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Abstract—TFifth-generation (5G) mobile networks aspire to
deliver exceptionally high data rates along with ultra-reliable and
low-latency connectivity. With the growing popularity of mobile
Internet and the increased bandwidth requirements of mobile
applications, user Quality of Experience (QoE) is becoming
increasingly critical. SG networks demand predicting the real-
time bandwidth of a channel to satisfy the QoE for bandwidth-
savvy applications such as video streaming/conferencing, vir-
tual/augmented/mixed reality, and autonomous driving. If fu-
ture bandwidth can be forecast in advance, the bandwidth-
hungry applications may utilize the estimates to adapt their
data transmission rates and dramatically enhance user QoE.
By analyzing a publicly available 5G dataset comprised of
the channel, context, and cell-related metrics with throughput
information, existing work has used Long Short Term Memory
(LSTM) based mechanisms to predict future bandwidth. We
applied the Transformer-based model, namely ’Informer,’ to
the 5G dataset and found significant improvement of about
95% error decrease for bandwidth prediction. In addition, we
combined some new feature analysis approaches (LASSO and
Random Forest with new hyper-parameters) in addition to the
the existing Random Forest with Informer to find out the most
accurate prediction approach.

Index Terms—Bandwidth prediction, 5G Network, Machine
Learning, TPA-LSTM, Informer

I. INTRODUCTION

The fifth generation (5G) of the mobile network is expected
to provide extremely high data rates through the Enhanced
Mobile Broadband (eMBB) class to support bandwidth-savvy
applications such as video streaming/conferencing and vir-
tual/augmented/mixed reality [3]. 5G networks are likely to
utilize massive MIMO and a higher carrier frequency in the
millimeter-wave (mm-wave) band, spanning from 20 to 90
GHz, to provide a larger bandwidth [1]. However, wireless
signals are known to be attenuated by interference, path loss,
mobile, and static blocking [2]. Due to its wide coverage,
mobile access transmissions are more susceptible to atten-
uation, resulting in bandwidth variance [1]. Prediction for
the future bandwidth of a cellular radio link can help many
applications to perform dynamic video-rate adoption and on-
demand resource allocation [24].
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A cellular radio link is meticulously arranged, despite the
fact that it is difficult to model the link bandwidth owing
to high bandwidth fluctuation. A base station of a mobile
network monitors a variety of network variables (which are
frequently utilized in the scheduling process) that may be
used to estimate the available bandwidth of a radio link in
the near future by analyzing historical data (several seconds).
In addition, network monitoring provides an operator with
a comprehensive view of all devices, their link data, radio
spectrum availability, and immediate traffic demand, among
other things [25]. Our objective is to make use of this network
information in order to predict available bandwidth in the near
future and make it available to applications.

For applications which use video communication or stream-
ing, a buffer is often utilized to transfer the payload if the
average bandwidth during a certain time period matches the
video rate [4]. However, a fundamental issue in delivering real-
time video over cellular networks is achieving low-latency and
high-rate video transmission on volatile cellular connections
with rapidly fluctuating available capacity [5]. The specified
video-rate must closely approximate the immediate network
bandwidth to avoid video freeze while using a tiny video
buffer. For such systems to provide high user quality of expe-
rience (QoE), available bandwidth must be carefully analyzed
in real-time to guide video-rate adaptation. Overestimation
of bandwidth will result in video freezing, while underesti-
mation will result in needless low video quality [6]. Real-
time bandwidth prediction helps to integrate the interactions
between the user and bandwidth-hungry mobile applications
and allows for the adoption of appropriate video rates for
video streaming. Existing research has shown that bandwidth
prediction is critical for the high performance of the mentioned
applications, such as Available Bandwidth Prediction in Re-
altime [5], Dynamic Adaptive Streaming over HTTP (DASH)
[6], HTTP-based Adaptive Video Streaming with FESTIVE
[7], Deployable Multipath TCP [8], and FastMPC [9].

In this paper, we focus on the user bandwidth prediction in
a 5G network by leveraging a publicly available 5G dataset
[10]. The 5G dataset [10] was generated by merging two
traffic conditions (static and driving) and multiple applications
(file download and video streaming). Client-side cellular key
performance indicators (KPIs), such as cell-related metrics,



context-related metrics, channel-related metrics, and through-
put statistics are included as a time series in the dataset. These
data are obtained from G-NetTrack Pro, a very well non-rooted
Android network tracking app. In this paper, we first analyze
the 5G dataset using time series decomposition and stationarity
tests and found that user bandwidth is not following any
specific trend and seasonal pattern as the bandwidth can be
variable over time due to various types of attenuation. This
necessitates a robust prediction model that can estimate the
bandwidth for the next few seconds depending on the previous
bandwidth, channel, and network connection information.

