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Times given in local Saskatchewan time (that is Mountain Daylight Saving Time)

Time June 9 June 10

8:00am Invited Speaker Invited Speaker

Mateja Šajna Karen Gunderson

9:00am 3 minute talks 3 minute talks

(round 1) (round 2)

9:30 am Break Break

10:00am Contributed Talks Contributed Talks

Dennis Kinoti Gikunda Andrii Arman

Christopher van Bommel Kristaps Balodis

Xiaohong Zhang

11:00am Invited Speaker Invited Speaker

Svenja Huntemann JD Nir

noon Lunch Lunch

1:30pm Contributed Talks Contributed Talks

Ahmad Mojallal Neha Joshi

Prateek Kumar Vishwakarma Ferdinand Ihringer

Sooyeong Kim Davoud Abdi

2:30pm Break Break

Conference Photo

3:00pm Invited Speaker Invited Speaker

Boting Yang Venkata Raghu Tej Pantangi



Invited Speakers

• Karen Gunderson
University of Manitoba
Turán numbers and tournament switching

• Svenja Huntemann
Concordia University of Edmonton
Enumeration of Positions in Placement Games

• JD Nir
University of Manitoba
Close Enough! How to (Probably) Calculate the Chromatic Number

• Mateja Šajna
University of Ottawa
The Surprising Honeymoon Oberwolfach Problem

• Venkata Raghu Tej Pantangi
University of Lethbridge
Erdős-Ko-Rado Module Property

• Boting Yang
University of Regina
Computing the One-Visibility Cop Number and Strategies for Trees

Lightning Talks Schedule

Time June 9 June 10

9:00-9:03 Hermie Monterde Michael Cavers

9:04-9:07 Allen Herman Ben Cameron

9:08-9:11 Varsha Singh Gary Au

9:12-9:15 Ferdinand Ihringer Sooyeong Kim

9:16-9:19 Shaun Fallat Karen Meagher Robert Craigen



Aims and Scope

The main objective of the Prairie Discrete Mathematics Workshop
(PDMW) is to bring together researchers in discrete mathematics in
the prairie region (Manitoba, Saskatchewan and Alberta), as well as
neighbouring provinces and states, with the goal of providing oppor-
tunities for networking and joint research.
Various forms of the PDMW have been held since 1995, and the first
workshop in its current form was at the University of Regina in 2003.
Since then it has been held annually (except for 2007) at universities
across the prairies, and is returning to Regina for the first time since
2003.
For 2022, the workshop will cover a range of different areas of discrete
mathematics and related areas of computer science. We have invited
six speakers from the prairie region, whose interests include graph the-
ory, design theory, applied combinatorial enumeration, combinatorial
algorithms, and computational learning theory.

Regina Land Acknowledgement

The University of Regina is situated on Treaty 4 lands with a presence
in Treaty 6. These are the territories of the nêhiyawak, Anihšnāpēk,
Dakota, Lakota, and Nakoda, and the homeland of the Métis/Michif
Nation. Today, these lands continue to be the shared Territory of
many diverse peoples from near and far.



List of Speakers and Abstracts

Mateja Šajna

University of Ottawa

The Surprising Honeymoon Oberwolfach Problem

The Honeymoon Oberwolfach Problem is a surprisingly interesting variation on
the spouse-avoiding variant of the Oberwolfach Problem. As a scheduling problem,
HOP(2m1, . . . , 2mt) asks whether is it possible to arrange n = m1+ . . .+mt couples
at a conference at t round tables of sizes 2m1, . . . , 2mt for 2n − 2 meals so that
each participant sits next to their spouse at every meal, and sits next to every other
participant exactly once. In graph-theoretic terms, a solution to HOP(2m1, . . . , 2mt)
is a decomposition of K2n+(2n−3)I, the complete graph on 2n vertices with 2n−3
additional copies of a chosen 1-factor I, into 2-factors, each consisting of disjoint
I-alternating cycles of lengths 2m1, . . . , 2mt. It is also equivalent to a semi-uniform
1-factorization of K2n of type (2m1, . . . , 2mt). Thus, the Honeymoon Oberwolfach
Problem is related not only to the famous Oberwolfach Problem, but also to Kotzig’s
conjecture on perfect 1-factorizations.

