to prevent any
bias toward specific features during training the model. Methods such as
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min-max scaling, standardization, or normalization can achieve this. In this
paper, the process of normalization and standardization is carried out using
the ”StandardScaler” module from the sklearn library. This module stan-
dardizes the features by removing the mean of the training samples (mean=0)
and scaling them to have a standard deviation of one (standard deviation =
1). This guarantees that the model does not develop a bias towards charac-
teristics that have greater scales. The same transformation that is employed
in the training set is also applied to the testing set. This ensures that both
datasets are standardized in a uniform manner and ensures consistent input
for the training and evaluation of the model.

3.3. Test and Train Splitting

The data is partitioned between training and testing sets to ensure that
the model is evaluated on unfamiliar data and emulates real-world perfor-
mance. To achieve this, 20% of the data is allocated for testing purposes,
and 80% of the data is allocated for the training part. The ”stratify” option
is also utilized to guarantee that the train and test sets preserve the same
class distribution as the original dataset. In addition, it preserves a balanced
distribution of classes across both source and target datasets.

3.4. Proposed Method

The study is organized based on two main objectives, each intended to
investigate distinct facets of model evaluation.

Objective 1: The purpose of this objective is to ensure the dependability
of the evaluation process by implementing consistent sampling approaches,
and establishing preset sizes for the training and test sets. The research be-
gins by collecting an equal number of samples for each type of cyber-attack,
as well as for benign cases, in order to achieve an equal sample distribution.
This methodology guarantees a dataset that is evenly distributed, which is
important for eradicating discrimination towards any one category during the
process of training and evaluating the model. In order to keep the depend-
ability and consistency of the experiments, a consistent sampling method-
ology used in each iteration. In this paper, we performed five iterations of
model assessment, using a consistent ”random state” for each iteration. The
”random state” values for each iteration were set at 42, 142, 12, 4, and 80,
respectively. The same settings are used for each model. Following this step
ensures that the outcomes can be replicated and any differences in perfor-
mance can be ascribed to the model’s actions rather than changes in the
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selection of samples. The proportions of the training and test sets were pre-
determined and consistent for both datasets used in the study. It is crucial
to define fixed sizes for these sets in order to ensure that the evaluation of
model performance is consistent and can be compared across all experiments.

Objective 2: In contrast, Objective 2 acknowledges and incorporates
the natural variability and unpredictability of cyber-attacks by incorporating
dynamic components into the experimental settings. This encompasses the
utilization of variable resampling techniques, the utilization of unfixed train-
ing datasets, and the examination of models’ performance as the input data
changes. The main goal of objective 2 is to replicate real-life situations where
IDS need to adjust to new and emerging threats constantly. This allows us
to evaluate the resilience and flexibility of the models. Just like Objective 1,
this approach requires gathering an equal number of samples from all types
of attacks and benign cases. Objective 1 uses a fixed sampling method, while
Objective 2 utilizes dynamic resampling for each cycle of model testing. In
this study, we performed five iterations, the same as Objective 1, with each
iteration not predefining the “random state”. The objective of this technique
is to assess the performance of the models in different settings in order to
evaluate their resilience and consistency in uncertain scenarios. As a result,
the training sets was not constant during different runs, unlike the previous
objective. This method enables examining how the differences in the train-
ing part impact the effectiveness of the model. This is done to see how the
model’s capacity can be adapted to new data.

In Objective 2, similar to Objective 1, the size of the test set was modi-
fied to meet the specific size of the 5G-NIDD dataset. The main difference
between Objectives 1 and 2 is based on the methodology used for sample
selection and the management of the test and train parts, which is repre-
sented in Table 3. Objective 1 prioritizes consistency and reproducibility by
using fixed samples and training/test sets. On the other hand, Objective 2
investigates the effects of variability and adaptation by using dynamic re-
sampling and unfixed training sets. Both Objectives, meanwhile, align with
the principles of fair sample allocation, adaption to the desired domain, and
the strategic use of DTL.

