
MonArch: Network Slice Monitoring Architecture
for Cloud Native 5G Deployments

Niloy Saha∗, Nashid Shahriar†, Raouf Boutaba∗ and Aladdin Saleh‡
{n6saha, rboutaba}@uwaterloo.ca, nashid.shahriar@uregina.ca, aladdin.saleh@rci.rogers.com

∗University of Waterloo, Canada, †University of Regina, Canada, ‡Rogers Communications, Canada Inc.

Abstract—Automated decision making algorithms are expected
to play a key role in management and orchestration of network
slices in 5G and beyond networks. State-of-the-art algorithms
for automated orchestration and management tend to rely on
data-driven methods which require a timely and accurate view
of the network. Accurately monitoring an end-to-end (E2E)
network slice requires a scalable monitoring architecture that
facilitates collection and correlation of data from various network
segments comprising the slice. The state-of-the-art on 5G mon-
itoring mostly focuses on scalability, falling short in providing
explicit support for network slicing and computing network
slice key performance indicators (KPIs). To fill this gap, in this
paper, we present MonArch, a scalable monitoring architecture
for 5G, which focuses on network slice monitoring, slice KPI
computation, and an application programming interface (API)
for specifying slice monitoring requests. We validate the proposed
architecture by implementing MonArch on a 5G testbed, and
demonstrate its capability to compute a network slice KPI (e.g.,
slice throughput). Our evaluations show that MonArch does
not significantly increase data ingestion time when scaling the
number of slices and that a 5-second monitoring interval offers
a good balance between monitoring overhead and accuracy.

Index Terms—Network Slicing, KPI, Monitoring, 5G Network

I. INTRODUCTION

Network slicing enables the creation of multiple isolated
virtual networks for different services on a common physical
infrastructure, but it also increases network complexity and
requires the use of automated orchestration and management
using Artificial Intelligence/Machine Learning (AI/ML) tech-
niques [1]. State-of-the-art algorithms for automated orches-
tration and management tend to rely on data-driven methods
to extract large volumes of data from the network efficiently.
However, monitoring an E2E slice involves monitoring dif-
ferent types of resources such as radio, network, computing,
and storage from multiple network segments, which poses a
significant challenge in obtaining a timely and accurate view
of the 5G network. Existing monitoring tools are focused on
gathering information from a particular segment of the network
and lack a cohesive view of an entire E2E network slice.

A key aspect in developing an E2E monitoring solution
for 5G network slicing is to develop a scalable architecture
to collect and correlate monitoring data from different seg-
ments of the network to compute slice KPIs. Additionally,
the next-generation 5G core (5GC) is increasingly relying on
cloud-native technologies (such as containers) with the 3rd
Generation Partnership Project (3GPP) adopting a service-
based architecture for the 5GC in Release 15 and beyond [2].

The adoption of cloud-native technologies allows supporting
multiple distributed network functions (NFs) per network slice,
but this also requires network orchestration and management
to leverage container orchestration tools such as OpenShift
and Kubernetes. This introduces new challenges for monitor-
ing, since traditional monitoring tools cannot easily observe
ephemeral cloud-native elements such as containers. There-
fore, there is a need for a novel monitoring architecture for
5G and beyond networks, which provides seamless integration
with cloud-native orchestration tools.

The recent literature [3]–[6] on a scalable monitoring archi-
tecture for 5G and beyond networks has focused on addressing
the scalability aspect, but falls short in providing support
for network slicing, concrete implementation for computing
slice KPIs, and APIs for specifying monitoring requests at
the network slice level. Some works including [3], [4] have
no support for network slicing, while others such as [5],
[6] mention it in an abstract architectural standpoint without
providing any details on how actual slice monitoring and
computation of KPIs may be achieved. To effectively evaluate
the quality of service (QoS) requirements for 5G services,
standardization bodies such as 3GPP have defined several
slice KPIs such as throughput, latency, and reliability [7].
These KPIs are often composite, requiring the collection and
correlation of multiple infrastructure and NF related metrics
from different network segments. A monitoring architecture
suitable for 5G should facilitate the collection and correlation
of such metrics and enable the computation of network slice
KPIs. Additionally, it should include abstractions that allow
applications to specify monitoring requests at a high-level and
focus on their business logic.

