Derangement Graphs of Groups

Karen Meagher: joint work with A. Sarobidy Razafimahatratra and Pablo Spiga

University of Regina

Definition

Two permutations $\sigma, \pi \in \text{Sym}(n)$ agree or intersect if for some $i \in \{1, 2, ..., n\}$

 $i^{\sigma} = i^{\pi}.$

- Two permutations σ and π intersect if and only if $\pi^{-1}\sigma$ has a fixed point.
- A permutation is a derangement if it fixes no points.
- **(9)** Permutations σ and π are intersecting if and only if $\pi^{-1}\sigma$ is **not** a derangement.

Definition

A set of permutations is intersecting if any two elements from the set are intersecting.

What is the largest set of intersecting permutations in a permutation group?

(This depends on group action!)

Canonical Intersecting Set

• The stabilizer of a point in a group G is an intersecting set

$$G_i = \{ \sigma \in G \,|\, i^\sigma = i \}.$$

Any coset of a stabilizer of a point is an intersecting set

$$S_{i,j} = \{ \sigma \in G \, | \, i^{\sigma} = j \}.$$

These are called the canonical intersecting sets.

• If G is transitive of degree n, then $|S_{i,j}| = \frac{|G|}{n}$.

Lemma

For any transitive group G with degree n, there is an intersecting set of size $\frac{|G|}{n}$.

Theorem (Erdős-Ko-Rado Theorem - 1961)

Let \mathcal{A} be an intersecting k-set system on an n-set. If n > 2k, then $|\mathcal{A}| \leq {n-1 \choose k-1}$.

- The largest intersecting collection of intersecting k-sets is the collection of all sets that contain a common point.
- Sometimes such a set is called trivially intersecting,
- or canonically intersecting.

Definition

For any permutation group G we can define a **derangement graph**, Γ_G .

- The vertices are the elements of *G*.
- Vertices $\sigma, \pi \in G$ are adjacent if and only if $\pi^{-1}\sigma$ is a derangement.

(So permutations are adjacent if they are **not** intersecting.)

An intersecting set in *G* is a coclique (independent set) in Γ_G , if *G* be a transitive group with degree *n* then $\alpha(\Gamma_G) \geq \frac{|G|}{n}$.

- The derangement graph is **regular**, the degree is the number of derangements in the group.
- *G* is a subgroup of the automorphism group of Γ_G .
- This graph is **vertex transitive** the automorphism group acts transitively on the vertices.

Derangement Graph

Intersection Density

Let $G \leq Sym(n)$ be any finite transitive group.

() For $\mathcal{F} \subseteq G$ intersecting, define the **intersection density of** \mathcal{F} to be

$$\rho(\mathcal{F}) = |\mathcal{F}| \left(\frac{|G|}{n}\right)^{-1} = \frac{|\mathcal{F}|}{|G_x|}$$

- 2 The intersection density of the stabilizer of a point is 1.
- The intersection density of the group G is

 $\rho(G) := \max\{\rho(\mathcal{F}) \,|\, \mathcal{F} \subseteq G \text{ is intersecting}\}.$

(This was defined by Li, Song and Pantangi in 2020.)

Observation

The intersection density of any transitive permutation group is at least 1.

Groups with intersection density 1 are exactly the groups that have the Erdős-Ko-Rado Property.

Which transitive groups have intersection density 1?

These groups are said to the have the EKR property

How large can the intersection density be?

Example

There is a group of order 12, acting on a set of size 6.

 $\{ (), (1,4)(2,5), (2,5)(3,6), (1,4)(3,6), \\ (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,2,6)(3,4,5), (1,6,2)(3,5,4), \\ (1,3,5)(2,4,6), (1,5,3)(2,6,4), (1,5,6)(2,3,4), (1,6,5)(2,4,3) \}$

The stabilizer of point has size 2, and there is an intersecting set of size 4. This group has intersection density 4/2 = 2.