Prior work has leveraged different regression and machine
learning-based methods to predict user bandwidth in cellular
networks [2], [27]. Among them, the authors in [27] have com-
pared the Autoregressive integrated moving average (ARIMA)
with Long Short Term Memory (LSTM) model in predicting
user bandwidth in cellular networks using a dataset consisting
of packet level metrics and showed the superiority of LSTM.
LSTM is basically a Recurrent Neural Network (RNN) and
has long been used in network traffic prediction [28]. Very
recently, the authors in [2] have applied Recursive Least
Squared (RLS), Random Forest (RF), LSTM, and Temporal
Pattern Attention LSTM (TPA-LSTM) to predict multivariate
time series like the 5G dataset and found the TPA-LSTM
model to be the best approach. This is due to the fact that TPA-
LSTM [11] is capable of mining the temporal patterns hidden
in networking channels and context information for reliable
multivariate forecasting and can outperform the LSTM model.
In the TPA-LSTM model, time-invariant temporal patterns are
typically extracted using a collection of Convolution Neural
Network filters.

Inspired by recent advances of in Transformer [20] based
approaches in for predicting multivariate time series, in this
paper, we investigate the applicability of Transformer on the
user bandwidth prediction problem in a 5G network. Although
Transformer can find the time-varying pattern of variables
and the impacts on each other rigorously, in terms of Long
Sequence Time Series Forecasting (LSTF), Transformers face
the problem of consuming much time and memory. This
issue has been addressed by the model ’Informer’ through
ProbSparse self-attention mechanism and the generative style
decoder. The self-attention mechanism’s atom operation and
canonical dot-product have O(L?) time and memory com-
plexity per layer. ProbSparse replaces canonical self-attention.
Dependency alignments take O(LlogL) time and memory.
Transformer slows down a long-output prediction, and its dy-
namic decoding makes inference as slow as RNN. Informer’s
generative decoder acquires extended sequence output with
only one forward step, avoiding cumulative error propagation
during inference. Using the Informer on specific well-known
datasets such as Electricity Consuming Load and Weather,
it has been shown to have increased performance for long-
term prediction (horizons), prompting us to apply Informer
on the 5G dataset and compare against TPA-LSTM, the best
performing model based on the state-of-the-art of 5G user
bandwidth prediction [2]. We also combine different feature

selection approaches (LASSO and Random Forest with new
hyper-parameters) in addition to the Random Forest proposed
in [2] with TPA-LSTM and Informer to find out the best per-
forming prediction approach. Our extensive evaluation shows
that Informer can improve prediction performance by up to
95% compared to the existing approach of [2].

The rest of the paper is structured as follows. The associated
study for real-time bandwidth prediction is included in Section
2. Section 3 presents the problem statement of bandwidth
prediction, details regarding the 5G dataset, feature selection
methods, and a quick introduction to Informer. Afterwards,
Section 4 discusses evaluation settings and results by compar-
ing different combinations of Informer and feature selection
methods with the TPA-LSTM approach of [2]. Finally, Section
5 wraps up the paper by discussing future work.

II. RELATED WORK

Real-time bandwidth prediction has been a complex subject
for the networking community to solve. When history is avail-
able, History-Based (HB) approaches forecast the throughput
of TCP flows based on a time series of prior TCP throughput
measurements on the same channel. They used simple linear
prediction methods such as Moving Average, non-seasonal
Holt-Winters, and Exponential Weighted Moving Average
[13]. The correlation-based method has been used to improve
Network Weather Service (NWS) project [14]. Harmonic
Mean of TCP throughput for the past segment downloads has
also been used to forecast TCP downloading performance for
the future segment [9]. Based on previous and present capacity
measurements for video calls over cellular networks, Recursive
Least Squares (RLS) were also utilized to anticipate future
capacity [5].

Machine learning-based solution PathML was proposed
to perform on a large dataset to compare Support Vector
Regression (SVR), Kernel Ridge Regression (KRR), Random
Forests (RF), and Convolutional Neural Network (CNN) for
LTE networks [16]. SVR model has been used to predict
TCP throughput [17]. Future bandwidth prediction for video
conferencing is derived via probabilistic inference based on
the single-server queueing model [18]. To find out the most
relevant information from enriched and complex datasets,
machine learning-based models perform better. However, the
major drawback is traditional statistical or machine learning
approaches rely on short sequence histories. Artificial Neural
Network (ANN) based prediction for the ON and OFF signal
state of optical network unit of wireless access point (ONU-
AP) assists in the accuracy of bandwidth demand computation
[15].