3.5. Base Model Construction

The BiLSTM and CNN-based models, including CNN, ResNet, and In-
ception, were implemented and employed for one-dimensional (1D) data to
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Table 3: Techniques Comparison for Objective 1 and Objective 2

Objective 1 Objective 2

✓ Take equal samples for all types
of attacks and benign

✓ Take equal samples for all types
of attacks and benign

✓ Fixed sampling in each iteration
for same model (5 iterations with
random state = 42, 142, 12, 4, 80)

✓ Resampling in each iteration (5
iterations without using
random state)

✓ Fixed training sets and test sets
size from both datasets

✓ Keep test sets unchanged as
used for objective 1

✓ Consider test set sizes with
down sampling based on target
domain (5G-NIDD) test set size

✓ Consider test set sizes with
down sampling based on target
domain (5G-NIDD) test set size

✓ Use the best model created from
our dataset for DTL section

✓ Use the best model created from
our dataset for DTL section

construct base models utilizing our dataset as the source domain. We fol-
lowed [50, 51] to implement architectures as shown in Table 4. The selection
of BiLSTM, CNN, ResNet, and Inception models in this paper is grounded in
their proven effectiveness in similar studies and their prior success in related
applications [3, 6, 10, 15, 16, 52, 53, 54, 55]. These models are particularly
suitable for the problem at hand due to their distinct architectures, which
have been widely adopted in related works. Specifically, the two types of lay-
ers we focus on in this paper—LSTM-based and CNN-based—are among the
most popular and extensively used in the field of cybersecurity and network
threat detection. LSTM and CNN both layers have different ways to gener-
ate features. Our work investigates which type of feature generation works
best in our datasets. We investigated these structures because we were inter-
ested in seeing how DNNs perform on the flow-based dataset. In addition,
starting with multiple models provides different capabilities and benchmarks
their performance to find the best approach for our dataset. The model’s
performance will improve if the domains in which DTL may be applied are
more similar, as this will address the issue of insufficient data examples and
save training time.

During this period, we encountered various sequential steps: 1) We started
training on the source dataset without using any pre-existing model and
stored it as a base model. The mentioned models are employed in the DTL
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Table 4: Details for all Pre-trained Models

Model Layers Total Parameters Trainable Non-Trainable
CNN 9 6562 6562 0
ResNet 45 506818 504258 2560
Inception 73 427650 425602 2048
BiLSTM 9 99970 99970 0

part of the target dataset. 2) Additionally, we conducted training on the
target dataset using the same models, starting from the beginning, in order
to assess the improvement between the IDS based on DTL strategy and the
same approach without DTL.

3.6. DTL Strategies and Scenarios

The source and target domains are the same (benign and attack) but
involve different flows. This is why, in Strategy 1, we opted to freeze most
layers while re-training only a few. By doing so, we can leverage the knowl-
edge learned from the source dataset when applied to the target dataset.
Freezing the majority of the model’s layers ensures that we primarily utilize
the information acquired from the source dataset. However, as noted in the
literature [5, 6, 42, 52, 56, 57, 58, 59], there is no definitive method to de-
termine in advance how many layers should be frozen and how many should
be fine-tuned for effective DTL. This uncertainty led us to explore various
scenarios through additional experiments.

Additionally, we are interested in investigating whether increasing the
number of layers in the pre-trained source model can enhance its perfor-
mance in the target domain. Therefore, in Strategy 2, we removed the last
layer of the source model and added new layers. This approach allows our
DTL strategy to be as comprehensive as possible since we could not predict
which scenario would be most applicable and prompts us to consider multiple
possible scenarios.

Strategy 1: Freezing one or more layers and retraining the
model (fine-tuning without adding new layers)

This method involves the selective freezing of specific layers in pre-trained
models in order to preserve the features they have learned. We retrain the
remaining layers using the weights generated in the pre-train stage after
freezing the layers. This strategy capitalizes on the strength and reliability
of pre-trained features, while also enabling customization and fine-tuning to
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better align with the specific requirements of the new work. According to
strategy 1, we have three DTL-based scenarios as follows:

• DTL0: Freeze All Layers Except the Last One and Retrain

In this scenario, we fine-tuned the model’s final decision-making layer.
This process entails solely modifying the weights of the last layer while
leaving the remaining parameters of the model unaltered. This scenario
enables the model to adjust its final output to the task at hand and
retain the acquired features from the pre-trained models. The initial
layers of the model, which are responsible for extracting features from
the input data, are kept fixed and not modified. This is advantageous
when the characteristics obtained from the initial training task are
applicable to the new task.

• DTL1: Freeze All Layers Except the Last 33% Layers and
Retrain

In this scenario, all layers for all pre-trained models are frozen except
the last 33% of layers, and then unfrozen layers are retrained. This
technique allows the model to adjust its deeper layers to the new task
and retain the initial feature extraction layers.

• DTL2: Freeze All Layers Except the Last 66% Layers and
Retrain

This scenario is very similar to DTL1. However, the percentage of
layers that go through the retraining process is now increased to 66%.
This scenario allows more flexibility in adapting the model to the new
task compared to DTL1, as a larger portion of the model’s parameters
are updated.