In this paper, we present MonArch, a comprehensive and
scalable monitoring architecture for 5G and beyond networks.
Our main focus is on monitoring network slices, computing
slice KPIs, and providing an API for specifying monitoring
requests. Our contributions include:

• A scalable monitoring architecture that can monitor at
different levels such as network slices, network functions,
and infrastructure.

• A northbound API that allows for specifying monitoring
requests at various levels, including slices and network
functions.

• A prototype implementation of the proposed monitoring
system, validated through a concrete use case of moni-
toring network slice throughput KPI, which is publicly



available on GitHub [8].
• An evaluation of the proposed architecture using a 5G

testbed, showcasing the impact of scaling the number of
slices and varying the monitoring interval.

The rest of the paper is organized as follows. In Section II,
we survey the state-of-the-art. Section III presents the pro-
posed monitoring architecture and Section IV discusses its
implementation, focusing an a concrete example of network
slice throughput KPI computation. Evaluation results are pre-
sented in Section V, and in Section VI, we conclude the paper
and discuss future work.

II. LITERATURE SURVEY

In recent literature, there have been a number of works
that have focused on scalable monitoring for 5G networks.
One such example is the work of Perez et al. [3], in which
they present a scalable monitoring architecture for a multi-
site 5G platform. The proposed architecture consists of a
two-level hierarchy of publish-subscribe brokers, both intra-
site and inter-site, along with infrastructure-specific agents
for extraction and translation of metrics from heterogeneous
infrastructure components. While the authors in [3] address
scalability by including a distributed Apache Kafka broker,
they do not discuss important aspects of a 5G monitoring
system such as end-to-end monitoring and network slicing.

Another example of 5G monitoring literature is the work of
Giannopoulos et al. [4], in which they present a monitoring
framework for 5G systems that consists of a suite of open-
source monitoring tools. The authors focus on monitoring
different levels of the 5G system, including the network
slice, virtualized NF, and infrastructure level, using separate
instances of monitoring tools such as Netdata and Prometheus.
They demonstrate how these tools can be used to collect
system and network level metrics by deploying their proposed
framework on a testbed consisting of a physical gNB and
the open-source Open5GS 5G SA core. However, they do not
discuss how to capture per-slice KPI measurements.

Beltrami et al. [5] propose an architecture for monitoring
end-to-end network slices across multiple heterogeneous do-
mains. The focus of this work is on horizontal and vertical
elasticity of the monitoring architecture by on-demand instan-
tiation/deletion of monitoring agents in the NFs comprising a
slice. This is achieved using two components: a) slice measure-
ments aggregator(s) and b) adapters, which are deployed and
managed per slice. The aggregator function is responsible for
merging and formatting streams of monitoring data, while the
adapters provide technology-specific southbound interfaces to
monitoring solutions such as SNMP. The authors propose an
engine controller component for tuning the configuration of the
monitoring components (e.g., monitoring frequency), however
they do not provide any quantitative analysis or results related
to resource consumption of the proposed architecture.

In [6], Mekki et al. present a scalable monitoring archi-
tecture with a focus on network slices, including collecting
metrics from different network slice segments. This is achieved

by deploying domain (e.g., RAN and edge/core) and slice-
specific collection agents, instantiated per slice, which collect
and aggregate monitoring data per slice. Slice identification is
achieved using a custom protocol that encapsulates monitoring
data with a header containing slice identifiers. While this
architecture introduces several useful abstractions, the paper
falls short in describing how slice-level aggregations are done
as well as how domain orchestrators compute KPIs from
monitoring data of NFs in a slice.

Vasilakos et al. [9] proposed ElasticSDK, a software devel-
opment kit (SDK) which provides abstractions for the develop-
ment and chaining of monitoring applications. The proposed
SDK leverages a distributed ElasticSearch database to provide
scalability and the capability to perform aggregation queries
on the data. The authors utilized a custom agent deployed
on top of the FlexRAN controller to collect monitoring data
and showed how ElasticSDK can be used to establish a mon-
itoring pipeline with control plane applications reading from
the database, computing processed values, and subsequently
writing back to the database. The authors discuss the need
for a northbound API for monitoring requests, but no details
are presented regarding how filtering and aggregation can be
realized based on criteria such as network slices involving
different segments of the network.