The 5G bandwidth prediction problem for the multivariate
time series is complicated by complex and non-linear interde-
pendencies between variables at different time steps. LSTM
and ARIMA models were used to classify and predict user
traffic in order to enhance resource use [27]. LSTM [19]
has been used for predicting future bandwidth. Compared
with LSTM, TPA-LSTM [11] performed better for the 4G/5G
dataset in terms of future bandwidth prediction. LSTF is



demanded by most real-life time series predicting. LSTF
can be effectively used in many real-world applications as
Transformer-based models remarkably increase the prediction
capacity for multivariate time series. We applied the 5G dataset
on a Transformer based model, namely Informer [12] to
predict the future bandwidth of the channel. Informer meets
the need for the model’s high prediction capacity, which
can efficiently capture exact long-range dependence coupling
between output and input.
III. METHODOLOGY

A. Problem Statement

For a random time instance t, suppose the bandwidth is
b(t), and a device is measuring the mobile access link every
1 second to attain a discrete-time series. Here, the time series
is X(t),t=1,2,3,...., where X(¢t) € R™ is a vector of
measured information of n types, including b(¢) and other
parameters (e.g., signal quality, location, and so on) of the
connection. The job of real-time bandwidth forecast at time ¢
is the estimation of the immediately available bandwidth for
some future time ¢ + 7, assuming all of the data collected up
to t [2]. The equation will be:

bt +7) =f({X(k),k=1,2,3, ...t} (1)

where 7 is the future horizon value and integer number.
If we want to predict the future bandwidth with some recent
history, {X(t —w + 1),..., X (¢)} to predict b(¢t + 7), where
w is the sliding window size [2]. We utilize past bandwidth
measurements to forecast future bandwidth in univariate band-
width prediction, but in multivariate bandwidth prediction,
we employ context and channel-related data in addition to
previous bandwidth measurements to make the prediction.
B. Dataset

In this paper, we used the first publicly accessible dataset
containing throughput, channel, and context information of
5G networks acquired from a major Irish mobile provider for
two application patterns (video streaming and file download)
[10]. The collection comprises client-side cellular KPIs that
include channel-related metrics, context-related metrics, cell-
related metrics, and throughput statistics. These metrics are de-
rived from G-NetTrack Pro, a well-known non-rooted Android
network monitoring tool. For both applications, two mobility
patterns are available such as static and driving [10].

In this paper, we used history-based prediction, which
employs time series forecasting techniques [13]. Since history-
based forecasts are path-dependent, we used 83 fixed traces
for the time-series data from the 5G dataset [10]. These data
have been captured application-wise in two modes (driving
and static) for three applications such as- Amazon Prime (Ani-
mated Adventure Time and Season3 The Expanse), Download
(a random file) and Netflix (Animated Rick and Morty and
Season3 Stranger Things). We used these datasets in driving
mode to explore the continuous change of bandwidth. We used
the dataset in two ways to investigate the difference in pre-
diction. First, we integrated all the data from the application-
wise sub-folders and applied it to the models. Second, the

sub-folder-based datasets were fed into Informer to see how
accuracy differed depending on specific applications.

C. Data Analysis

One of the most efficient methods for analyzing histori-
cal time series data is time series decomposition. It entails
breaking down the data into trend, seasonality, and residuals.
The trend is the general movement of time-series data values.
Seasonality refers to the behavior of a series across a given
seasonal period. It refers to a cyclic event in a time series that
happens for a brief period and generates growing or decreasing
patterns in the time series. The residuals are the parts of the
time series that remain after trend and seasonality have been
eliminated from the original signal for additive decomposition.
We applied the decomposition to the merged dataset. We found
that data is not following any specific trend and seasonal
pattern as the bandwidth can be variable over time due to
various types of attenuation. Following Fig. (1) shows the
decomposition of the folder-wise combined dataset where the
y-axis denotes DL_bitrate (which is downlink bitrate in kbps)
and the x-axis is for time.
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Fig. 1: Decompositon of 5G Data (Folder-wise combined)

The dataset’s following analysis is the stationarity test.
Data in a time series might be stationary or non-stationary,
and the mean and variance of stationary time series are
constant, making them easier to forecast. Non-stationary data,
on the other hand, is not centered on a single value. For
testing the stationarity of the 5G dataset, we used two robust
statistical tests: Augmented Dicky-Fuller (ADF) Test [29] and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [30] Test. Our



analysis shows that the 5G dataset is non-stationary in both
tests. From this observation, we can consider that it can
exhibit odd behavior changes like fluctuations and spikes from
one section to the next, demanding a sophisticated prediction
mechanism.