The following groups have intersection density 1

- Sym(n) with its natural action on [1,...,n]. (Frankl and Deza, 1977)
- Sym(n) with its action on *t*-tuples, if n is sufficiently large.
 (Ellis, Friedgut, Pilpel, 2011)
- Sym(n) with its action on *t*-sets, if n is sufficiently large.
 (Ellis, 2012). Conjectured to hold for all n.
- PGL(n, k) on projective space.
 (Spiga and Meagher 2011, 2014; and Spiga 2016).
- Frobenius groups. (Ahmadi and Meagher 2015)

Theorem (Meagher, Spiga, Tiep, 2016)

All 2-transitive groups have intersection density 1.

Lemma

Let H be a permutation group. Then H is intersecting if and only if it is derangement free.

Proof. 1

If H is intersecting, then each $h \in H$ intersects the identity element, and hence has a fixed point.

Conversely, if *H* is derangement free, then for any $g, h \in H$ the element gh^{-1} is in *H*, so is not a derangement. Thus *g* and *h* are intersecting.

Corollary

If G is transitive of degree n with a derangement-free subgroup H, then

$$\rho(G) \ge \frac{|H|}{\frac{|G|}{n}} = \frac{n}{[G:H]}.$$

- For any group G acting on a set Ω take H to be the stabilizer of a point. Then the action is equivalent to G acting on G/H.
- 2 If $g, h \in G$ are intersecting under this action, then for some $x \in G$

$$g(xH) = h(xH) \quad \Leftrightarrow \quad h^{-1}gxH = xH \quad \Leftrightarrow \quad x^{-1}h^{-1}gxH = H$$

So gh^{-1} is conjugate to an element of *H*.

We are looking for a set S of elements from G such that for any two $g, h \in S h^{-1}g$ is conjugate to an element in H.

Example (Hujdurović, Kovács, Kutnar, Marušič)

What is the intersection density of Sym(n) with its action on $Sym(n)/\mathbb{Z}_3$?

① Find the largest set S of permutations in Sym(n) so that for any $x, y \in S$

 xy^{-1} is a 3-cycle.

- Assume identity is in S; so all other elements are 3-cycles.
- Consider the elements

$$(1,2,3), (1,2,4), \ldots, (1,2,n)$$

- **3** This set has size 1 + (n 2) = n 1.
- No larger set is possible, since any cycle that intersects with (1, 2, 3) must be of the form

$$\{(1,2,x), (1,x,3), (x,2,3)\}.$$

The intersection density is

$$|S| \left(\frac{|G|}{n}\right)^{-1} = (n-1) \left(\frac{n!}{\frac{n!}{3}}\right)^{-1} = \frac{n-1}{3}$$

Karen Meagher: joint work with A. Sarobidy Razafimah

Lemma

Clique-coclique bound for a vertex-transitive graph X

```
\omega(X)\,\alpha(X) \le |V(X)|.
```

Proposition

If a transitive permutation group has a sharply transitive set, then its intersection density is exactly 1.

Proof. 2

A sharply transitive set *H* has size the degree, *n*, and no two elements of *H* are intersecting. So *H* is a clique of size *n* in the derangement graph. By clique/coclique bound, an intersecting set is no larger than |G|/n.

Corollary (Frankl and Deza, 1977)

The symmetric group Sym(n) has intersection density 1.

Theorem (Meagher, Razafimahatratra, Spiga)

Let *G* be a transitive permutation group with degree *n*. If $n \ge 3$, then the derangement graph of *G* contains a triangle. Moreover, any group *G* with degree $n \ge 3$, has intersection density $\frac{n}{3}$.

Theorem (Meagher, Razafimahatratra, Spiga)

The derangement graph for a transitive group with degree n is not bipartite if n > 2.

Proof. 3

If Γ_G bipartite, then one part is a normal subgroup H that fixes the bipartition. The subgroup H has no derangements, so it has 2 orbits in the group action. If ω and ω' are from different orbits, we can show

$$H = \bigcup_{h \in H} H^h_{\omega} \cup \bigcup_{h \in H} H^h_{\omega'}.$$

This means that H has **normal covering number two**. By examining the characterization of groups with normal cover two (by M. Garonzi, A. Lucchini), such H exists only if n = 2.