TABLE I: Comparison of existing literature and proposed
architecture (MonArch). Legends in the table represent sup-
ported (✓), not supported (✗), and partial/limited support (◆).

Ref. Data Collection Monit-
oring
API

E2E
Moni-
toring

Slice
KPI

Scaling/
Elas-
ticity

[3] Monitoring agent
per component.

✗ ✗ ✗ ✓

[4] Custom NetData
plugin.

✗ ✓ ✗ ✗

[5] Monitoring agent
per infrastructure
component.

✗ ✗ ◆ ✓

[6] FlexRAN and
Prometheus
exporters.

◆ ✗ ◆ ✓

[9] FlexRAN API. ◆ ✗ ✗ ✓
MonArch Prometheus

exporters and
FileBeats.

✓ ✓
(through
plug-
ins)

✓ ✓

Synthesis: The existing literature on 5G monitoring has
primarily focused on scalable monitoring architecture, but
lacks support for network slicing and implementation using a
5G testbed. Our work fills this gap by presenting MonArch, a
scalable monitoring architecture for 5G and beyond networks,
which has a specific focus on monitoring at the network
slice level, slice KPI computation, and an API for specifying
monitoring requests. We have also implemented and evaluated
the proposed architecture using a cloud-native 5G testbed, and
provided an empirical analysis on its ability to calculate 5G
network slice KPIs. Additionally, our framework introduces
a northbound API that allows for the conversion of high-
level monitoring requests from applications into low-level



monitoring primitives, which are then autonomously deployed
in the 5G network. To the best of our knowledge, this is the
first work to demonstrate and evaluate a scalable monitoring
architecture for 5G networks that includes these features.

III. MONARCH

In this section, we outline the conceptual architecture of
MonArch, detailing the flow of a monitoring request through
the system and discussing the Northbound API for monitoring.

A. Conceptual Architecture

Slice Orchestrator
(External)

Data Distribution 

Broker
SSMC 

Manager

2. Get slice 
information

(e.g., slice components 
and NSS controllers)

4a. Instantiate and 
configure MDEs

4b. Instantiate 
and configure 
KPI calculator 

per slice

Monitoring Manager

SB Plugin(s)

3. Convert to low-level 
monitoring primitives

6. Write monitoring 
data to Data Store

Data Store

NoSQL DB TSDBRequest Translator

Auth

NB API

Monitoring App(s)

Slice Specific 
Components

Slice KPI 
Calculator 

1. Monitoring 
request 

Visualization

7. Read/write 
monitoring data

8. Get monitoring data 
using access ID

Control

Data

Components of 5G Monarch

Network segment (e.g., RAN, edge, core)

NF

Sidecar

MDE
Segment Specific 
Metrics Collector

(SSMC)

5a. Export 
monitoring data

(non metric)

5b. Export 
monitoring data

(metrics)

5c. Export  
metrics 

from SSMC

Fig. 1: Conceptual architecture for MonArch

As shown in Figure 1, the MonArch architecture comprises
several high-level components, including:

• Request translator: The Northbound API responsible for
converting high-level monitoring requests into low-level
monitoring primitives and exposing computed KPIs to the
user. It allows the user to specify various details related
to the monitoring request, such as type, aggregation level,
and more.

• Monitoring manager: This component is responsible
for installing and configuring monitoring exporters to
collect monitoring data from different NFs that make up
a network slice. It uses a framework with southbound
plugins that interact with the components in various net-
work segments and provide a uniform interface to other
components of the monitoring architecture. The plugin-
based approach allows the use of various monitoring
methods such as probing and in-band telemetry for E2E
monitoring. It also communicates with an external slice
orchestrator (e.g., ONAP [10]) to obtain the mapping
between containerized NFs and slices.