D. Feature Selection

We have applied the Random Forest with hyperparameter
tuning (using grid search) and Least Absolute Shrinkage and
Selection Operator (LASSO) for feature analysis. They are
examples of embedded feature selection techniques. Embed-
ded approaches offer the following benefits: high precision,
generalizability, and interpretability. For improved forecasting,
twelve strongly influenced features on bandwidth from the
paper [2] have been applied first into the merged dataset, such
as upload and download bitrate, network mode, band, speed,
etc., were picked from a set of 23 to be utilized for prediction
[10]. The Download (DL) bitrate has the most significant
weight, followed by the Upload (UL) bitrate. All features give
complementary channel and context information for bandwidth
prediction.

Random Forests consist of four to twelve hundred deci-
sion trees, each generated using a random extraction of the
dataset’s observations and characteristics. Since not every tree
is exposed to all data attributes, the trees are de-correlated and
less susceptible to overfitting. Each tree has a series of yes/no
questions depending on a single or several qualities. Using
the Random Forest Regressor, we tuned the hyper-parameters
further and generated a new set of features as shown in TABLE
L

Furthermore, this study includes a regularized feature se-
lection method known as LASSO. LASSO places a constraint
on the sum of the model parameters’ absolute values, which
must be smaller than a specified number (upper bound). The
approach employs a shrinkage (regularisation) procedure that
penalizes the regression variables’ coefficients, reducing some
of them to zero. Only variables with a non-zero coefficient
following the shrinking procedure are selected for inclusion
in the model during the features selection procedure. The
objective of this method is to decrease prediction error and
reduce overfitting [26]. The selected features from three dif-
ferent feature selection methods are listed in TABLE 1.

E. Prediction Algorithm

We used ‘Informer’ [12] as the primary bandwidth predic-
tion model, which has been developed based on the concept
of Transformer [20]. The transformer enhances the prediction
capacity to a greater extent. Still, while applying to LSTF,
it undergoes quadratic high memory usage, time complexity,
and ingrained limitation of the encoder-decoder architecture.
‘Informer’ has efficiently handled these problems using three
unique features [12]. At first, a self-attention technique named
‘ProbSparse’ attains O(LlogL) in memory utilization and time
complexity while performing comparably well on sequence
dependency alignment. Second, by reducing cascading layer
input, self-attention distillation reveals dominating attention

TABLE I: Selected Features for Random Forest from paper
[2], Hyper-tuned Random Forest and Lasso Rgression
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and effectively manages lengthy input sequences. And the third
one is the decoder of generative style, which predicts long
sequences of time series in a single forward way, significantly
improving the inference speed of long-sequence prediction.
The probSparse self-attention mechanism maintains a
multi-head perspective, and for each head, this attention
produces different scattered pairs of query-key, which avoid
enormous information loss in response. Self-attention has been
defined using query, key, and value from input tuples denoted
as Q, K, and V. For the i-th row of Q, K, and V, it will be g,
k;, and v;. The scaled dot product for self-attention mechanism

of Transformer is -
T

A(Q, K, V) = Softmax( Qj% )\ (2)

where Q € RFexd K ¢ RIxxd and V € RYv X4 with the
dimension d. Defining the kernel smoother as a probability
form, -th query’s attention formula is -

qZ7 )
A(quK V Z Zl ql’kl)

Here, the probability is p(k;|¢;) = k(g k;)/>, k(g ki)
and k(g;, k;) chooses the asymmetric exponential kernel as
edik] /v/d . The significant drawback of this self-attention is
that it combines the values and produces an output based on
computing the probability p(k;|g;), which needs O(LgLk)
memory use and quadratic times dot-product computation. The
Log-Sum-Exp (LSE) of ¢; on all the keys and their arithmetic
mean were used to determine the most significant queries and
the equation is-

= Epk;100) vl 3

Lr  aik] 1 LIx gk
Mg, K)=mnY evi — — “d (4)
= 2

If the i-th query acquires a bigger M (g¢;, K), its attention
probability p is more “diverse” and has a greater likelihood
of including the dominant dot-product pairings in the header
field of the long tail self-attention distribution. ProbSparse
self-attention is achieved by enabling each key to only attend
to the u dominant queries.
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where () is a sparse matrix of the same size as ¢ and
only contains the Top-u queries according to the sparsity
measurement M (g, K). Controlled by a constant sampling
factor ¢, u = c.InLq, allows the ProbSparse self-attention
to calculate O(InLg) dot-product for each query-key lookup
while maintaining layer memory use O(LxlnLg) and it is
the significant compared to Transformer.