The percentages of 33% and 66% for freezing layers were empirically se-
lected based on our previous research [10] using the ResNet architecture. We
aimed to explore how different levels of layer freezing would impact the per-
formance of the model. The ResNet architecture served as a foundation for
determining these percentages, which we then proportionally applied to other
models in our study. This approach allowed us to systematically investigate
the effects of varying the extent of layer freezing on model performance across
different architectures. Our decision to focus on these specific scenarios was
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informed by the need to balance the retention of learned features with the
adaptability of the model to the target domain.

Strategy 2: Freezing Layers, removing the last layer, adding
new layers, and retraining the model (fine-tuning with adding new
layers)

In strategy 2 based on DTL, we froze all layers except the last one and
removed the last layer of the pre-trained models. Upon removing this layer,
we continue adding new layer(s) that have been specifically customized for
the new task. These additional layers can enhance the model’s ability and
adaptability to obtain new patterns that are relevant to the new task. After
that, the modified model undergoes a process of retraining. It guarantees
integration between the newly added layers and the existing layers and en-
sures that the model efficiently adapts to the new task demands. Similar to
strategy 1, we have three DTL-based scenarios for strategy 2, as follows:

• DTL3: Freeze Layers and Remove the Last Layer, Add One
New Layer, and Retrain

In this scenario, we froze all layers except the last one and then replaced
the last layer with a new layer whose weights are initialized randomly.
The new layer is finally trained to adapt the model to the new task.
This can help in situations where the output structure of the new task
differs from the original task.

• DTL4: Freeze Layers and Remove Last Layer, Add Two New
Layers, and Retrain

This approach is similar to DTL3, but two new layers are added instead
of adding one new layer. In this scenario, we froze all layers except the
last one and replaced it with two new layers whose weights are initial-
ized randomly. This increases the model’s capacity to learn complex
patterns specific to the new task and provides more flexibility in the
adaptation process.

• DTL5: Freeze Layers and Remove Last Layer, Add Three New
Layers, and Retrain

Extending the concept from DTL3 and DTL4, three new layers are
added after removing the last layer. This scenario offers the highest
flexibility and capacity for learning new patterns, making it suitable for
tasks that require significant changes in the model’s output behavior.
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Figure 2: The overall process for all scenarios a) DTL0 b) DTL1 c) DTL2 d) DTL3 e)
DTL4 f) DTL5

The overall process for all DTL-based scenarios are presented in Figure
2.

3.7. Limitations and Challenges

One of the primary challenges we face is determining the optimal number
of layers to freeze and the appropriate number of layers to add for fine-tuning.
This uncertainty presents a significant limitation in our approach, particu-
larly due to the increased computational demands associated with retraining
more layers and adding new ones. Additionally, selecting initial weights and
performing hyperparameter tuning further intensifies the computational load,
given the inherently demanding nature of training.

Another potential limitation of our strategies is their effectiveness across
different scenarios. Specifically, if the data distributions between the source
and target datasets are significantly different, our methodology may not per-
form as expected. Our current approach assumes a certain similarity in data
distributions, as indicated by the MMD score, which may not hold true in
other contexts. Consequently, while our strategies may be effective with
datasets that have similar distributions, they may yield suboptimal results
with datasets that differ significantly. Despite these potential limitations,
conducting experiments with different datasets can provide valuable insights
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into the effectiveness of our strategies across various contexts. Such ex-
periments would help identify which strategies might be more suitable for
different types of data, ultimately informing the development of more robust
approaches in future research.

4. Results and Discussion

The BiLSTM and CNN-based algorithms, including CNN, ResNet, and
Inception algorithms were developed using Keras, which is a Python library
running on TensorFlow. The models were trained on Google Collaboratory
cloud servers and Compute Canada [60], as well as on a laptop equipped with
an 11th Generation Intel Core i7 processor and 16GB RAM. Both source and
target datasets contain 8 features (same for both) in addition to the label,
which contribute to the modeling process. The labels ’attack’ and ’benign’
are represented by binary numbers. For training and validation purposes, a
test split of 20% of data and 80% training data, as well as a validation split
of 0.2, are utilized.