• Monitoring data exporter (MDE): MDEs are
lightweight containers that are placed alongside each NF
to collect monitoring information from the corresponding
NF. There are two types of exporters being used: FileBeat
[11] for non-numeric data such as slice to NF mapping,

and NF logs, and Prometheus [12] for metric data such
as network tx/rx bytes. The MDEs are responsible for
extracting data from the corresponding NF, transforming
the data into the correct format, and sending it to
data stores. The MDEs can be written to parse and
interpret vendor-specific proprietary protocols and data
formatting, and convert the data into a common format
used by MonArch.

• Slice specific components: These components are in-
stantiated per network slice and contain the logic for
network slice KPI computation. They are responsible
for querying the data store, computing KPI (e.g., by
correlating data from different NFs) and subsequently
writing the computed KPIs back to the data store. They
contain the logic necessary for computing network slice
KPIs (e.g., those standardized by the 3GPP [7]) and are
extendable via scripts to support custom KPIs.

• Data store: The data store component in MonArch is
an abstraction of persistent storage and is responsible for
storing monitoring and configuration data. It contains a
combination of NoSQL and time-series database (TSDB).
The TSDB is used to efficiently store large volumes of
numeric metric data generated by monitoring different
components of a 5G network over time. The NoSQL
database is used to store non-numeric configuration data
such as slice components and PDU sessions, as they are
not well suited for TSDBs.

• Data distribution: The data distribution component is
responsible for collecting and enriching non-metric data
from various network slice segments (NSS), as well as
from other sources of monitoring data instantiated by the
southbound plugins (e.g., in-band telemetry collectors).
This component consists of a high-performance broker
(such as Apache Kafka [13]) and components to trans-
form and enrich streaming data (e.g., Logstash [14]).

• Segment specific metrics collector (SSMC): The SSMC
plays a crucial role in the monitoring process by collect-
ing metric data from various segments of the network
(e.g., RAN, edge, core) and sending them to a central
data store. The use of SSMCs has several advantages, in-
cluding avoiding data collection across network segment
boundaries, providing local persistence of monitoring
data, increasing scalability through collection of aggre-
gated metrics, and allowing for segment-wise labelling
of each collected metric to aid in KPI computation.

In the subsequent section, we discuss how the different
components of MonArch work together to serve a network
slice monitoring request.

B. Flow of a monitoring request

Figure 1 shows the flow of a monitoring request through
5G MonArch, which proceeds as follows:

• Step 1. The monitoring application specifies a high-level
network slice monitoring request in JSON format, and
receives an access identifier.



• Step 2. The request is passed to the monitoring manager,
which communicates with an external slice orchestrator
to gather information about the requested slice’s compo-
nents.

• Step 3. The monitoring manager translates the high-level
request into low-level monitoring primitives.

• Step 4: The monitoring manager instantiates and config-
ures MDEs and slice-specific KPI calculators.

• Step 5: MDEs export non-metric data and SSMC collects
and exports metric data to the data store.

• Step 6: The data is written to the appropriate database in
the data store.

• Step 7: The slice KPI calculator components perform the
slice KPI computation according to predefined logic.

• Step 8: The monitoring data is accessed using the NB
API or a data visualization module, with the access ID
from step 1.

C. Monitoring API
A flexible northbound API for monitoring, which provides

a high-level abstraction to monitoring applications, is essential
for ensuring that the apps can focus on their business logic.
Some existing works, such as [6], propose to leverage the
3GPP network slice template (NST) for this purpose. How-
ever, a separate northbound API for monitoring offers greater
flexibility in terms of the options that can be included, and
potentially allows for the collection, aggregation, and man-
agement of monitoring data across multiple slices. Figure 2
illustrates our proposed structure for a monitoring request used
by the northbound API.

Fig. 2: Structure of a monitoring request

The proposed northbound API provides a high-level abstrac-
tion to monitoring apps. The request structure includes four
main components: measurement unit, which specifies the type
of metric or KPI to be measured; monitoring entity, which
identifies the entity to be monitored and includes three required
fields (type, id, and aggregation); method, which specifies
the method for collecting the monitoring data and includes
a monitoring granularity field; and duration, which specifies
how long the request should be active. The request structure
is used to submit a high-level monitoring request to MonArch
and the response includes a status field and a request id, which
can be used to list, delete, or update the monitoring requests.