The Encoder section processes the long sequential inputs
for multivariate time series under the constraint of limited
memory. The self-attention distillation mechanism efficiently
handles highly long sequences of inputs. The encoder’s feature
map contains redundant permutations of value V as a natural
result of the self-attention mechanism named ProbSparse.
We apply the distillation operation in the following layer to
prioritize the best ones with dominant features and create a
focused self-attention feature map. It significantly reduces the
temporal dimension of the input. Fig.(2) shows the Attention
blocks for the n-headed weighted matrix (overlapping red
squares).

A(Q, K, V) = Softmax(
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Fig. 2: Informer Encoder Section
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Fig. 3: Informer Architecture

This distillation process [21] employs the Multi-head Prob-
Sparse self-attention mechanism and the fundamental opera-
tions together, where Convld(.) implements a 1-D convolu-
tional filter for the kernel width=3 with the ELU(.) activation
function [22] on time dimension. After stacking a layer, a max-
pooling layer is added with stride two and downsamples the

value into its half slice, reducing the overall memory use. To
improve the distillation operation’s resilience, we create copies
of the core stack with halved inputs and gradually reduce the
number of distilling layers for self-attention by eliminating one
layer at a time, such that their output dimension is aligned.
As a result, we concatenate the stack outputs to obtain the en-
coder’s final hidden representation. The absolute confidential
encoder representation was constructed by concatenating all
stack outputs in Fig.(3).

In the Decoder section, Informer uses one forward proce-
dure to generate a long output sequence. The conventional
decoder structure used here comprises two attention layers
that are similar and multi-head. They stack on top of each
other. The generative inference is used to compensate for the
speed drop in the extended forecast. Informer uses the concept
of start token for Natural Language Processing’s “dynamic
decoding” [23] slightly differently. It will not select a specific
flag as a token; instead, it will take a long sequence sample
token into the input. It can be a last slice before the output
sequence. For example, if we want to predict bandwidth up
to 168th seconds (2.8 minutes of bandwidth prediction), we
will take known 2 minutes features as the ’start token’ before
the target sequence. It will be fed into a generative-style
decoder with Xg. = Xon. X0, wWhere target sequence timestamp
is denoted by Xy. Then, instead of “dynamic decoding” in
the typical encoder-decoder design, the suggested decoder of
Informer predicts outputs using a single forward method which
saves time.

IV. EVALUATION RESULTS
A. Evaluation Settings

We utilized the dataset in two different methods, and
separated the dataset into three sections. They consist of a
training set, a test set, and a validation set in the proportions
of 70%, 10%, and 20% data, respectively. Maintaining the file
count is necessary since they include particular time series. We
ran the model five times for each horizon across all datasets
for the accuracy calculation and report the average results. All
the experiments are performed on an 11th Gen i7 machine
with one GeForce RTX 3090 GPU having 24GB memory and
32GB main memory.

B. Compared Methods

e TPA-LSTM and variants: TPA-LSTM [11] is an extension
of LSTM that includes the attention mechanism. We
first implemented the TPA-LSTM with parameters and
selected features from the paper [2]. Afterward, we used
grid search to tune the hyper-parameters of the TPA-
LSTM and Random Forest Regression and denote them
as O-TPA-LSTM and O-RF, respectively. The O-TPA-
LSTM neural network structure consists of 1 layer with
128 units, while the TPA-LSTM model from the paper
[2] contains three layers, each having 32 units. TABLE
II summarizes the different TPA-LSTM variants that are
evaluated in our study.



o Informer and variants: The Informer [12] model contains
a stack of 1-layer for the encoder and 2-layer for the
decoder. The dropout rate for the neural network is 0.05.
With proper early stopping, the total epoch number is
6. The Informer and the three separate feature selection
procedures have been combined. The combinations that
are evaluated in this paper are shown in TABLE III.

TABLE II: Combination of TPA-LSTM and Different Feature
Selection Methods

Model + Feature Selection
TPA-LSTM + RF

Explanation

Combination of TPA-LSTM with parame-
ters from the paper [2] with Random Forest
feature selection from the paper [2]
Combination of TPA-LSTM with optimized
parameters with optimized Random Forest
feature selection

Combination of TPA-LSTM with optimized
parameters with LASSO feature selection

O-TPA-LSTM + O-RF

O-TPA-LSTM + LASSO

TABLE III: Combination of Informer and Different Feature
Selection Methods

Model + Feature Selection
Informer + RF

Explanation

Combination of Informer with Random For-
est feature selection from the paper [2]
Combination of Informer with optimized
Random Forest feature selection
Combination of Informer with LASSO fea-
ture selection

Informer + O-RF

Informer + LASSO

C. Performance Metrics

As primary performance indicators for prediction errors, we
use Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE). RMSE is a quadratic scoring criterion that
quantifies the average error magnitude. It is the square root of
the average of squared discrepancies between predicted and
observed values. MAE assesses the average size of errors in a
series of predictions without considering their direction. It is
the average over the test sample of the absolute differences
between forecast and actual observation, given that each
difference is given equal weight. The equations are as follows:

N
1
- | = A2
RMSE ¥ ;le(xz ) (6)
1 N
MAE = — E @
N 2 |z — 2] (7

Where N is the total number of observations and x; and Z;
are the actual and predicted values for the observation .

