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Abstract—The seamless integration of Software-Defined Net-
working within Internet of Things (IoT) infrastructures has
introduced novel paradigms for efficient network resource man-
agement. Nevertheless, this integration has also exposure to
various cyber threats. Addressing these threats necessitates
advanced detection mechanisms capable of adapting to the
dynamic security needs. This paper introduces a Hybrid CNN
LSTM (HCL) deep learning-based framework, which integrates
hybrid Convolutional Neural Networks and Long Short-Term
Memory networks to enhance intrusion detection in SDN-IoT
networks. The performance analysis, conducted using real-world
SDN datasets, attests to the framework’s efficiency, exhibiting a
high detection accuracy and less inference time, ensuring reliable
security measures without compromising network performance.
The HCL framework demonstrates above 90% accuracy in
differentiating between benign and malicious traffic, with a
particular focus on detecting DoS, DDoS, port scanning, and
fuzzing attacks. Additionally, the framework’s scalability aligns
seamlessly with varying number of devices, maintaining strong
defense across diverse network topologies. These results demon-
strate the framework’s effectiveness in defending against modern
cyber threats in SDN-IoT networks.

Index Terms—SDN, IoT, Deep learning, CNN, LSTM, Security

I. INTRODUCTION

The integration of the Internet of Things (IoT) with
Software-Defined Networking (SDN) offers a transformative
way to manage and optimize network resources efficiently [1].
SDN offers centralized network resource management, en-
abling efficient traffic monitoring and management [2]. How-
ever, this convergence of IoT and SDN networks introduces
significant security challenges. The inherent vulnerabilities
of IoT devices, combined with the dynamic nature of SDN,
make these networks susceptible to various cyber threats [3].
The number of attacks on IoT devices is increasing, with
reports showing over 100 million detected in the first half of
2019. Network security firms have noticed a surge in attack
attempts [4]. During the 2020 global pandemic, DDoS attacks
spiked, with projections indicating more complex and frequent
attacks [5].

In response to these security challenges, intrusion detection
systems (IDS) are essential for protecting SDN-based IoT net-
works [6]. By monitoring network traffic and detecting anoma-
lies, IDS can identify and mitigate attacks such as Denial of
Service (DoS), Distributed Denial of Service (DDoS), port
scanning, fuzzing, and OS vulnerabilities [7], [8]. However,
traditional IDS often struggle with the rapidly evolving cyber

threats, particularly in dynamic SDN-IoT environments [9].
The centralized control of SDN improves anomaly detection
by using comprehensive network data and advanced algo-
rithms [10].

Machine learning (ML) has become essential in cybersecu-
rity, especially in intrusion detection and threat analysis [4].
When integrated into Software-Defined Internet of Things
environments, ML enhances the detection and mitigation
of security challenges. It uses algorithms like SVM, Naive
Bayes, and Decision Trees to identify patterns indicative of
attacks [11]. Advancing into the subset of ML, Deep Learning
(DL) techniques like Convolutional Neural Networks (CNN)
and Recurrent Neural Networks, including Long Short-Term
Memory (LSTM) networks, have significantly handle complex
security issues [12]. DL models focus on data, layer by layer,
to learn from patterns. While CNNs useful in image and
language processing by capturing spatial relationships, they
sometimes fall short in network security because they focus
on spatial characteristics rather than temporal ones [2]. For
sequential and time-related data, which is in network traffic,
LSTM networks are more preferable.

SDN-IoT networks can benefit from federated learning by
enabling distributed model training across devices to improve
privacy and scalability, though it introduces challenges such
as communication overhead, device heterogeneity, and vulner-
ability to adversarial attacks [13], [14], while existing ML and
DL solutions for DDoS detection and mitigation show promise
but face limitations like scalability issues [2], [15], evolving
attack types [16], multi-class classification challenges [15],
and limited evaluation on real testbed SDN-IoT datasets [17].
To address these limitations, we propose a Hybrid CNN LSTM
(HCL) framework, which combines CNN and LSTM models
in a deep learning approach. The framework is applied to real-
world datasets [18] generated from SDN and IoT environ-
ments. The HCL framework detects attacks like DoS, DDoS,
port scanning, fuzzing, and OS vulnerabilities in SDN-IoT
networks. It enhances security and ensures efficient network
performance as cyber threats evolve.