IV. CASE STUDY: NETWORK SLICE THROUGHPUT
MONITORING

In this section, we discuss the implementation of MonArch
in a 5G network testbed and show how it can be used to
monitor network slice throughput KPI.

A. Implementation of MonArch

The MonArch components are integrated with a 5G testbed
at the University of Waterloo, in a cloud-native deployment
where the 5G network and MonArch components are instan-
tiated as containers on a Kubernetes cluster, with the MDEs
instantiated as sidecar containers inside Kubernetes pods. The
implementation uses various tools, which are listed in Table II.
The container images, manifest files, and source code used for
the implementation are publicly available on GitHub [8].

TABLE II: Implementation of MonArch components

Component Implementation
Monitoring man-
ager

Kubernetes API v1.23.6 as southbound plugin

Data store
• NoSQL database (Elasticsearch v8.2.0)
• Time-series database (Prometheus v2.38.0)

Data distribution • Broker (Apache Kafka v3.2.0)
• Enrichment (Logstash v8.2.0)

SSMC Prometheus v2.38.0
MDE • Non-metric data (Filebeat v8.2.0)

• Metric data (Python-based Prometheus exporter)
KPI calculator Python-based implementation

The MonArch system uses Elasticsearch NoSQL database to
store non-numeric configuration data and TSDB to store metric
data efficiently. Data is collected from different network com-
ponents by a data distribution module which is implemented
using Apache Kafka for scalability. Logstash is used to clean
and enrich non-metric data. The SSMC is implemented using
Prometheus, which operates using a pull-based model, and
allows for decoupling of MDEs from the collection system,
easy identification of client error, and easy integration with
cloud-native orchestration platforms like Kubernetes.

Next, we turn our attention to the monitoring API. Figure 3
shows how the monitoring API discussed in Section III-C
can be used for the specific case where we want to monitor
network slice throughput. Here we specify the measurement
entity as slice, identified by its S-NSSAI, and specify a fixed
polling frequency of 5s.

Fig. 3: Example monitoring request for network slice through-
put

The current case study has a limitation in the automatic
conversion of high-level monitoring requests into low-level
monitoring primitives, which is Step 3 of the monitoring



process in Section III-B. This is an area for future work and
for now, the MDE configurations are manually specified in the
Kubernetes manifest files.

B. Slice Throughput KPI computation

In order to compute network slice throughput KPI,
MonArch aggregates the transmitted and received bytes for
every PDU session associated with each UPF instance in
the slice. This requires correlating information from both the
SMF and UPF. To achieve this, MonArch instantiates two
MDEs alongside the SMF and UPF, using the Kubernetes API.
The MDE for SMF collects information about the mapping
between slices and their active PDU sessions, while the
MDE for UPF exports information about the bytes transmitted
and received for each PDU session, properly labeled with
information such as the originating UPF instance, direction
(uplink/downlink), and network segment.

The slice-specific KPI computation module then queries the
data store to collect information about the slice and the number
of bytes received and transmitted per active PDU session. It
filters the list of PDUs for a given slice using S-NSSAI to PDU
session mapping and aggregates the received and transmitted
bytes for these filtered PDU sessions to calculate slice through-
put. MonArch’s ability to label metrics by direction and per
PDU session provides flexibility for monitoring applications.

V. EVALUATION

A. Experimental Setup

Testbed: We evaluate the performance of the proposed
MonArch architecture on a 5G testbed established at the
University of Waterloo, which is described in detail in [15].
The testbed comprises of a 5G mobile core based on Free5GC,
emulated gNodeB and UE using UERANSIM, and all network
functions are run as containers on a 6 node Kubernetes cluster,
consisting of Intel NUC PCs (Intel i7-6770HQ (4) @ 2.600
GHz with 16GB RAM). The cluster also runs Prometheus
as the SSMC. The other components of the MonArch archi-
tecture, such as data store, are hosted on a separate 4 node
Kubernetes cluster, which are powered by Intel Xeon servers
(E3-1230 v3 (8) @ 3.7GHz) with 16GB RAM.