D. Results and Analysis

TPA-LSTM outperformed machine learning models includ-
ing RLS, RF, and LSTM according to [2]. Thus, we use
TPA-LSTM as a baseline to compare the Informer-based
approaches. TABLE IV shows the outcomes of comparison
between TPA-LSTM and Informer with three feature selection
methods - RF from paper [2], O-RF, and LASSO for the

combined 5G dataset. As shown in TABLE IV, Informer
performs better (95.54% RMSE decrease on average) than
TPA-LSTM for predicting from smaller to longer time hori-
zons since it was developed with LSTF in mind for all
types of feature analysis. The RMSE and MAE values in
TABLE IV are increasing rapidly for TPA-LSTM variants in
higher horizons, but Informer performs much better across
all horizons compared with TPA-LSTM. Informer combines a
probabilistic attention method with the learned embedding of
relevant temporal aspects to predict long sequence along with
the inherited capability of Transformer [12]. The explanation
for the ups and downs in the Informer RMSE and MAE
in TABLE 1V is that when the encoder input has excellent
dependencies, the decoder receives relevant local information,
which helps to obtain reduced RMSE and MAE [12].

TABLE IV shows that Informer model outperforms TPA-
LSTM variants for all feature sets. Let us now discuss why
this is so. The problem of disappearing or vanishing gradients
plagues traditional RNN, and it forces the model to become
biased on the sequence’s most recent input. In time series,
however, we frequently need to consider previous information
that influences the output. LSTM uses an input gate, an output
gate, and an extra forget gate to solve this problem. But the
information has to go through more steps, which means more
calculations have to be done. With Informer, substantially
more data can be processed in the same amount of time due to
the parallelization capabilities of the Transformer mechanism.
That is why Informer gives better accuracy than LSTM-based
models.

Regarding TPA-LSTM, the O-TPA-LSTM + LASSO is
the best among all feature sets related to this model. For
the Informer model, combination with our newly applied
feature sets (O-RF and LASSO) yielded the best performance.
Whenever the comparison arises between O-RF and LASSO,
for some horizons (2, 3, 6, and 24), LASSO has the best
RMSE. For other horizons (1, 12, and 48), Informer + O-
RF performs better. From TABLE IV, we can observe that the
feature selection method does not significantly influence the
prediction performance of Informer, and any suitable feature
selection method can be combined with Informer for the
bandwidth prediction.

We have chosen O-TPA-LSTM + LASSO and Informer +
LASSO out of six variants and feature selection combination
to visualize the result and Fig. 4 reflects the outcome. The
comparison graph in Fig. 4(a) and Fig. 4(b) show the corre-
sponding RMSE and MAE for O-TPA-LSTM + LASSO and
Informer + LASSO up to horizon 48. Later two graphs of Fig.
4 show the Ground Truth vs Prediction for O-TPA-LSTM +
LASSO and Informer + LASSO for horizon 1, respectively.

We applied Informer on application-specific datasets to
analyze performance improvements. Applications include —
Amazon Prime (Animated Adventure Time and Season3 The
Expanse), 5G Download (a random file), and Netflix (Ani-
mated Rick and Morty and Season3 Stranger Things). Because
Informer turns out to be the best model across all feature
sets in the combined dataset, it was applied to the subfolder-



TABLE IV: Comparison among different combinations of TPA-LSTM and Informer with Random Forest from paper [2],
Optimized Random Forest, and LASSO for the combined 5G dataset

TPA-LSTM + RF | O-TPA-LSTM + O-RF

O-TPA-LSTM + LASSO

Informer + RF Informer + O-RF | Informer + LASSO

Horizon | RMSE MAE RMSE MAE RMSE

MAE RMSE | MAE | RMSE MAE RMSE MAE

1 24.21 16.29 4.72 1.55 4.69

1.05 1.73 0.89 1.55 0.7 1.57 0.68

2 32.66 19.86 5.82 2.42 5.26

1.25 1.48 0.75 1.68 0.67 1.58 0.66

3 35.63 21.84 6.15 2.16 5.72

1.4 1.78 0.97 1.78 0.69 1.59 0.73

6 38.82 23.88 7.94 3.28 6.73

1.92 1.67 0.81 1.72 0.69 1.7 0.68

12 43.27 28.67 9.55 4.03 8.3

2.52 1.58 0.95 1.71 0.7 1.72 0.7

24 48.16 28.53 12.32 5.67 10.53

3.63 1.65 0.83 1.75 0.73 1.73 0.73

48 51.55 31.55 15.71 7.74 13.6

4.96 1.67 0.85 1.74 0.71 1.78 0.73
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Fig. 4: (a) and (b) show RMSE and MAE Log for O-TPA-
LSTM + LASSO and Informer + LASSO. (c¢) and (d) show

the Ground Truth vs Prediction for O-TPA-LSTM + LASSO
and Informer + LASSO in case of Horizon-1