Furthermore, we focused on optimizing key hyperparameters through a
trial-and-error approach to achieve the highest performance. Among the var-
ious hyperparameters tested, the learning rate (set to 1e-5), the number of
convolutional layers, the L2 regularization strength (set to 0.001), and the
dropout rate (set to 0.5) were found to have the most substantial effect on the
model’s performance. Adam optimizer was used with a learning rate of 1e-5,
which played a critical role in controlling the convergence of the model dur-
ing training, while the number of convolutional layers determined the model’s
ability to capture complex features. The L2 regularization and dropout were
essential for preventing overfitting and contributing to the model’s gener-
alization ability. These hyperparameters were carefully selected to balance
performance and stability to ensure that the model achieved optimal results.
In addition, the training method is executed for 200 epochs, incorporating
early stopping mechanisms for augmentation. The ”EarlyStopping” call-
back is employed to stop training if the validation loss fails to demonstrate
improvement, thereby preventing overfitting and conserving computational
resources.

In our experiments, we conducted an empirical evaluation using both
our dataset and the 5G-NIDD dataset to assess the performance of each
pre-trained model. For this purpose, we used well-known metrics, namely
accuracy, recall, precision, and the F1-score, to evaluate the performance of
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our proposed method. Specifically, recall and F1-score are critical metrics
for evaluating DDoS detection in 5G-based networks due to their direct im-
pact on the network’s QoS. High recall is essential because False Negatives
(FN)—instances where the model fails to identify an attack—can result in un-
detected threats that may have detrimental effects on the network. Similarly,
a strong F1-score balances recall and precision and reduces the likelihood of
False Positives (FP). False positives, where benign traffic is misclassified as
malicious, can lead to unnecessary mitigation actions that negatively impact
QoS. Therefore, these metrics are particularly important in ensuring the ro-
bustness and reliability of DDoS detection strategies in 5G environments,
justifying their use in our evaluation strategy. Table 5 summarizes the eval-
uation metrics utilized in this paper. Furthermore, the total time of training
(in minutes) and inference time (in milliseconds) are also calculated. The
total inference time on both the central processing unit (CPU) and graphics
processing unit (GPU) are recorded and documented.

Table 5: Definitions of Evaluation Metrics

Metric Formula Definition

True Positive (TP) - number of actual attack samples that
are correctly detected as attacks

True Negative (TN) - number of normal samples that are
correctly detected as normal

False Positive (FP) - number of normal samples that are
incorrectly detected as attacks

False Negative (FN) - number of actual attack samples that
are incorrectly detected as normal

Accuracy TP+TN
TN+FN+TP+FP

percentage of accurate predictions
among all predictions

Precision TP
TP+FP

percentage of accurate predictions
among all positive predictions

Recall TP
TP+FN

percentage of positive labels that the
classifier correctly predicted to be
positive

F1-score 2×Precision×Recall
Precision+Recall

harmonic mean of precision and re-
call.

We analyzed the improvements across different metrics in an evaluation
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of model performance in different base models and scenarios from DTL0
to DTL5 on the 5G-NIDD dataset to determine which models significantly
improved performance. The simulation results are presented in Tables 6
to 13. Among the models considered—CNN, ResNet, Inception, and BiL-
STM—distinct improvements (highlighted) were evident in accuracy, recall,
precision, and F1-Score.

Table 6: Performance of Different Models on Our Dataset

Model Objective Our dataset

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 94.10 91.56 97.10 94.25 228.04 0.11 0.07
2 94.35 92.02 97.16 94.52 260.04 0.12 0.07

ResNet 1 95.67 92.76 99.16 95.84 807.65 0.29 0.12
2 97.07 95.07 99.36 97.16 769.76 0.28 0.11

Inception 1 97.23 96.47 98.08 97.27 914.44 0.27 0.16
2 96.88 96.24 97.54 96.88 994.77 0.28 0.16

BiLSTM 1 98.74 97.90 99.62 98.75 466.85 0.22 0.10
2 98.45 97.46 99.48 98.46 518.79 0.19 0.10

Table 7: Performance of Different Models on the 5G-NIDD Dataset

Model Objective 5G-NIDD dataset

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 85.31 86.43 84.18 85.26 7.80 0.09 0.07
2 85.13 86.59 83.57 85.02 7.37 0.09 0.07

ResNet 1 85.85 93.19 78.58 84.80 6.80 0.21 0.11
2 81.97 88.49 76.62 80.95 6.41 0.21 0.10

Inception 1 87.31 85.86 89.85 87.72 8.44 0.24 0.14
2 85.88 88.54 83.59 85.57 7.33 0.23 0.13

BiLSTM 1 84.00 79.59 90.55 85.33 11.67 0.15 0.09
2 83.29 79.81 89.75 84.44 11.65 0.15 0.09

Table 8: Performance of Different Models on the 5G-NIDD Dataset with DTL0

Model Objective 5G-NIDD dataset with TL0

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 86.91 84.70 90.10 87.32 7.95 0.09 0.06
2 87.08 85.25 89.21 87.40 8.04 0.09 0.06

