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Abstract—The Fifth generation (5G) mobile network is expected
to provide high bandwidth, low latency, and rapid user con-
nectivity. 5G Mobile operators are seeking an effective solution
that would enable them to support heterogeneous use cases with
different Quality of Service (QoS) requirements by utilizing the
existing physical infrastructure. 5G supports Network Slicing (NS),
an end-to-end (E2E) logical network that is mutually isolated,
has independent control, and can be managed independently.
By slicing the network, mobile operators can effectively manage
several network instances over a single infrastructure to provide
a variety of applications, use cases, and business services while
satisfying heterogeneous QoS requirements. With the advancement
of Machine Learning (ML), future communication networks will
need to use data-driven decision-making to achieve desired net-
work performance. In this paper, we demonstrated a prediction
mechanism using Machine and Deep Learning Algorithms in
traditional and incremental ways to select the suitable network
slice for various user requirements and device types. Using a
publicly available dataset and Incremental Learning model called
Stochastic Gradient Descent (SGD), we successfully classified
incoming user requests to appropriate network slices with an
accuracy of 99.33%.

Index Terms—Network Slicing, 5G Cellular Networks, Machine
Learning, Deep Learning, Incremental Learning

I. INTRODUCTION

In the past two decades, the growth of mobile devices
has been spurred by the development of new services and
applications. This transformation necessitates increased network
capacity and throughput, as well as the integration of numerous
technologies. Flawless operations and management have always
been a problem for diverse wireless networks, but many service
providers have met client demands. 5G is altering the cellular
sector by offering new economic options, opening doors to
new services, and introducing innovation to replace traditional
techniques. It should be sufficiently capable and autonomous
to cope with the changing demand for QoS to handle the
application-driven network dynamically [1], [2].

3GPP considers network slicing as a key enabler for 5G to
support new business models and user experiences. Slicing en-
ables operators to deploy several network instances on a single
infrastructure to provide heterogeneous QoS to different appli-
cations, use cases, and business services [3]. The International
Telecommunication Union (ITU) classified 5G services into
three major types [4]. Enhanced Mobile Broadband (eMBB),
which serves high bandwidth requirements for High Definition
(HD) video streaming, Virtual reality (VR) and Augmented
reality (AR) technologies. Ultra-reliable and Low-latency Com-
munications (uRLLC) focus on latency-sensitive services, such
as Assisted and Automated Driving, and Remote Management.

Massive Machine Type Communications (mMTC) meet the
requirements for densely connected devices to realize Smart
City and Smart Agriculture. To prevent QoS degradation, each
user request must be assigned to a specific slice type, such as
eMBB, uRLLC, or mMTC. For example, traffic coming from
IoT devices need to be assigned to mMTC slice. In addition,
a single device can simultaneously use multiple services, each
of which may need to be assigned to distinct network slices.
However, a user request may not specify which network slice
type to be used to serve the request. In such a scenario, a
network operator needs to classify a user request to a specific
slice based on its QoS requirements and device characteristics
using accurate prediction.

User-request data can be utilized in two ways, i) collect
prior user requests as a dataset containing all the important
features, ii) consider real-time user requests as they arrive in
online manner. In this paper, we first replicated the result of [3]
for a smaller dataset of 65K user requests using Deep Neural
Network (DNN) for predicting network slice type. Afterwards,
we used the extended dataset available in another repository1

with more than 466K records for the same classification task.
Our first contribution includes engaging multiple traditional
learning (Machine Learning and Deep Learning) algorithms to
predict the slice types based on incoming user requests with
specific QoS requirements. We also utilized Cross Validation
[5], L1 and L2 Regularization [6], and Dimension Reduction
using PCA [7] as feature engineering tasks to identify the most
important features. Furthermore, there are challenges in working
with multi-class targets despite classification algorithms and
libraries being the subject of extensive research. We modified
the sklearn library such that cross-validation could be applied to
the multi-class target data. We used grid search to fine-tune the
hyper-parameters of the models to achieve the optimal outcome.
Finally, our findings show slightly imbalanced classes in the
target feature. We used the weighting method [8] to overcome
this issue.

Our second contribution is to consider on-demand real-time
user requests as opposed to utilizing an offline pre-collected
dataset. The allocation of specific slices to real-time user
requests has more significance as a network operator may need
it for various types of applications and their users. Traditional
learning with offline training may not be suitable for real-
time user requests as data distribution may change frequently.
To address this problem, we applied multiple online (e.g.,

1umkc/networkslicing5g dataset (2022-03-22)

https://scikit-learn.org/stable/
https://crawdad.org/umkc/networkslicing5g/2022-03-22/


incremental) learning techniques to predict the slice types based
on continuous incoming user requests with specific QoS re-
quirements. We obtained 99.33% accuracy using an Incremental
Learning [9] model that beats not only the prior result of [3]
but also our traditional learning models.