II. RELATED WORK

Various ML [4] and DL models have been proposed for
detecting cyber attacks in SDN-IoT networks. DL [12], [15]
models offers key advantages in cyber defense, helping re-
searchers better understand emerging threats. The field of



attack detection and prevention remains important due to the
potential damage attackers can cause [19], with recent studies
focusing on ML and DL techniques to identify network attacks
in SDN-IoT environments.

DL-based detection in SDN-IoT networks has emerged as
a powerful approach to improving security. Elsayed et al. [15]
proposed a secured automatic two-level IDS using an enhanced
LSTM network to protect IoT and SDN networks. The system
distinguished between benign and malicious traffic and cate-
gorized attacks, showing good accuracy on the ToN-IoT and
InSDN datasets. However, the authors noted challenges with
supervised learning at scale and LSTM’s limitations in terms
of training time and complexity, suggesting further research to
improve efficiency and scalability. Chaganti et al. [2] proposed
an LSTM-based IDS for IoT-SDN networks, achieving 97.1%
accuracy on two datasets. The system outperformed traditional
models and used t-SNE for feature visualization but faces
challenges in real-world deployment due to high computational
demands and data requirements.

Towhid and Shahriar [20] proposed a method for early
intrusion detection in SDN using machine learning techniques.
The author used flow-based features and shows that Random
Forest performs better than LSTM in real-time detection
scenarios with limited packet data. The challenges include
performance reduction with fewer packets, class imbalance,
managing computational requirements. Alashhab et al. [16]
proposed a DL-based LSTM model to detect low-rate DDoS
attacks in SDN-enabled IoT networks, addressing the difficulty
of identifying these covert attacks. Tested on the Edge IIoTset
dataset, the model achieved high accuracy normal traffic.
However, the paper noted challenges in scaling the detection
system for real-world applications.

The existing work highlights the potential of DL techniques
to address the complex challenges of SDN-IoT network secu-
rity, though challenges remain, such as high computational
demands, multiclass classification difficulties, and scalability
issues. Despite progress in detecting cyber attacks, contin-
uous advancements are necessary due to evolving threats.
To address these limitations, this paper introduces an HCL
framework that integrates a hybrid CNN-LSTM model to
detect various cyber attacks in SDN-IoT networks.

III. THE HCL FRAMEWORK

The HCL framework for SDN-IoT attack detection includes
an IoT device layer with devices like heart monitors and
vehicles, sending data to a Gateway Module. This module
forwards data to the SDN Controller, which manages policies
and contains an IDS using CNN for feature extraction and
LSTM for traffic analysis. The HCL framework performs
two key operations: network traffic preprocessing and model
learning, as detailed in the following subsection.

In the first operation of the HCL framework, network
traffic undergoes several preprocessing steps. Data is initially
collected from IoT devices, followed by label encoding to
convert categorical labels into numeric form. Benign traffic
is encoded as 0, while DoS, DDoS, port scanning, OS and

service detection, and fuzzing are encoded as 1, 2, 3, 4, and
5, respectively, making them suitable for ML/DL algorithms.
After preprocessing, a total of 21 features have been selected
for model training. The features include flow metrics such
as duration, average, standard deviation, minimum, and maxi-
mum durations, along with packet and byte counts for source-
to-destination and destination-to-source flows. Additional fea-
tures capture traffic volume per IP, packets per protocol and
port, and inbound connections per source and destination IP.

Fig. 1: The HCL Architecture

Algorithm 1 outlines all the operations from network traffic
preprocessing to model learning within the HCL framework
illustrates in Fig 1, designed to detect various cyber attacks.