Network slicing scenario: To evaluate the performance of
the MonArch architecture, we created three network slices
on the testbed, each with two UE initiated PDU sessions
for a total of six PDU sessions. Each slice has its own
dedicated instances of SMF and UPF, while all other 5G
core functions are common across all slices. We used the
case study described in Section IV to collect data for the
slice throughput KPI computation. The results for different
scenarios were calculated by repeating each scenario 10 times
and presenting the average results.

B. Performance Metrics

Resource usage: The CPU and memory usage of the SSMC.
To calculate CPU usage, we leverage CPU metrics exposed by
cAdvisor integrated with Kubernetes.

Monitoring overhead: The amount of network traffic
(bytes/sec) transmitted by the MDEs.

Ingestion time: The time taken by the SSMC to fetch data
from the MDEs, given by Prometheus scrape duration metric.

C. Results

In order to assess the performance of MonArch, we con-
ducted evaluations to measure the impact of the number of
slices and the monitoring interval on the system’s resource
usage. Specifically, we collected non-metric data (slice infor-
mation) during the creation of slices, and periodically collected
metric data from the SSMC at the specified monitoring inter-
val. The focus of our evaluation was primarily on the resource
usage of the SSMC.

Impact of number of slices: As shown in Figure 4a, the
CPU usage of the SSMC increases linearly with an increase in
the number of PDU sessions, while the monitoring interval is
fixed at 5 seconds. Each slice has 2 PDU sessions, therefore an
increase in PDU sessions from 2 to 3 represents the addition of
a second network slice. The results indicate that the increase
in CPU consumption of the SSMC is reasonable, with a 3x
increase in the number of slices resulting in a 1.4x increase
in CPU usage.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1 2 3 4 5 6

C
P

U
 U

sa
g
e

Number of PDU sessions

5s interval

(a) CPU consumption

 300

 350

 400

 450

 500

1 2 3 4 5 6

M
em

o
ry

 U
sa

g
e 

(M
B

)

Number of PDU sessions

5s interval

(b) Memory usage

Fig. 4: SSMC resource usage with varying slices

Figure 4b shows that a 3x increase in the number of slices
results in approximately a 1.1x increase in the average memory
usage of the SSMC. Despite the increases, the values of CPU
(40%) and memory consumption (450MB) for 3 slices are
considered reasonable, indicating that the SSMC can handle a
larger number of slices.

Our approach of using a single SSMC to collect metrics
from all slices, as opposed to using slice-specific collectors,
allows for a more scalable monitoring architecture. The re-
source usage of the SSMC, as shown in Figure 4, increases
linearly with the number of slices, but at a reasonable rate.
Additionally, by having the data transformation complexity
handled by NF-specific MDEs, the architecture is more flexible
and changes to a specific NF will not affect other parts of the
monitoring system. This approach is in contrast to previous
work such as [6] which had slice-specific collectors.

Impact of varying monitoring interval: The performance
of MonArch is impacted by the monitoring interval, as it
determines the frequency of data collection from the MDEs.
Our analysis of the SSMC CPU usage and memory usage,
captured in Figures 5a and 5b respectively, shows that as the
monitoring interval increases, the CPU usage and memory



usage decrease. The decrease in CPU usage is significant,
with a reduction of approximately 60% when changing the
monitoring interval from 1 second to 3 seconds. We also
observe that the decrease in CPU usage gradually tapers off
as the monitoring interval increases further. Furthermore, we
see that as the monitoring interval decreases, more data points
need to be kept in RAM, leading to an increase in memory
usage, which is reflected in the Figure 5b.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

1 3 5 7 10

C
P

U
 U

sa
g
e

Monitoring interval (s)

1 Slice
2 Slices
3 Slices

(a) CPU consumption

 200

 250

 300

 350

 400

 450

 500

 550

 600

1 3 5 7 10

M
em

o
ry

 U
sa

g
e 

(M
B

)

Monitoring interval (s)

1 Slice
2 Slices
3 Slices

(b) Memory usage

Fig. 5: SSMC resource usage with varying monitoring interval

0.01

0.1

1

10

100

1 3 5 7 10

M
o
n
it

o
ri

n
g
 O

v
er

h
ea

d
 (

K
B

/s
)

Monitoring interval (s)

MonArch
MonArch (without SSMC)