I will present several results, most notably, a complete solution to the case with
uniform cycle lengths. This is joint work with my students Dene Lepine and Mary
Rose Jerade.

Dennis Kinoti Gikunda

Kenyatta University

Algorithm Analysis for Big Data

Time efficiency is important in deciding which algorithm to use, but it is not
the only factor to consider. The amount of memory space required is also impor-
tant, and there are mathematical techniques for estimating space efficiency, just as
there are for estimating time efficiency. These mathematical techniques are founded
on understanding of functions, combinatorics, and recurrence relations. Further-
more, Paul Bachmann’s O-notation and Donald Knuth’s Ω and Θ notations provide
approximations that make evaluating large scale differences in algorithm efficiency
simple. Big data carries the burden of parallel data processing, necessitating the
modification of current algorithm analysis to meet the needs of the new technology.

Key Words: Sequences, Algorithm Analysis, Big Data, Technology



Christopher van Bommel

University of Manitoba

Investigating Perfect State Transfer on Trees

Quantum computing is believed to provide many advantages over traditional
computing, particularly considering the speed at which computations can be per-
formed. One of the challenges that needs to be resolved in order to construct a
quantum computer is the transmission of information from one part of the com-
puter to another. This transmission can be implemented by spin chains, which can
be modeled as a graph, and analyzed using algebraic graph theory. We investigate
the possibility of perfect state transfer on trees and discuss constructions in which
it is impossible.

Xiaohong Zhang

University Waterloo

Oriented Cayley graphs with special eigenvalues

Let G be a finite abelian group. An oriented Cayley graph on G is a Cayley
digraph X(G,C) such that C and −C are disjoint. Consider the (0, 1,−1) skew-
symmetric adjacency matrix of an oriented Cayley graph X = X(G,C). We give
a characterization of when all the eigenvalues of X are integer multiples of

√
∆ for

some square-free integer ∆ < 0. This also characterizes oriented Cayley graphs on
which the continuous quantum walks are periodic, a necessary condition for the walk
to admit uniform mixing or perfect state transfer.

Svenja Huntemann

Concordia University of Edmonton

Enumeration of Positions in Placement Games

Placement games are two-player games played on finite graphs in which the
players take turns placing tokens, without moving or removing them later. Many
of these games have been studied using tools from combinatorial game theory, the
study of perfect information games, but few are completely solved. A relatively new
topic of interest in combinatorial game theory is the enumeration of specific types of
positions. The number of positions of a certain type in relation to all positions gives
an indication of the complexity of analysis and which analysis tool might be most
efficient. I will discuss two projects on enumeration of positions in placement games
based on the number of pieces placed by each player. First, the game Domineering
is played on a grid, or subgraph of a grid, and the players place dominoes (tokens on
two adjacent vertices), with one playing horizontally, the other vertically. For this



game, a technique of tiling and matrix multiplication can be used to enumerate all
positions or just specific positions towards the end of the game. Secondly, in many
placement games the placement of tokens only depends on the distance to previously
placed tokens, such as in the games Col and Snort. We have found generating
functions for many of these games played on a variety of graphs and pose several
conjectures for others. This is joint work with Neil McKay and Lexi Nash.

Ahmad Mojallal

University of Regina

Open Problem on σ-invariant

Let G be a graph of order n with m edges. Also let µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn =
0 be the Laplacian eigenvalues of graph G and let σ = σ(G) (1 ≤ σ ≤ n) be the
largest positive integer such that µσ ≥ 2m

n . In this talk, we show that µ2(G) ≥ 2m
n

for almost all graphs. Moreover, we characterize the extremal graphs for any graphs.
We also provide the answer to Problem 3 in [Distribution of Laplacian eigenvalues
of graphs, Linear Algebra Appl. 508 (2016), 48–61], that is, the characterization
of all graphs with σ = 1. Finally, we present a few relations between σ and other
graph invariants.