IV. EXPERIMENTAL RESULTS AND EVALUATION

A. Experimental Dataset

To evaluate the HCL framework, the SDN network
dataset [18] is used, with a testbed set up in Mininet to
simulate an IoT environment managed by an ONOS con-
troller. The testbed features IoT devices mimicking smart
home technologies and includes attacks such as DoS, DDoS
using hping3, port scanning, OS fingerprinting with nmap,
and fuzzing attacks. Two scenarios are tested: one with five
IoT devices and another with ten, where devices dynamically
connect and disconnect to mimic real-world IoT variability.
The dataset contains 210,000 records of both benign and
malicious traffic, including 24,834 records for benign traffic
and a similar number of records for each class of attack.
This distribution offers a robust framework for testing SDN-
based IoT networks. The dataset is divided into an 80-20 ratio,
with 80% of the data used for training and 20% reserved
for testing. A custom application tags flows based on port
connections, organizing the data into CSV files with separate
files for different attack types. While it mirrors the Bot-IoT
dataset’s features, it only includes attributes extractable from
SDN flow entries. During DoS and DDoS attacks, only 100
flow records are kept per cycle due to IP spoofing, while no
cap is enforced for port scanning and OS fingerprinting due
to packet uniqueness. A concise set of 21 key features, is
selected for model training. The rationale for this selection is
based on excluding features that may lead to overfitting, such
as IP address, port numbers and protocols.



Algorithm 1 The HCL Framework

1: Input: Network Traffic Data X = {x1, x2, ..., xn}
2: Output: Intrusion Detection Probability y
3: Parameters: CNN Weights W, LSTM States H,C, Output

Weights Wo

4: procedure PREPROCESSDATA(X)
5: Encode categorical labels using LabelEncoder
6: Normalize features using StandardScaler
7: Split data into Xtrain,Xtest,Xval

8: Balance Xtrain using SMOTE
9: end procedure

10: procedure CNNLAYER(X)
11: F← ReLU(W ∗X) ▷ 1D CNN with ReLU
12: P← MaxPooling(F) ▷ Max Pooling
13: D← Dropout(P, p) ▷ Dropout
14: end procedure
15: procedure LSTMLAYER(D)
16: Initialize H0,C0

17: for each timestep t in D do
18: Ht,Ct ← LSTM(Dt,Ht−1,Ct−1)
19: end for
20: end procedure
21: procedure DENSELAYER(HT )
22: y ← σ(WT

o HT + bo) ▷ Sigmoid for binary
classification

23: end procedure
24: Call PREPROCESSDATA(X)
25: D← Call CNNLAYER(X)
26: HT ← Call LSTMLAYER(D)
27: y ← Call DENSELAYER(HT )
28: return y

B. Evaluation Metrics

In assessing the performance of the proposed framework
within the SDN-enabled IoT environment, we measure accu-
racy, precision, recall, and the F1 score. Additionally, inference
time is a essential metric, representing the model’s efficiency
and responsiveness in a real-time setting. Our experiments are
designed to evaluate not only binary classification scenarios,
distinguishing between normal and malicious traffic, but also
multiclass classification, identifying various types of attacks.
We utilize a one-vs-rest strategy to handle the multiclass
classification problem, ensuring that each class is compared
against all others to improve detection accuracy. This approach
is applied to both scenarios with 5 and 10 IoT devices, to
validate the model’s efficacy across different network scales
and complexity.

To ensure precise intrusion detection in the IoT network, the
hybrid model in HCL framework is implemented in Python
using Keras and scikit-learn on a 2.3-GHz Quad-Core Intel
Core i7 with 16 GB RAM. The model features setup, outlined
in Table I, supports both binary and multiclass classification,
distinguishing between normal activities and cyber threats
across varying IoT scenarios.