ResNet 1 85.98 93.13 77.71 84.72 8.16 0.22 0.10
2 84.76 92.76 75.41 83.11 7.72 0.24 0.11

Inception 1 93.56 98.93 88.07 93.18 26.02 0.24 0.14
2 93.90 98.37 89.29 93.61 29.63 0.23 0.14

BiLSTM 1 94.87 96.50 94.98 94.78 12.94 0.15 0.08
2 94.68 96.85 92.37 94.55 13.84 0.16 0.09
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Table 9: Performance of Different Models on the 5G-NIDD Dataset with DTL1

Model Objective 5G-NIDD dataset with TL1

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 86.92 84.67 90.18 87.33 8.21 0.09 0.07
2 87.32 85.71 89.55 87.59 8.21 0.08 0.06

ResNet 1 87.00 93.98 79.13 85.84 8.32 0.22 0.10
2 85.12 92.59 76.35 83.69 6.34 0.22 0.11

Inception 1 94.73 98.89 90.47 94.49 24.26 0.24 0.14
2 93.81 98.42 89.05 93.49 24.41 0.24 0.14

BiLSTM 1 95.04 96.60 93.38 94.96 13.67 0.16 0.09
2 94.87 96.66 92.94 94.76 13.32 0.16 0.09

Table 10: Performance of Different Models on the 5G-NIDD Dataset with DTL2

Model Objective 5G-NIDD dataset with TL2

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 86.86 84.72 89.93 87.25 7.82 0.08 0.07
2 87.21 85.58 89.51 87.50 7.83 0.08 0.06

ResNet 1 86.12 94.31 76.87 84.70 9.06 0.22 0.10
2 84.94 92.85 75.71 83.40 6.24 0.23 0.11

Inception 1 94.70 98.84 90.46 94.47 24.96 0.24 0.14
2 93.20 98.67 87.58 92.78 22.12 0.23 0.14

BiLSTM 1 94.99 96.69 93.17 94.90 12.97 0.15 0.08
2 94.60 96.72 92.33 94.47 12.70 0.15 0.09

Table 11: Performance of Different Models on the 5G-NIDD Dataset with DTL3

Model Objective 5G-NIDD dataset with TL3

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 85.07 83.72 87.02 85.28 7.99 0.08 0.07
2 84.06 83.69 84.55 84.08 7.79 0.08 0.06

ResNet 1 86.32 93.75 77.87 85.04 7.01 0.22 0.10
2 84.94 92.04 76.54 83.54 7.08 0.23 0.11

Inception 1 94.67 97.67 91.53 94.49 24.33 0.23 0.13
2 94.31 96.44 92.02 94.18 24.61 0.24 0.14

BiLSTM 1 93.58 92.36 95.18 93.71 13.03 0.15 0.09
2 94.21 94.64 93.74 94.19 12.92 0.15 0.09

Based on Tables 6 to 13, we can identify which models excel in each
metric by examining each model’s performance improvements.

In Table 6, the BiLSTM model achieved superior performance on our
dataset with an accuracy of 98.74%, recall of 97.90%, precision of 99.62%,
and an F1-score of 98.75% for Objective 1. It also had acceptable training
times of 466.85 minutes and low inference times (0.22 ms on the CPU and 0.10
ms on the GPU). In addition, Inception had good performance, especially for
Objective 1, with an accuracy of 97.23% and an F1-score of 97.27%, although
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Table 12: Performance of Different Models on the 5G-NIDD Dataset with DTL4

Model Objective 5G-NIDD dataset with TL4

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 86.49 85.75 87.52 86.62 8.48 0.09 0.07
2 86.59 85.70 87.84 86.75 8.17 0.08 0.06

ResNet 1 86.51 93.74 78.26 85.28 6.34 0.22 0.11
2 85.42 93.20 76.42 83.97 5.15 0.22 0.10

Inception 1 94.45 97.89 90.88 94.24 27.20 0.24 0.14
2 94.18 96.43 91.76 94.04 20.63 0.23 0.13

BiLSTM 1 92.21 91.34 93.54 92.33 13.48 0.16 0.09
2 94.46 95.31 93.52 94.40 13.10 0.15 0.08

Table 13: Performance of Different Models on the 5G-NIDD Dataset with DTL5

Model Objective 5G-NIDD dataset with TL5

Accuracy(%) Recall(%) Precision(%) F1-score(%) Train Time(m) Inf CPU(ms) Inf GPU(ms)