This is joint work with Kinkar Ch. das, Sungkyunkwan University

Prateek Kumar Vishwakarma

University of Regina

A Gantmacher–Krein determinantal inequality via planar networks

Gantmacher and Krein discovered a relation between the determinant of a to-
tally nonnegative matrix and its partial Laplace expansions along the first row using
Sylvester’s determinant identity. We shall present an alternate proof of the same
using the re-parameterization of totally nonnegative matrices in terms of weighted
acyclic directed planar networks, which is popularly known as the converse of Lind-
ström’s lemma. To conclude, we shall articulate some of the outcomes of employing
this method in related and ongoing work with Shaun Fallat.



Sooyeong Kim

Università di Pisa

Families of graphs with twin pendent paths and the Braess edge

In the context of a random walk on an undirected graph, Kemeny’s constant
can measure the average travel time for a random walk between two randomly
chosen vertices. My interest is in graphs that behave counter-intuitively in regard
to Kemeny’s constant. In particular, I present graphs with a cut-vertex at which at
least two branches are paths, regarding whether the insertion of a particular edge
into a graph results in an increase of Kemeny?s constant. I provide several tools
for identifying such an edge in a family of graphs and for analyzing asymptotic
behaviour of the family regarding the tendency to have that edge; and classes of
particular graphs are given as examples. Furthermore, asymptotic behaviours of
families of trees are described.

Boting Yang

University of Regina

Computing the One-Visibility Cop Number and Strategies for Trees

In this talk, we consider the one-visibility cops and robbers game. We discuss
cop-win strategies for searching trees. We give a linear-time algorithm for computing
the one-visibility cop number of trees. We also present an O(n log n)-time algorithm
for computing the cop-win strategies of trees, where n is the number of vertices.

Karen Gunderson

University of Manitoba

Turán numbers and tournament switching

The Turán number for a fixed r-uniform hypergraph H is the maximum num-
ber of hyperedges in any r-uniform hypergraph on n vertices containing no copy of
H. I will discuss some exact Turán numbers that are obtained from a ‘switching
operation’ on tournaments. Two tournaments on the same vertex set are switching
equivalent if one can be obtained from the other by interchanging all edges between
two disjoint sets that partition the vertices. In some cases, infinite classes of extremal
hypergraphs can be constructed by taking as hyperedges all sub-tournaments in a
fixed switching equivalence class. The target equivalence class can either be defined
using some special classes of tournaments with connections to design theory or by
computer search. I will discuss some uniqueness results for the extremal results aris-
ing from algebraically-defined tournaments, and some possible avenues for further
research directions. Based on joint work with Jason Semeraro.



Andrii Arman

University of Manitoba

Upper bounds on the chromatic number of n-dimensional Euclidean space

The chromatic number of the n-dimensional Euclidean space Rn is the least
number of colors needed to color the points of the space so that every two points
distance one apart receive different colors.

In this talk I will present new upper bounds for the chromatic number of Rn

in low dimensions ( 5 ≤ n ≤ 38 ). The talk is based on a join work with Andriy
Bondarenko, Andriy Prymak, and Danylo Radchenko.

Kristaps Balodis

University of Calgary

On the cycle representation of graphs

Given a graph G, there exists a natural action of its automorphism group on
its cycle space. In this talk we explore several basic examples and speculate on the
ways these representations might encode graph theoretic information.

JD Nir

University of Manitoba

Close Enough! How to (Probably) Calculate the Chromatic Number

Determining the chromatic number of a graph is an NP-complete problem. Sur-
prisingly, though, “most” graphs that are “similar” have the same chromatic num-
ber. To formalize this notion, we study the chromatic number of various models of
random graphs. This problem boasts over seventy years of clever tricks, not only
from probability and graph theory but also linear algebra, complex analysis, and
even statistical physics. In this talk, we’ll look at how these methods were used in
historic breakthroughs as well as in recent results I’ve published on directed graphs
(with Karen Gunderson) and random lifts (with Xavier Pérez-Giménez).