TABLE I: Simulation Parameters

Parameter Value

Model Type Sequential
CNN Layer (Conv1D) 64 filters, kernel size 3, activation ’relu’,

padding ’same’
Pooling(MaxPooling1D) Pool size 2
Regularization(Dropout) 0.25 after MaxPooling1D
LSTM Layer 32 units, with state returned across batches
Normalization Applied after LSTM
Regularization 0.3 after LSTM
Optimizer Adam with learning rate 0.001
Loss Function Categorical Crossentropy
Metrics Accuracy
Epochs 50 (maximum, subject to early stopping)
Batch Size 256

Fig. 2: Average Accuracy by Varying Number of Devices in
Binary Classification

Fig. 3: Average Inference Time by Varying Number of Devices
in Binary Classification

C. Evaluation Results

We assess the efficiency of our HCL framework’s hybrid
CNN-LSTM model, examining its capabilities in both binary
and multiclass classification. This section presents our eval-
uation outcomes, comparing the performance of the hybrid
model against standalone CNN and LSTM [16] architectures.

1) Binary Classification: Fig. 2 shows the average accu-
racy of four models: Hybrid CNN-LSTM, standalone CNN,
standalone LSTM [16], and Hybrid CL [17], for binary classi-
fication with 5 and 10 IoT devices. The Hybrid CNN-LSTM,
Hybrid CL, and CNN models achieve identical accuracy of
0.93, indicating robust performance. The LSTM and Hybrid
CL models also show competitive accuracy, though the latter
experiences increased inference time as devices scale. The av-



Fig. 4: Average Accuracy by Varying Number of Devices in
Multiclass Classification

Fig. 5: Average Inference Time by Varying Number of Devices
in Multiclass Classification

erage inference time is shown in Fig 3. The LSTM has higher
inference time, while the Hybrid CL model’s time increases
with 10 devices. The CNN model is fastest, achieving 0.85 sec-
onds for 10 devices, benefiting from efficient batch processing.
Overall, the CNN provides the quickest inferences, while the
Hybrid CNN-LSTM offers higher accuracy, balancing speed
and performance.

2) Multiclass Classification: Fig. 4 shows the average ac-
curacy of models for multiclass classification, with error bars
showing the standard deviation across 20 runs. The Hybrid
CNN-LSTM achieves the highest accuracy (0.93 for 5 devices,
0.92 for 10 devices), followed by the Hybrid CL [17], CNN
(0.83 and 0.82), and LSTM [16] (0.87 and 0.86). Fig. 5
illustrates average inference times. The CNN is the fastest
(1.09s for 5 devices, 1.1s for 10), followed by the Hybrid
CNN-LSTM (1.39s and 1.38s). The LSTM [16] is the slowest
(5.32s and 5.1s). The Hybrid CNN-LSTM offers the best
balance of accuracy and speed, while the CNN excels in speed
but with lower accuracy.

Table II shows the other performance metrics such as pre-
cision, recall and F1-score for each class in multiclassification
scenario. The Hybrid CNN-LSTM model consistently per-
forms well across all classes for both scenarios with 5 and 10
devices. For 5 devices, it shows strong recall especially in class
5 with perfect recall, while maintaining high precision across
classes. For 10 devices, there is a slight drop in precision for
benign class but overall the model maintains performance. The
CNN model shows a significant drop in precision for benign
class for both scenarios but notably so for 10 devices, where
precision drops to 0.94. The LSTM [16] model has a similar
performance pattern to the Hybrid model, with a slight drop in

precision when moving from 5 to 10 devices. The Hybrid CL
model also performs well, with strong precision and recall in
most classes. However, it experiences a slight drop in precision
in the 10-device scenario.

Fig 6 shows the training and validation accuracy of 10
devices as well as Receiver Operating Curve (RoC) to mea-
sure the performance of our Hybric CNN-LSTM model for
multiclass classification of 5 and 10 devices. Multiple ROC
curves are plotted, each representing a different class in a
multiclass classification setting. The AUC for each class is
close to 1.00, with the lowest being 0.95 for benign Class and
the highest being 1.00 for DoS attack. The training accuracy
shows how well the model is learning the training dataset,
while the validation accuracy shows how well the model
generalizes to data it has not seen before. The curves start
to increasing, which indicates that the model is reaching its
peak performance on the current data. In the case of 10
devices, consistency in AUC suggests the model’s performance
is robust to the change from 5 to 10 devices. Again, high
AUC values are observed (0.94 to 1.00), with multiple classes
achieving near-perfect scores. Performance is consistent with
the 5-device setting, showing that increasing the number of
devices does not degrade the model’s discriminative ability.
Further, validation accuracy closely tracks training accuracy,
indicating the model’s effectiveness across different data splits.