1000

by-subfolder dataset to determine application-centric perfor-
mance. TABLE V, TABLE VI, TABLE VII, TABLE VIII
and TABLE IX summarize the findings for the subfolder-
level dataset for all horizons (1-48) with these combination
- Informer + O-RF and Informer + LASSO, as well as the
mean and standard deviation (in Mbps) for each subfolder. The
RMSE and MAE follow a rising trend over longer horizons,
and the RMSE can occasionally drop as the input length
increases when anticipating longer sequences. The reason
is that the more extended encoder input may have more
dependencies and the longer decoder token has more local
information [12]. We show the training and inference time in
these tables to see if the training could be completed online
or offline. According to our observations, training should be
done offline because training takes several minutes, depending
on the size of the dataset. However, inference time is much
smaller and hence the trained model can be used to generate
real-time prediction outputs without affecting user QoE.
Finally, we have chosen horizon 24 to compare the perfor-
mance of Informer for the sub-folder-wise dataset with our
parameter tuned O-RF and LASSO by changing the window
size. Window size has been calculated using the sum of
sequence length and prediction length parameter for Informer.
Prediction length is the horizon in our case and is kept fixed
at 24 for this analysis while changing sequence length. The
default sequence length is 96, so we varied the sequence
length and observed the impact of changed window size on
the prediction. The outcome is displayed in TABLE X for
Informer + O-RF and TABLE XI for Informer + LASSO. Our
conclusion from these results is that the variable window size
has less impact on prediction performance, as the results did
not differ significantly when the window size was changed.

V. CONCLUSION

In this paper, we compared the performance of TPA-LSTM
and Informer in predicting future bandwidth in a publicly
available 5G dataset. Prior work shows that TPA-LSTM out-
performed machine learning algorithms including RLS, RF,
and LSTM to predict multivariate time series data like the
5G dataset. We have shown that the model “Informer” has
beaten TPA-LSTM in terms of the multivariate time series
prediction with more than 95% RMSE decrease for a more
extended period which can be efficiently used for real-time
video-rate adoption for many kinds of mobile applications. In
this paper, we used fixed-route data and compared the results



TABLE V: Comparison between O-RF and LASSO with Informer for 5G Download

Mean: 28.574 Mbps SD: 57.697

Informer + O-RF

Informer + LASSO

Horizon | RMSE | MAE | Training Time(s) | Inference Time(ms) | RMSE | MAE | Training Time(s) | Inference Time(ms)
1 0.75 0.37 179.21 0.99 0.72 0.35 178.42 1.32
2 0.84 0.41 179.71 0.98 0.84 0.42 178.39 1.28
3 0.95 0.49 180.95 0.99 0.97 0.49 180.25 1.30
6 1.21 0.66 181.50 1.00 1.19 0.63 175.77 1.31
12 1.28 0.70 151.81 1.01 1.27 0.69 160.77 1.14
24 1.33 0.77 148.81 0.87 1.33 0.73 175.27 1.20
48 1.37 0.80 135.28 2.35 1.36 0.75 178.84 1.28

TABLE VI: Comparison between O-RF and LASSO with Informer for AP Animated Adventure Time

Mean: 0.623 Mbps SD: 2.167

Informer + O-RF Informer + LASSO
Horizon | RMSE | MAE | Training Time(s) | Inference Time(ms) | RMSE | MAE | Training Time(s) | Inference Time(ms)
1 0.90 0.33 69.32 1.26 0.81 0.31 74.37 0.54
2 0.93 0.32 61.93 1.24 0.92 0.33 71.11 0.55
3 0.93 0.31 67.52 1.27 0.92 0.33 70.77 0.54
6 0.93 0.34 75.35 1.24 0.93 0.34 64.91 0.52
12 0.95 0.35 80.15 1.27 0.94 0.36 53.99 0.82
24 0.99 0.42 76.27 1.25 0.94 0.35 55.21 0.82
48 1.01 0.42 85.07 0.57 0.95 0.37 68.52 0.77
TABLE VII: Comparison between O-RF and LASSO with Informer for AP Season3 The Expanse
Mean: 0.763 Mbps SD: 2.529
Informer + O-RF Informer + LASSO
Horizon | RMSE | MAE | Training Time(s) | Inference Time(ms) | RMSE | MAE | Training Time(s) | Inference Time(ms)
1 0.80 0.35 143.04 2.30 0.75 0.33 121.59 1.55
2 0.86 0.37 137.62 2.16 5.26 1.25 121.46 1.56
3 0.86 0.36 125.09 222 5.72 1.4 113.48 1.57
6 0.88 0.35 146.10 2.21 6.73 1.92 106.74 1.57
12 0.87 0.36 132.74 222 8.3 2.52 126.78 1.33
24 0.93 0.39 156.73 2.33 10.53 3.63 122.79 1.30
48 0.88 0.36 166.3 242 13.6 4.96 109.01 1.41