The remainder of the paper is organized as follows: we
review related works in Section 2. Dataset details and analysis,
feature engineering, and applied models are presented in Section
3. Section 4 examines evaluation settings and outcomes by
comparing various models and feature combinations. Finally,
section 5 concludes the paper by discussing future research.

II. RELATED WORK

Numerous efforts have been made to optimize and schedule
network and radio resources in the most efficient manner.
However, precise network slice allocation depending on the
service or application requirements is a prerequisite for suc-
cessful deployment of 5G network slices. With the combina-
tion of edge computing, software-defined network (SDN), and
network function virtualization (NFV), the proposed solution
in [10] creates on-demand and distributed network functions
and allocates optimal load. A unique queuing strategy-oriented
solution using NFV and SDN has been proposed in [11],
which includes the allocation of data rates dynamically on high
demand, where each slice contains numerous service levels.
The ”SPArTaCuS” framework [12] prioritizes network traffic
using an SDN approach to adapt the situation for smart cities. It
addresses the problem of network congestion in crowded places
during large events and disasters with the concept of network
slicing. The authors in [13] focus on issues for network slicing
architecture, including network slice selection.

With the continuous advancement of Machine Learning and
Deep Learning algorithms, several prediction based approaches
for associating appropriate network slice with desired service
to maintain the QoS have been developed. The authors in [14]
use machine learning algorithms to address the slice allocation
problem that finds the best network slice for giving the specific
service and maintaining the QoS. Another framework for the
operation and control of network slices is based on machine
learning that continuously monitors workloads, throughput, and
resource utilization [15]. It then adjusts the resources allocated
to network slices dynamically. In this work [16], a model
named GS-DHOA has been proposed to optimize the weighing
function of networks. After applying GS-DHOA, the authors
in [16] propose to classify network slices extracted from their
dataset using deep neural networks. Another recent work has
used Convolutional Neural Network (CNN) and Long Short
Term Memory (LSTM), where CNN classifies the network slice,
and LSTM defines the statistics [17]. The approach, named
“DeepSlice,” applies deep learning neural network for network
slice classification and works for unknown device types based
on the availability and efficiency of the network [3]. In contrast
to the state-of-the-art, in this paper we not only apply a suite
of ML and deep learning classifiers combined with feature
engineering for offline training but also investigate incremental
learning approaches to facilitate online training with real-time
user requests.

III. METHODOLOGY
A. Dataset

Different network and device-related KPIs are included in the
umkc/networkslicing5g dataset (2022-03-22), including device
type (IoT device, smartphone, URLLC device, and so on),
category of User Equipment (UE), QoS Class Identifier (QCI),
packet delay budget (latency), packet loss rate (reliability), date
and time of the week among other features [3]. The network
Slice Type is used as a target variable. This data has been
captured by sending control packets between the UE and the
network. There are more than 466k records in the dataset. The
total count for each class reflects a slight imbalance among the
target classes (Network Slice Types) in the dataset (The record
counts of uRLLC, mMTC, and emBB classes are 209K, 131K
and 125K, respectively).
B. Data Analysis & Feature Engineering

The dataset consists of approximately 466,000 records with
eight input features and one target feature. Table I displays the
features and their respective details.

Also, a correlation analysis of the data was performed. Fig.1
shows that the dataset is moderately correlated according to
the value of Pearson Correlation Coefficient [18]. Based on
this observation, we applied dimensionality reduction [19] to
achieve better results.

Fig. 1: Feature Correlation Analysis

For feature analysis, RF [20] with hyperparameter tuning
using grid search was used. Fig.2 depicts the feature importance
graph. As indicated by Fig.2, the Technology supported and
Packet Loss Rate are the most important features, while the
day, time, and QCI have lower importance.

Fig. 2: Feature Importance Analysis

https://crawdad.org/umkc/networkslicing5g/2022-03-22/


TABLE I: Dataset Features with Details

Features Data type Unique values Modeling Parameters

Use Case Type (Input 1) object 8 Devices (Smartphone, IoT Devices, Smart Transportation, Industry 4.0, AR/VR/Gaming,
Healthcare, Public Safety/E911 and Smart City/Home)