CNN 1 87.53 92.47 81.76 86.77 5.59 0.09 0.07
2 87.54 91.11 83.40 86.99 8.07 0.09 0.07

ResNet 1 85.93 93.54 77.21 84.59 6.53 0.23 0.11
2 84.94 90.80 77.76 83.77 5.89 0.23 0.11

Inception 1 94.37 97.61 90.99 94.18 20.59 0.23 0.14
2 93.83 95.86 91.64 93.69 23.71 0.24 0.14

BiLSTM 1 93.04 91.24 95.45 93.24 13.71 0.15 0.09
2 93.97 95.78 92.00 93.85 13.47 0.16 0.09

it had the longest training time. The ResNet and CNN models showed good
performances but were slightly lower compared to the BiLSTM and Inception
models.

In our study, the baseline is defined as the performance of the DL models
on 5G-NIDD dataset without applying any DTL techniques. We evaluated
the performance of various models against this baseline. Table 7 displays
each model’s best performance on the 5G-NIDD dataset. In this paper, 5G-
NIDD is considered as a baseline and all . For Objective 1, Inception achieved
the highest accuracy and F1-score, with 87.31% and 87.72%, respectively. In
addition, ResNet had the best performance for Objective 1, with a high recall
of 93.19%. BiLSTM also achieved its best performance in terms of precision,
at 90.55% for Objective 1. Inference times for all models were low, with
minor differences between CPU and GPU times, and training times varied,
with the longest training time for the BiLSTM model.

Accuracy: According to the accuracy, the BiLSTM model showed the
most significant improvement over baseline. Specifically, under scenario
DTL1 Objective 2, BiLSTM improved its accuracy over baseline from 83.29%
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to 94.87%, with an increase of 13.90%. The results demonstrate its robust
adaptation to the 5G-NIDD dataset through the DTL strategies and scenar-
ios.

Recall: Based on recall, the BiLSTM again indicates significant improve-
ments over baseline, particularly under scenario DTL2 Objective 1, where it
improved over baseline from 79.59% to 96.69%, an increase of 21.48%. The
big jump in recall for BiLSTM shows that it can pick out more relevant sam-
ples from the dataset, which is important for tasks that need to be sensitive
to certain conditions or features.

Precision: In terms of precision, the Inception model demonstrates the
best improvement over baseline under DTL3 Objective 2, increasing from
83.59% to 92.02%, an increase of 10.09%. Inception’s notable improvement
in precision reflects its ability to minimize false positives and maintain high
accuracy in its predictions.

F1-Score: In the case of the F1-Score, the BiLSTM model again has
improvements over baseline, especially under DTL1 Objective 2, where it
improved from 84.44% to 94.76%, an increase of 12.22%. BiLSTM’s im-
provement over baseline in F1-score signifies that it is suitable for diverse
applications that require both high precision and recall. To conclude, the
analysis indicates the strengths of each model across different performance
evaluation metrics. It is obvious that BiLSTM generally provides the most
robust improvements over baseline, especially in Accuracy, recall, and F1-
score, while Inception leads in precision. This distinction helps us to select
the appropriate model and DTL strategy based on the specific needs of the
task at hand.

Train Time: CNN and Inception under the DTL0 scenario have minimal
increases in training time over baseline. CNN consistently has the shortest
training times across all DTL strategies, and it is efficient in terms of training
time. On the other hand, Inception consistently has the longest training
times across all DTL strategies, which reflects the complexity and longer
training time needed for data processing. However, ResNet has the lowest
training times in DTL4 and DTL5 scenarios based on both objectives 1 and
2.

Inference Time: CNN has some improvements over baseline in terms
of CPU and GPU, and it offers the shortest inference times under all DTL
strategies and is suitable for applications that demand fast predictions. In
addition, ResNet and Inception have the longest Inference times across all
DTL strategies on both CPU and GPU.
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In this paper, we employed both BiLSTM and CNN-based models, includ-
ing variants such as ResNet and Inception, to evaluate their performance on
datasets. Through extensive experimentation, it is evident that the BiLSTM
model consistently outperforms the CNN-based models across various met-
rics. This superior performance can be attributed to the unique capabilities
of the BiLSTM architecture. BiLSTMs can generate a more nuanced feature
representation compared to 1D CNN by processing the data in both forward
and backward directions. This bidirectional processing can capture more
complex patterns in the data. This could be one of the reasons why BiLSTM
is performing better than CNN-based models. Furthermore, BiLSTM has a
gating mechanism where three type of gates are used. One of the gates is
called “forget gate” that helps the model to forget irrelevant features. There-
fore, BiLSTM has this built-in ability to select relevant features which may
give BiLSTM extra advantage compared to the CNN-based models.