TABLE VIII: Comparison between O-RF and LASSO with Informer for Netflix Animated RickandMorty

Mean: 0.592 Mbps SD: 2.973

Informer + O-RF

Informer + LASSO

Horizon | RMSE | MAE | Training Time(s) | Inference Time(ms) | RMSE | MAE | Training Time(s) | Inference Time(ms)
1 0.67 0.23 80.90 1.15 0.66 0.24 78.05 1.11
2 0.71 0.27 81.04 1.18 0.68 0.25 77.48 1.11
3 0.74 0.33 81.06 1.17 0.71 0.32 72.47 1.10
6 0.74 0.31 81.11 1.17 0.73 0.29 58.97 1.15
12 0.77 0.32 78.08 1.15 0.73 0.29 58.97 1.15
24 0.76 0.29 82.22 1.16 0.74 0.32 59.79 1.16
48 0.75 0.30 80.65 1.20 0.74 0.33 68.54 1.18

TABLE IX: Comparison between O-RF and LASSO with Informer for Netflix Season3StrangerThings

Mean: 0.873 Mbps SD: 3.850
Informer + O-RF Informer + LASSO
Horizon | RMSE | MAE | Training Time(s) | Inference Time(ms) | RMSE | MAE | Training Time(s) | Inference Time(ms)
1 0.83 0.31 170.15 1.06 0.75 0.33 143.08 1.28
2 0.91 0.39 171.99 1.08 0.85 0.37 129.12 1.27
3 0.91 0.36 165.77 1.72 0.85 0.36 117.44 1.18
6 0.97 0.46 161.79 1.71 0.84 0.38 128.69 1.19
12 1.04 0.52 143.82 1.39 0.85 0.37 101.03 1.16
24 0.96 0.43 137.74 1.40 0.85 0.36 125.02 1.17
48 1.01 0.48 155.25 1.46 0.86 0.38 148.87 1.23

of these two models since history-based machine learning ap-
proaches use time-series forecasting. We found that Informer
performed very well in the experiment. For future research,

we can investigate some recent machine learning models in

the comparison. As the dataset has not been updated since the
COVID-19 pandemic, we will try to collect the latest dataset
for 5G to ensure better QoE for the users.
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TABLE X: Comparison for Sub-Folder wise Dataset with Different window size for Random Forest

Horizon-24 Window Size-48 | Window Size-96 | Window Size-144 | Window Size-192
Dataset RMSE | MAE | RMSE | MAE | RMSE MAE RMSE MAE
5Gdownload 1.30 0.70 1.33 0.77 1.37 0.82 1.38 0.83
AP AnimatedAdventureTime 0.94 0.37 0.99 0.42 0.94 0.38 0.97 0.41
APTheExpanseSeason3 0.81 0.35 0.93 0.39 0.81 0.32 0.81 0.32
NetflixAnimatedRickandMorty 0.75 0.28 0.76 0.29 0.74 0.28 0.77 0.32
NetflixStrangerThingsSeason3 1.20 0.59 0.96 0.43 0.95 0.42 1.09 0.60

TABLE XI: Comparison for Sub-Folder wise Dataset with Different window size for LASSO

Horizon-24 Window Size-48 | Window Size-96 | Window Size-144 | Window Size-192

Dataset RMSE | MAE | RMSE | MAE | RMSE MAE RMSE MAE
5Gdownload 1.29 0.71 1.33 0.73 1.35 0.82 1.3 0.83
AP AnimatedAdventureTime 0.94 0.37 0.94 0.35 0.93 0.35 0.93 0.35
APTheExpanseSeason3 0.89 0.40 0.89 0.41 0.84 0.40 0.85 0.41
NetflixAnimatedRickandMorty 0.73 0.31 0.74 0.32 0.74 0.32 0.74 0.30
NetflixStrangerThingsSeason3 0.87 0.37 0.85 0.36 0.88 0.40 0.86 0.37
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