(a) Monitoring overhead

0.1

1

10

100

1000

1 3 5 7 10S
to

ra
g
e 

U
se

d
 (

K
B

) 
(5

m
in

)

Monitoring interval (s)

MonArch
MonArch (without SSMC)

(b) Storage used

Fig. 6: Comparison of MonArch with and without SSMC

In MonArch, two separate methods are used for collecting
data, depending on whether it is numeric (metric) or non-
numeric. Numeric data is sent to a TSDB through the SSMC
for efficient collection and storage. This architectural choice
is compared to a variant of MonArch (without SSMC) in
terms of monitoring overhead and storage usage, as shown
in Figure 6. Figure 6a shows the monitoring overhead of
the UPF MDE at different monitoring intervals. A notable
decrease (approximately 3x) in the monitoring overhead is
observed on increasing monitoring interval from 1s to 3s.
As the monitoring interval is increased further, this decrease
tapers off. Additionally, there is an almost 10x decrease in
the monitoring overhead compared to the MonArch variant
without SSMC. This is due to the efficient storage of metric
data in a compressed format in a TSDB, as opposed to
storing them in a NoSQL database. Similarly, Figure 6b
shows a significant reduction of storage overhead achieved
by MonArch compared to its variant without SSMC.

Next, we examine the ingestion time of MonArch, as
illustrated in Figure 7a. Our findings reveal that there is
minimal impact on the SSMC ingestion time, regardless of
the monitoring interval or the number of slices. This suggests
that MonArch is able to scale effectively without introducing
additional delays. However, we also find that while the moni-
toring interval does not significantly affect the ingestion time,
it has a significant impact on the accuracy of the monitoring
results. To evaluate the impact of the monitoring interval on

3.60

3.80

4.00

4.20

4.40

1 3 5 7 10

In
g
es

ti
o
n
 t

im
e 

(m
s)

Monitoring interval (s)

1 Slice
2 Slices

3 Slices

(a) Data ingestion time

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70

S
li

ce
 T

h
ro

u
g
h
p
u
t 

 (
M

b
it

s/
se

c)

Time (s)

Ground Truth
1s

5s
10s

(b) Slice throughput

Fig. 7: Impact of varying monitoring interval

accuracy, we conduct an experiment where we send time-
varying traffic through a network slice, measure the slice
throughput with MonArch and compare the results to the
ground truth. Figure 7b illustrates that accuracy decreases as
the monitoring interval increases from 1s to 10s, as indicated
by the deviation from the ground truth during sharp changes
in throughput, such as at the 25s and 30s mark. Based on the
results of Figures 6 and 7b, we conclude that a monitoring
interval of 5 seconds offers a reasonable tradeoff between
monitoring overhead and accuracy.

Insights from MonArch: MonArch is a scalable monitoring
architecture for cloud-native 5G deployments that allows for
the collection and computation of a wide range of network
slice metrics. The architecture uses Prometheus as the SSMC,
which allows for easy collection of metrics in cloud-native
environments and supports a wide range of instrumentation.
The architecture can be easily extended to compute other
network slice KPIs, such as slice connection density, and can
be further enhanced by incorporating specialized data collec-
tion mechanisms, such as in-band telemetry (INT) for high-
resolution monitoring of the network data plane. The current
version of MonArch uses a central TSDB to collect data
from the SSMCs in each network segment, which may limit
scalability. However, this can be addressed by implementing
the TSDB using a high-availability Prometheus alternative like
Thanos, which allows for fast querying of the SSMC on-
demand.

VI. CONCLUSION

In this paper, we present MonArch, a scalable monitoring
architecture for cloud-native 5G deployments that focuses on
network slice monitoring and computation of network slice
KPIs. We validate MonArch by implementing it on a 5G
testbed and using it to compute network slice throughput
KPI. Our evaluation results show that MonArch scales well
with the number of slices and that a monitoring interval of 5
seconds offers a good balance between monitoring overhead
and accuracy. In future work, we plan to implement automatic
translation of high-level monitoring requests and incorporate
In-Band Telemetry (INT) as a plugin component for improved
E2E monitoring.