Table 14 summarizes the overall improvements over baseline for all DTL
scenarios in this paper. Based on the analysis, Strategy 1 and the DTL1
scenario emerge as the most effective combination to improve model perfor-
mance on the 5G-NIDD dataset. In particular, DTL1 in Strategy 1, which
freezes all but the last 33% of layers and then retrains, gets the best results
in key metrics, especially the F1-score, which went up by 12.22% for the
BiLSTM model. This approach effectively balances preserving the learned
features from the source domain while allowing sufficient flexibility in the
model to adapt to the specific characteristics of the target domain. In addi-
tion, DTL1 shows a significant boost in accuracy and recall, which is good
for tasks where both precise classification and sensitivity are critical. As
a result, Strategy 1 with DTL1 is particularly effective in scenarios where
maximizing detection accuracy and minimizing false positives are important.

Table 14: Improvement Metrics for Different Models under Various Scenarios

Metric Objective Scenario Best Model Improvement (%)

Accuracy 2 DTL1 BiLSTM 13.90
Recall 1 DTL2 BiLSTM 21.48
Precision 2 DTL3 Inception 10.09
F1-score 2 DTL1 BiLSTM 12.22

Based on the data reported in Table 14, we plotted the (best iteration
out of 5) BiLSTM and Inception models in terms of Training and Valida-
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Figure 3: Training and Validation Performance (%) based on 5G-NIDD dataset with DTL1
a) BiLSTM Accuracy Objective 1. b) BiLSTM Loss Objective 1. c) BiLSTM Accuracy
Objective 2. d) BiLSTM Loss Objective 2.

tion accuracy and Training and Validation loss values for DTL1, DTL2, and
DTL3. These values are depicted in Figures 3, 4, and 5, respectively.

The BiLSTM model’s performance on the 5G-NIDD dataset using the
DTL1 scenario is shown in Figure 3. The model was evaluated for two objec-
tives. Regarding Objective 1, the training and validation accuracy (subplot
a) begin at roughly 72% and 79%, respectively, and gradually increase to
around 94% and 96% after 200 epochs. The training and validation loss
(subplot b) decrease significantly from 80% to around 19% and 14%, respec-
tively. Regarding Objective 2, the training and validation accuracy (subplot
c) first start at roughly 77% and 83%, respectively, and then increase to
around 93% and 97%. The training and validation loss (subplot d) exhibit a
significant decrease, dropping from 70% to approximately 20% and 15%.

Figure 4 depicts the performance of the BiLSTM model on the 5G-NIDD
dataset using DTL2 with two targets. Regarding Objective 1, the training
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Figure 4: Training and Validation performance (%) based on 5G-NIDD dataset with DTL2
a) BiLSTM Accuracy Objective 1. b) BiLSTM Loss Objective 1. c) BiLSTM Accuracy
Objective 2. d) BiLSTM Loss Objective 2.

and validation accuracy (subplot a) exhibit notable enhancement, reaching a
plateau at around 93% and 96%, respectively, after 200 epochs. In a similar
manner, the training and validation loss (shown in subplot b) exhibit a quick
decline from 80% to approximately 20% for training and 18% for validation.
Regarding Objective 2, the initial training and validation accuracy (subplot
c) are approximately 76% and 83%, respectively. These values thereafter
increase to roughly 93% and 96%. The training and validation loss (subplot
d) decrease from 70% to around 20% and 14%, respectively.

The narrow discrepancy between the training and validation measures in
both objectives demonstrates the robust performance of the model and indi-
cates successful learning and high generalization without notable overfitting
in both Figures 4 and 5. The results highlight the reliability and effective-
ness of the BiLSTM model for the 5G-NIDD dataset and show its potential
usefulness in real-world situations.
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The figure 5 demonstrates the training and validation performance of the
Inception model on the 5G-NIDD dataset with DTL3, assessed based on
two objectives. Regarding Objective 1, the Inception model’s training and
validation accuracy (subplot a) demonstrates a swift enhancement, reaching
a plateau of around 93% and 95%, respectively, after 140 epochs. Simi-
larly, the training and validation loss (subplot b) reduce from 45% to around
20% and 15%, respectively. In Objective 2, the BiLSTM model’s training
and validation accuracy (subplot c) increases from roughly 78% to around
93% and 95%, respectively, during 140 epochs. The training and validation
loss (subplot d) decrease from 45% to around 17% and 14%, respectively.
Both objectives demonstrate a negligible disparity between the measures of
training and validation and suggest the successful acquisition of knowledge
and robust generalization without any notable overfitting. The continuous
performance of the Inception model on the 5G-NIDD dataset showcases its
strength and dependability and indicates its suitability for practical use.