D. Discussion

The HCL framework shows promising results, with high
precision and recall indicating strong accuracy in classifying
traffic as benign or malicious.

• The model shows high precision, recall, and class dif-
ferentiation, reflected in high AUC values for Precision-
Recall and ROC curves.

• The consistency of performance metrics between the 5-
device and 10-device settings suggests that scaling the
number of devices does not have a negative impact on
model performance.

• Training and validation accuracy trends imply the model
learns well without overfitting, maintaining a good bal-
ance between fitting the training data and generalizing to
unseen data. This is consistent across both device settings.

V. CONCLUSION

In IoT networks, where devices are constantly communi-
cating, integrating SDN brings efficient network management.
It also opens doors to new cyber threats, especially for in-
terconnected IoT devices. This paper explores a deep learning
framework combining CNN and LSTM networks to strengthen
cybersecurity in SDN-IoT systems. This hybrid CNN-LSTM
model detects various cyber attacks and identify benign and
attack network traffic. It achieves more than 90% accuracy
in detecting various cyber attacks, proving its effectiveness as
an intrusion detection system. In practical scenarios involving
5 to 10 IoT devices, our model consistently maintained high
accuracy, precision, recall, and F1 scores. This indicates not
only the model’s effectiveness in attack detection but also its



TABLE II: Multiclass Metrics Across Models and Devices

Class No of Devices Hybrid CNN-LSTM CNN LSTM [16] HybridCL [17]
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Benign (0) 5 0.92 0.88 0.90 0.93 0.61 0.74 0.92 0.71 0.80 0.92 0.71 0.80
10 0.90 0.91 0.90 0.94 0.63 0.75 0.91 0.68 0.78 0.93 0.74 0.83

DoS (1) 5 0.96 0.98 0.97 0.95 0.98 0.96 0.96 0.99 0.97 0.96 0.99 0.97
10 0.94 0.98 0.96 0.95 0.98 0.96 0.95 0.98 0.96 0.98 0.98 0.97

DDoS (2) 5 0.95 0.98 0.96 0.94 0.97 0.95 0.96 0.98 0.97 0.96 0.98 0.97
10 0.97 0.95 0.96 0.93 0.98 0.95 0.96 0.96 0.97 0.97 0.97 0.97

Port Scanning (3) 5 0.88 0.90 0.89 0.86 0.82 0.84 0.89 0.90 0.89 0.89 0.90 0.89
10 0.89 0.93 0.91 0.85 0.80 0.82 0.87 0.87 0.87 0.91 0.76 0.83

OS Fingerprinting (4) 5 0.89 0.89 0.89 0.79 0.86 0.82 0.88 0.91 0.89 0.88 0.91 0.89
10 0.90 0.88 0.89 0.76 0.88 0.82 0.86 0.89 0.87 0.78 0.91 0.84

Fuzzing (5) 5 0.90 1.00 0.95 0.80 0.98 0.88 0.87 0.99 0.93 0.87 0.99 0.93
10 0.87 0.98 0.92 0.84 0.98 0.90 0.84 0.99 0.91 0.83 0.99 0.91

(a) ROC curve for 5 devices (b) ROC curve for 10 devices (c) Training and validation accuracy-10 devices

Fig. 6: Comparison of the HCL model’s multiclass classification performance metrics for 5 and 10 IoT devices

resilience and reliability when scaled across varying network
sizes. Such adaptability is crucial for SDN-IoT networks that
are inherently dynamic and expanding. Future work includes
implementing the framework in real SDN-IoT networks and
optimizing the model for faster performance.
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