Algebraic Properties of the Derangement Graphs

• The derangement graph is the Cayley graph

 $\operatorname{Cay}(G, \operatorname{der}(G))$

where der(G) is the set of derangements of *G*. The vertices are elements of *G* and *x*, *y* are adjacent if $xy^{-1} \in der(G)$.

- The set der(G) is closed under conjugation; the derangement graph is a **normal** Cayley graph
- If Cay(G, C) is a normal Cayley graph, then the eigenvalues of the adjacency matrix are

$$\lambda_{\chi} = \frac{1}{\chi(1)} \sum_{\sigma \in C} \chi(\sigma)$$

where χ is an irreducible character of G.

• For χ an irreducible character of G, the eigenvalue of Γ_G belonging to χ is

Delsarte-Hoffman Ratio Bound

If X is a d-regular graph then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}$$

where τ is the least eigenvalue of the adjacency matrix of X.

There is a weighted version of this twoo!

Example

Consider Sym(5) and the action is on the 2-sets.

()	(1,2)	(1,2)(3,4)	(1,2,3)	(1,2,3)(4,5)	(1,2,3,4)	(1,2,3,4,5)
1	-10	15	20	-20	-30	24
1	-5	0	5	5	0	-6
1	-2	3	-4	-4	6	0
1	0	-5	0	0	0	4
1	2	3	-4	4	-6	0
1	5	0	5	-5	0	-6
1	10	15	20	20	30	24

The eigenvalues of the the derangement graph are: 54, -6, -6, 4, 6, -6, -6By Delsarte-Hoffman ratio bound

$$\alpha \le \frac{120}{1 - \frac{54}{-6}} = 12.$$

The size of a stabilizer of a point under this action is $\frac{|\text{Sym}(5)|}{\binom{6}{5}} = 12$.

Definition

Let $n \ge 2$. Define

 $\mathcal{I}_n := \left\{ \rho(G) \mid G \text{ transitive of degree } n \right\}.$

The set of all possible intersection densities for a transitive group on an n-set.

The set \mathcal{I}_n is a finite set of rational numbers, so we define

 $I(n) = \max\{\mathcal{I}_n\}.$

General problems:

- For a given n, can we determine \mathcal{I}_n ?
- **2** For a given n, can we determine I(n)?
- If I(n) is larger than 1, can we determine the structure of the transitive groups G of degree n with p(G) = I(n)?

Lemma

If G is transitive of prime degree n, then $\rho(G) = 1$ and $\mathcal{I}_n = \{1\}$.

Proof. 4

Let *G* be transitive of degree *n*, with *n* a prime number, and let *P* be a Sylow *n*-subgroup of *G*. Then *P* is a regular group and hence it is a clique of size *n* in Γ_G . Thus, from the clique-coclique bound, we have $\rho(G) = 1$ and $\mathcal{I}_n = \{1\}$.

Theorem (Hujdurović, Kovács, Kutnar, Marušič)

If G is a transitive group with degree pq for p and q odd primes, then the intersection density is of G either 1 or 2.

They characterize all such groups with intersection density 2.

Other researchers have suggested other EKR properties:

- Li, Song, Pantagi: Consider intersecting groups.
- Bardestani and Mallahi-Karai:

Consider the intersection density over **all actions** of the group. So consider the action of G on G/H for every subgroup H.

Other questions:

- Which transitive groups have "interesting" intersecting sets of permutations? (We have samples where the maximum set is a subgroup or the union of subgroups. What else can happen?)
- Consider permutation groups that are the automorphism group of a graph.
- What graphs can be derangement graphs?
- Razafimahatratra gives two new families of transitive groups with complete multipartite derangement graphs. What other complete multipartite graphs can be derangement graphs?