LTE/5G UE Category (Input 2) object 23 Category type 0-20, M1 and NB-IoT
Technology Supported (Input 3) object 2 LTE/5G and IoT(LTE-M, NB-IoT)
Day (Input 4) object 7 Monday-Sunday
Time (Input 5) integer 23 23 hours
QCI (Input 6) integer 13 Values from 1-9, 65, 66, 69, 70
Packet Loss Rate (Reliability) float 23 0.01, 0.001, 0.000001
Packet Delay Budget (Latency) object 3 <10ms, <50ms, <300ms
Slice Type (Output) object 3 eMBB, mMTC, URLLC

C. ML and Deep Learning Algorithms

The Deep Learning Model (CNN) [21] was used as the
baseline, inspired by [3]. The assignment of incoming user
requests to three network slice classes constitutes a multi-class
classification. We applied several ML Models, including RF
[20], DT [22], and LR [23] with hyperparameter tuning. Since
the dataset may be susceptible to overfitting, we used Cross Val-
idation, Regularization, and Dimensionality Reduction to avoid
it. For the multi-class classification, we conducted modifications
to the sklearn library so that cross-validation could be applied
to the multi-class target. For Incremental Learning, Multi-
layer Perception Classifier (MLP) [24], Stochastic Gradient
Descent (SGD) [25], Hoeffding Tree Classifier [26], and Passive
Aggressive Classifier [27] were used.

IV. RESULTS AND DISCUSSION

A. Environment Settings

The dataset was divided into a training set, a test set,
and a validation set containing 70%, 20%, and 10% of the
data for traditional learning, and 90%-to-10% for learning and
validation for incremental learning. In incremental learning,
10% of the data was retained in order to validate the learning
performance outcomes and establish a proper inference time.
The incremental learning process was conducted sample-by-
sample and batch-by-batch (7 batches). In the sample-by-sample
approach, learning was conducted one sample at a time and then
evaluated with a validation set. We evaluated the accuracy of
the ML models by applying them to each dataset five times and
presenting the average results. All experiments are conducted
on a computer with an 11th-generation Intel Core i7 processor,
one GeForce RTX 3090 GPU with 24GB of RAM, and 32GB
of main memory.

B. Compared Method & Perfornamce Metrics

We applied the Deep Learning (CNN) [20] and ML models
integrated with five different combinations of input features.
The resulting variants evaluated in this paper are shown in
TABLE II. Specifically, we applied all input features (denoted
as F), the top five crucial features discussed in section C
(represented as FI5), all features except latency (represented
as FWL), all features except reliability (denoted as FWR),
and all features except latency and reliability (represented as
FWLR) to CNN, RF, DT, and LR. The incremental learning
was conducted in a sample-by-sample manner, and the best
outcome was compared to the batch-by-batch method. All input
features were used for incremental learning due to their superior
performance in traditional learning, as demonstrated in the next

section. We used Accuracy, Precision, Recall, and F1 Score as
our performance metrics [2] where TP, TN, FP and FN means
True Positive, True Negative, False Positive and False Negative
accordingly.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score = 2× Precision×Recall

Precision+Recall
(4)

Given that the class distribution within the dataset is not
balanced, weighted metrics were utilized. These metrics involve
calculating the average performance metric for each class and
weighting it by the number of samples present in that class.

TABLE II: Combination of Different Traditional Learning Clas-
sifiers and Features

F FI5 FWL FWR FWLR
CNN CNN+F CNN+FI5 CNN+FWL CNN+FWR CNN+FWLR
RF RF+F RF+FI5 RF+FWL RF+FWR RF+FWLR
DT DT+F DT+FI5 DT+FWL DT+FWR DT+FWLR
LR LR+F LR+FI5 LR+FWL LR+FWR LR+FWLR

C. Results and Analysis

As mentioned in Section I, we applied the DL model on
the 65K network slicing data and got 95.39% accuracy over
their 95%. Then we used RF, DT, LR, and CNN models on
the extended dataset with more than 466K rows. TABLE III
shows the accuracy, precision, recall, and F1 score for all
the combinations of features and models stated in TABLE II.
DT+F outperformed all scenarios with 98.65% accuracy. The
table shows that performance of all four models in combination
with five important features (FI5) is very close to those for
models with all features, suggesting to use of the most important
features. When we removed important features such as latency,
reliability, or both, the performance significantly dropped. We
also report training and inference time in TABLE III to see
if the training could be completed online or offline. After
applying all of the combinations of ML and DL algorithms, we
observed that training should be done offline because training
takes few minutes. However, inference time is significantly
shorter, allowing the trained model to use in real-time without
compromising performance.