5. Conclusion and Future Direction

This paper focuses on employing DTL to detect DDoS attacks in 5G
networks by introducing a novel technique. Using a methodical and robust
approach is of utmost importance if we intend to overcome the novel and
complex challenges the 5G environment presents in terms of cybersecurity. It
would not suffice for this approach to only assess the performance of a model
in controlled environments; rather, it must be able to gauge the ability of the
model to adjust to changing patterns of data. The approach presented here
consists of two phases, namely the first phase in which the source domain
is used for training and the second phase, where what was learned from
the source domain is applied to the target domain through different DTL
scenarios. In both phases, BiLSTM and CNN-based algorithms including
CNN, ResNet, and Inception are used as the underlying learning components.

Finally, a full analysis of different models using various DTL strategies
and scenarios on the 5G-NIDD dataset as a baseline shows the unique ben-
efits of each model in improving certain performance metrics. The BiLSTM
model demonstrates the best improvements over baseline across most met-
rics, particularly improving 13.90%, 21.48%, and 12.22% in accuracy, recall,
and F1-score, respectively, which highlights its capability to adapt effectively
to complex datasets and achieve balanced performance. In addition, the In-
ception model leads in precision and showcases its strength in minimizing
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Figure 5: Training and Validation performance (%) based on 5G-NIDD dataset with DTL3
a) Inception Accuracy Objective 1. b) Inception Loss Objective 1. c) Inception Accuracy
Objective 2. d) Inception Loss Objective 2.

false positives, which is crucial for applications where precision is important.
This analysis gives us useful information for choosing the best model and
DTL strategy for each task, which leads to better model performance and
reliability in real-world situations.

The methodologies described in this paper can be expanded to identify
and possibly mitigate additional network threats, apart from DDoS attacks.
Exploring its suitability for different cybersecurity situations shows great
potential for 5G-based networks. For this purpose, our next step will be to
mitigate not only DDoS attacks but also other types of attacks. Furthermore,
we will implement DTL strategies across various network slices to evaluate
the effectiveness of our methodologies in 5G network slicing, given that we
generated our dataset using a slice-based approach.

Moreover, we intend to explore additional DL models, such as MLP, UNet,
DenseNet, and Hourglass networks, to enhance our methodologies further.

35



We will also investigate the optimal number of layers to freeze and the ap-
propriate layers to add by employing network architecture search techniques.
Extending our approach to other cybersecurity challenges within 5G-based
networks will enable us to develop more robust and adaptable mechanisms
for emerging new threats.
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R. Canal, Transfer-learning-based intrusion detection framework in iot
networks, Sensors 22 (15) (2022) 5621.

[10] B. Farzaneh, N. Shahriar, A. H. Al Muktadir, M. S. Towhid, Dtl-ids:
Deep transfer learning-based intrusion detection system in 5g networks,
in: 2023 19th International Conference on Network and Service Man-
agement (CNSM), IEEE, 2023, pp. 1–5.

[11] M. S. Khan, B. Farzaneh, N. Shahriar, M. M. Hasan, DoS/DDoS Attack
Dataset of 5G Network Slicing (September 25 2023). doi:10.21227/32k1-
dr12.

[12] S. Samarakoon, Y. Siriwardhana, P. Porambage, M. Liyanage, S.-Y.
Chang, J. Kim, J. Kim, M. Ylianttila, 5g-nidd: A comprehensive net-
work intrusion detection dataset generated over 5g wireless network,
arXiv preprint arXiv:2212.01298 (2022).

[13] L. P. Joseph, R. C. Deo, R. Prasad, S. Salcedo-Sanz, N. Raj, J. Soar,
Near real-time wind speed forecast model with bidirectional lstm net-
works, Renewable Energy 204 (2023) 39–58.

[14] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neu-
ral networks: analysis, applications, and prospects, IEEE transactions
on neural networks and learning systems 33 (12) (2021) 6999–7019.

[15] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking
the inception architecture for computer vision, in: Proceedings of the

37



IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[17] M. Stahlke, T. Feigl, M. H. C. Garćıa, R. A. Stirling-Gallacher, J. Seitz,
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