Neha Joshi

University of Regina

Fusions of the generalized Hamming scheme on a strongly regular graph

We say B is a fusion of an association scheme A, if it is an association scheme
where each basis element of B is a union of basis elements of A. One of the most
important example of an association scheme for coding theory is the Hamming
scheme, H(n, q). Suppose A = {A0, A1, A2} be a rank 3 association scheme and



both A1 and A2 are adjacency matrices of strongly regular graphs. The generalized
Hamming scheme

H(2,A) = {A0 ⊗ A0, A1 ⊗ A1, A2 ⊗ A2, (A0 ⊗ A1) + (A1 ⊗ A0),

(A0 ⊗ A2) + (A2 ⊗ A0), (A1 ⊗ A2) + (A2 ⊗ A1)}

is one of the fusions of the rank 9 association scheme, A ⊗ A. In this talk, we
determine the parameters of all strongly regular graphs for which the generalized
Hamming scheme has extra fusions in addition to the one arising from the trivial
fusion of A. We also show that for any fusion B of A, the generalized Hamming
scheme H(n,B) is a nontrivial fusion of H(n,A).

Ferdinand Ihringer

Universiteit Gent

The Density of Complementary Subspace

Let V be a finite vector space of dimension d = e + e′ over the field with q
elements. Consider a family Y1 of e-spaces and a family Y ′ of e′-spaces with positive
density of at least α each. We show, using an easy argument relying on the expander
mixing lemma and well-known properties of the irreducible modules of Grassmann
graphs, that the probablity of S1 ∩ S2 = {0} for (S1, S2) ∈ Y1 × Y2 is at least

ωq(e)
(

1− 1−α
α q−

d
2

)
, where ωq(e) =

∏e
i=1(1− q−i).

Our motivation is as follows: Suppose that V is equipped with a nondegenerate
reflexive sesquilinear form σ. Let Y1 and Y2 be the families of nondegenerate sub-
spaces with respect to σ. Using long and sophisticated geometric arguments it is
shown in [1] that the probability of S1 ∩ S2 = {0} is at least 1−Cq−1 for relatively
small C, while leaving a few cases open. Our linear algebra technique takes care of
the open cases in [1], slightly improves C, and avoids any deep dives into geometric
arguments.

This is joint work with Stephen Glasby (University of Western Australia) and
Sam Mattheus (Vrije Universiteit Brussel).

[1] S. P. Glasby, A. C. Niemeyer, C. E. Praeger, The probability of spanning
a classical space by two non-degenerate subspaces of complementary dimensions,
arXiv:2109.10015v1 (2021).



Davoud Abdi

University of Calgary

Siblings of Countable NE-free Posets

Two structures R and S are equimorphic when each embeds in the other; we may
also say that one is a sibling of the other. Generally, it is not the case that equimor-
phic structures are necessarily isomorphic: the rational numbers, considered as a
linear order, has up to isomorphism, continuum many siblings. Let Sib(R) be the
number of siblings of R, these siblings are counted up to isomorphism. Thomassé
conjectured that for each countable relational structure R, made of at most count-
ably many relations, Sib(R) = 1, ℵ0 or 2ℵ0. There is an alternative case of interest,
namely whether Sib(R) = 1 or infinite for a relational structure R of any cardinality.

In this talk, I will introduce NE-free posets, classify them and give a sketch of
proof of the alternative Thomassé conjecture for countable NE-free posets.