Cross-validation, regularization, and dimensionality reduction
were used to overcome the overfitting issue. The graphs for



TABLE III: Traditional Learning Results

M+F Accuracy Precision Recall F1
Score

Training
Time
(s)

Inference
Time
(ms)

CNN+F 96.12 95.88 96.74 96.04 250 0.32
RF+F 97.87 98.85 97.85 97.84 53 0.26
DT+F 98.65 98.79 98.41 98.57 49 0.25
LR+F 94.26 95.56 94.44 94.03 26 0.22
CNN+FI5 96.1 95.89 96.73 96.03 218 0.32
RF+FI5 97.86 98.84 97.86 97.85 39 0.26
DT+FI5 98.62 98.78 98.42 98.56 47 0.25
LR+FI5 94.14 95.48 94.39 93.92 23 0.22
CNN+FWL 80.11 83 76.27 80.43 261 0.32
RF+FWL 69.64 76.02 70.9 68.38 62 0.26
DT+FWL 74.28 80.6 75.55 72.8 57 0.25
LR+FWL 63.98 74.31 65.71 59.93 39 0.22
CNN+FWR 91.46 91.46 91.44 91.67 258 0.32
RF+FWR 86.67 88.66 87.07 86.35 57 0.26
DT+FWR 88.89 90.74 89.26 88.59 54 0.25
LR+FWR 74.62 71.93 76.47 70.98 24 0.22
CNN+FWLP 72.95 72.96 72.94 73.02 274 0.32
RF+FWLP 51.5 44.51 52.45 46.09 107 0.27
DT+FWLP 52.63 53.4 54.44 47.54 82 0.25
LR+FWLP 61.32 64.2 61.89 57.97 30 0.22

(a) Model Accuracy (b) Model Loss

Fig. 3: CNN Model Accuracy and Loss per Epoch

accuracy and loss over training and validation for the CNN
model shown in Fig.3a and Fig.3b demonstrate that the model
does not exhibit overfitting when utilizing the mentioned tech-
niques. Due to its superior performance, DT+F was selected
as the model and feature combination for further analysis. We
report the class-based accuracy of this combination in TABLE
IV. As shown in TABLE IV, mMTC performed the best among
the three network slice types with 99.42% accuracy. This is due
to the imbalance class distribution as shown in TABLE IV that
can be addressed in a future work.

TABLE IV: Class Accuracy

Class Total
Count

Test Set
Count Percentage DT Accu-

racy
uRLLC 209300 41944 0.45 98.57
mMTC 131859 26533 0.28 99.42
eMBB 125580 24871 0.27 97.98

Relying on the above observation, we applied incremental
learning algorithms due to their compatibility with continuous
user incoming requests. TABLE V contains the accuracy, preci-
sion, recall, F1 score, training Time, and inference Time for the
MLP, SGD, HT, and PA classifiers. Among all the classifiers,
SGD performed the best with the accuracy of 99.33%. Incre-
mental learning training time is slightly longer than traditional
learning since training and evaluation are performed in each it-

Fig. 4: Incremental Learning Classifiers Comparison

eration. In general, Incremental learning outperforms traditional
learning in terms of other performance metrics. This is due to
its dynamic computation, which evolves over a large number of
samples.

Fig. 4 shows that the classifiers’ performance might be
enhanced with further training instances, despite their slope
becoming quite modest after certain points. Due to its rea-
sonable inference time and highest accuracy, the SGD might
be considered the best-performing online learning classifier
applicable to real-time scenarios. We also compared incremental
learning on a sample-by-sample and batch-by-batch basis. For
the comparison, the SGD classifier was chosen due to its supe-
rior performance. According to TABLE VI, although the batch-
by-batch approach has a shorter training time, its performance
is slightly worse than the sample-by-sample case in terms of
other performance metrics.

TABLE V: Incremental Learning Sample by Sample

Classifier Accuracy Precision Recall F1
Score

Training
Time
(s)

Inference
Time
(ms)

MLP 91.15 92.62 91.16 90.74 94 0.1
SGD 99.33 99.32 99.33 99.33 120 0.05
HT 99.12 99.14 99.11 99.12 104 0.06
PA 99.16 99.02 99.15 99.16 106 0.07

TABLE VI: Incremental Learning Batch by Batch

Classifier Accuracy Precision Recall F1
Score

Training
Time
(s)

Inference
Time
(ms)

SGD 98.93 98.88 98.89 98.92 62 0.05

V. CONCLUSION

In this paper, we address the problem of classifying incoming
user requests with specific QoS requirements to the most
suitable network slice types. The optimal mixture of traditional
learning classifiers and feature sets was evaluated and compared
to the incremental learning method. Using the SGD classifier
for incremental learning and all the input features, the highest
accuracy (99.33%) with the best inference time (0.05 ms) was
achieved, enabling its implementation in real-time streaming
data. Future research directions will involve extending this work
with additional QoS-related forecasts, such as predicting future
network traffic or load, and handovers.
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