ACKNOWLEDGEMENTS

This work was supported in part by Rogers Communications
Canada Inc. and in part by a Mitacs Accelerate Grant.



REFERENCES

[1] R. Boutaba, N. Shahriar, M. A. Salahuddin, S. R. Chowdhury, N. Saha,
and A. James, “Ai-driven closed-loop automation in 5g and beyond
mobile networks,” in Proceedings of the ACM SIGCOMM FlexNets
Workshop on Flexible Networks Artificial Intelligence Supported
Network Flexibility and Agility, ser. FlexNets ’21. New York, NY,
USA: Association for Computing Machinery, 2021, pp. 1–6. [Online].
Available: https://doi.org/10.1145/3472735.3474458

[2] 3GPP, “System architecture for the 5g system; stage 2,” 3GPP, Technical
Specification (TS) 23.501, 09 2020, version 16.5.1.

[3] R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs,
“A monitoring framework for multi-site 5G platforms,” in Proc. of the
European Conference on Networks and Communications (EuCNC), Jun.
2020, pp. 52–56.

[4] D. Giannopoulos, P. Papaioannou, L. Ntzogani, C. Tranoris, and S. De-
nazis, “A holistic approach for 5G Network Slice Monitoring,” in 2021
IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), Sep. 2021, pp. 240–245.

[5] A. Beltrami, P. D. Maciel, F. Tusa, C. Cesila, C. Rothenberg,
R. Pasquini, and F. L. Verdi, “Design and implementation of an
elastic monitoring architecture for cloud network slices,” in Proc. of
the IEEE/IFIP Network Operations and Management Symposium, Apr.
2020, pp. 1–7.

[6] M. Mekki, S. Arora, and A. Ksentini, “A Scalable Monitoring Frame-
work for Network Slicing in 5G and Beyond Mobile Networks,” IEEE
Transactions on Network and Service Management, pp. 1–1, 2021.

[7] 3GPP, “Management and orchestration; 5G 5g end to end key perfor-
mance indicators (kpi),” 3GPP, Technical Specification (TS) 28.554, 09
2020, version 17.0.0.

[8] 5G-Monarch repository on Github. [Online]. Available: https://github.
com/niloysh/5g-monarch

[9] X. Vasilakos, B. Köksal, D. H. Izaldi, N. Nikaein, R. Schmidt, N. Fer-
dosian, R. F. Sari, and R. Cheng, “ElasticSDK: A monitoring software
development kit for enabling data-driven management and control
in 5G,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, Apr. 2020, pp. 1–7.

[10] The Linux Foundation. (2022) Open Network Automation Platform
(ONAP). [Online]. Available: https://www.onap.org/

[11] Elastic. (2022) Filebeat reference. [Online]. Available: https://www.
elastic.co/guide/en/beats/filebeat/index.html

[12] The Linux Foundation. (2022) Prometheus. [Online]. Available:
https://prometheus.io/

[13] Apache. (2022) Apache Kafka. [Online]. Available: https://www.elastic.
co/guide/en/beats/filebeat/index.html

[14] Apache. (2022) Logstash: Collect, Parse, Transform Logs. [Online].
Available: https://www.elastic.co/logstash/

[15] N. Saha, A. James, N. Shahriar, R. Boutaba, and A. Saleh, “Demon-
strating network slice KPI monitoring in a 5G testbed,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2022, pp.
1–3.

https://doi.org/10.1145/3472735.3474458
https://github.com/niloysh/5g-monarch
https://github.com/niloysh/5g-monarch
https://www.onap.org/
https://www.elastic.co/guide/en/beats/filebeat/index.html
https://www.elastic.co/guide/en/beats/filebeat/index.html
https://prometheus.io/
https://www.elastic.co/guide/en/beats/filebeat/index.html
https://www.elastic.co/guide/en/beats/filebeat/index.html
https://www.elastic.co/logstash/

	Introduction
	Literature Survey
	Monarch
	Conceptual Architecture
	Flow of a monitoring request
	Monitoring API

	Case Study: Network Slice Throughput Monitoring
	Implementation of MonArch
	Slice Throughput KPI computation

	Evaluation
	Experimental Setup
	Performance Metrics
	Results

	Conclusion
	References