Venkata Raghu Tej Pantangi

University of Lethbridge

Erdős-Ko-Rado Module Property

The classical Erdős-Ko-Rado (EKR) theorem and its variants can be translated
into characterizing maximum co-cliques of graphs in Association schemes. In this
talk, we will focus on EKR type theorems in permutation groups. Let G be a finite
group acting transitively on X. We wish to characterize the maximum co-cliques in
the derangement graph Γ(G;X). This is the graph whose vertex set is the group G,
with (g, h) being an edge if and only if gh−1 does not fix any point in X. Cosets of
point stabilizers are canonical examples of intersecting sets. A group action is said to
satisfy the EKR property if the size of every intersecting set is bounded above by the
size of a point stabilizer. A group action is said to satisfy the strict-EKR property
if every maximum intersecting set is a coset of a point stabilizer. It is an active
line of research to find group actions satisfying these properties. It was shown that
all 2-transitive satisfy the EKR property. While some 2-transitive groups satisfy
the strict-EKR property, not all of them do. However a recent result shows that
all 2-transitive groups satisfy the slightly weaker ”EKR-module property”(EKRM),
that is, the characteristic vector of a maximum intersecting set is a linear span of
characteristic vectors of cosets of point stabilizers. We will discuss about a few
more infinite classes of group actions that satisfy the EKRM property. We will also
discuss a characterization of the EKRM property using characters of G. We will also
discuss EKRM property in the context of a few other variants of the EKR problem.
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Code of conduct for events and programs at PIMS.

Equity, diversity and inclusion are essential to academic excellence in the mathematical
sciences. We support an open and diverse community, which includes voices that have been
underrepresented or discouraged. PIMS envisions a climate in which all participants are
provided with the best possible conditions for learning and research. We strive to provide a
supportive and safe environment that is dedicated to excellence, equity and mutual respect. We
expect all members of the PIMS Community (event organizers, event participants, faculty, staff,
students, visitors) to conduct themselves in a responsible manner so as not to cause, condone
or participate in the discrimination, harassment or prejudice of another person or group of
persons.

Where and to whom does the code of conduct apply.
● The PIMS Code of Conduct applies to all participants of events, their organizers and

presenters/speakers.
● The Code applies to events and meetings hosted and/or sponsored in part or solely by

PIMS.
● The Code applies to events and meetings taking place in-person or online.
● Participants at PIMS sponsored events that take place at other facilities or institutions

may be subject to the code of conduct of those premises in addition to the PIMS Code of
Conduct.

Respect and inclusion at PIMS events and programs
1. PIMS values diversity, respect and inclusion in all our programs. We all come from

diverse backgrounds, cultures and offer unique perspectives and valuable contributions.
2. We are accountable for our actions.

a. Participants at PIMS events should seek to proactively create an environment
that is free from harassment, discrimination and intimidation.

b. Behaviour that harasses, degrades or discriminates against others is against our
code of conduct.

c. Aggression, threats, intimidation, or violent behaviour of any kind will not be
tolerated. This includes but is not limited to any form of sexual harassment,
intimidation, threatening behaviour, sustained disruption, use of offensive, or
demeaning language, unwanted photography, screenshots or recording, or
making inappropriate statements based on individual characteristics such as age,
race, ethnicity, sexual orientation, gender identity, gender expression, marital
status, nationality, political affiliation, ability status, educational background, or
any other characteristic protected by law.



              
              

How to report behaviour that is in violation of the PIMS Code of Conduct
1. If a violation occurs, report the incident immediately to PIMS.

● You may wish to report it anonymously through the webform here.
● You may also choose to make a formal complaint to:

i. The PIMS Deputy Director: deputy-director@pims.math.ca
ii. The PIMS Director: director@pims.math.ca
iii. The PIMS COO: Denise@pims.math.ca

2. Provide details that you are comfortable sharing: date, time and place of incident,
violation particulars.

3. Identities of each individual directly involved in a report will be kept confidential as the
report is being investigated. Individuals directly involved in a report include any person
who raises or reports a conduct violation; witnesses; identified target(s); and the
accused.)

4. PIMS will not tolerate any retaliation, directly or indirectly, against anyone who, in good
faith, complains, gives evidence or is otherwise involved in an investigation.

Investigation and resolution of conduct violations
Violations to the PIMS Code of Conduct will not be tolerated, and any individual in violation will
be asked to stop immediately. If a report has been filed, PIMS will investigate and follow up with
the reporter(s) as well as the individual(s) who allegedly violated the code of conduct. We
reserve the right to undertake whatever process needed to help resolve the situation
immediately.

Revised: October, 2021


