## Intersecting Sets of Uniform Partitions

## Karen Meagher: joint work with Mahsa Shirazi and Brett Stevens

University of Regina

## Partitions

## Definition

A $(k, \ell)$-partition is a set partition of $\{1,2, \ldots, k \ell\}$ with exactly $\ell$ blocks each of size $k$.

$$
P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}
$$

These are also called uniform set partitions.
The set of all uniform- $(k, \ell)$ partitions is denoted by $\mathcal{U}(k, \ell)$.

Two set partitions

$$
P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\} \quad \text { and } \quad Q=\left\{Q_{1}, Q_{2}, \ldots, Q_{\ell}\right\}
$$

(1) are intersecting if $P_{i}=Q_{j}$ for some $i$ and $j$.
(2) are $t$-intersecting if $P_{i_{1}}=Q_{j_{1}}, P_{i_{2}}=Q_{j_{2}}, \ldots, P_{i_{t}}=Q_{j_{t}}$ for distinct $i_{1}, \ldots, i_{t}$ and distinct $j_{1}, \ldots, j_{t}$.
(3) are partially- $t$ intersecting if $\left|P_{i} \cap Q_{j}\right| \geq t$ for some $i$ and $j$.

## Intersecting sets

## Example

$$
\begin{array}{ll}
P 1: & 123|456| 789 \mid 101112 \\
P 2: & 123|456| 7810 \mid 91112 \\
P 3: & 147|2510| 3811 \mid 6912
\end{array}
$$

## Definition

A set of partitions is (intersecting / $t$-intersecting / $t$-partially intersecting ) if the partitions are pairwise ( intersecting / $t$-intersecting / $t$-partially intersecting).

> What is a maximum set of (intersecting / $t$-intersecting / $t$-partially intersecting ) partitions?

## Previous Results for $t$-intersection

The total number of $(k, \ell)$-partitions is

$$
U(k, \ell)=\frac{1}{\ell!}\binom{k \ell}{k}\binom{k \ell-k}{k} \ldots\binom{k}{k} .
$$

## Definition

A canonical $t$-intersecting set is all partitions containing a fixed set of $t$ disjoint parts.

## Example (1-intersecting (3, 3)-partitions)

| $123\|456\| 789$ | $123\|457\| 689$ | $123\|458\| 689$ |
| :---: | :---: | :---: |
| $123\|459\| 678$ | $123\|467\| 589$ | $123\|468\| 579$ |
| $123\|469\| 578$ | $123\|478\| 569$ | $123\|479\| 568$ |
| $123\|489\| 567$ |  |  |

The size of a canonical $t$-intersecting $(k, \ell)$-partition is

$$
U(k, \ell-t)=\frac{1}{(\ell-t)!}\binom{k \ell-k t}{k}\binom{k \ell-k(t+1)}{k} \cdots\binom{k}{k} .
$$

## Previous Results for $t$-intersection

If $k=2$, the partitions are perfect matchings.

## Theorem

The largest $t$-intersecting set of perfect matchings are the canonical sets in the following cases:

- for $t=1$ (Godsil and Meagher, 2017)
- for $t=2$ (Fallat, Meagher and Shirazi, 2021; Lindzey, 2023 ).
- for all $t$ and $n$ sufficiently large (Lindzey, 2017)

Proofs are algebraic, using eigenvalues of a related graph.

## Proposition

If $n$ is small relative to $t$ there are examples of $t$-intersecting sets larger than the canonical sets.

## Conjecture

If $k \geq 3 t / 2+1$ then the largest set of $t$-intersecting perfect matchings are the canonical.

## Trivial Cases for Partially Intersection

(1) Any two ( $k, \ell$ )-uniform partially 1 -intersecting.

$$
123|456| 789|101112 \quad 147| 3510|2811| 6912
$$

(2) If $t=k$, then partially- $t$ intersecting and intersecting are the same.
(3) If $k>\ell(t-1)$, then any two ( $k, \ell$ )-partitions are partially $t$-intersecting.

$$
123456|789101112 \quad 123789| 456101112
$$

if the parts are really big, any two partitions will be partially $t$-intersecting.

Focus on ( $k, \ell$ )-uniform partially 2 -intersecting sets with $k>2$.

$$
P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\} \text { and } Q=\left\{Q_{1}, Q_{2}, \ldots, Q_{\ell}\right\} \text { have some } i, j \text { with }\left|P_{i} \cap Q_{j}\right| \geq 2 .
$$

## Canonical Intersecting Sets of Partitions

## Definition

For $t \leq k$, fix a $t$-subset $T \subset\{1, \ldots, k \ell\}$. The set of all partitions that have a part containing $T$ is a canonical $t$-intersecting set of partitions.

## Example

Canonical partially 2-intersecting set of (3,3)-partitions:

| $123\|456\| 789$ | $123\|457\| 689$ | $123\|458\| 679$ | $123\|459\| 678$ |
| ---: | ---: | ---: | ---: |
| $123\|467\| 589$ | $123\|468\| 579$ | $123\|469\| 578$ | $123\|567\| 489$ |
| $\ldots$ |  |  |  |
| $129\|356\| 478$ | $129\|367\| 458$ | $129\|368\| 457$ | $129\|378\| 456$ |

The size of a canonical partially $t$-intersecting set of partitions is

$$
\frac{1}{(\ell-1)!}\binom{k \ell-t}{k-t}\binom{k \ell-k}{k} \cdots\binom{k}{k} .
$$

## Canonical Intersecting Sets of Partitions

## Conjecture

If $k \leq \ell(t-1)$, then the largest set of intersecting $(k, \ell)$-partitions is a canonical set of $t$-intersecting partitions.

## Derangement Graph

## Definition

For any $k, \ell$ define the partition derangement graph, $\Gamma_{G_{(k, \ell)}}$.

- The vertices are the uniform $(k, \ell)$-partitions.
- Vertices $P, Q \in \mathcal{U}(k, \ell)$ are adjacent if and only if $P$ and $Q$ are not partially $t$-intersecting.

A set of uniform partitions is a coclique (independent set) in $\Gamma_{G_{(k, \ell)}}$, exactly if the set is a partially $t$-intersecting set of partitions.

Graph Properties:
(0) The graph $\Gamma_{G_{(k, \ell)}}$ is regular, denote the degree by $d_{k, \ell}$
(2) The derangement graph is vertex-transitive, the group $\operatorname{Sym}(k \ell)$ acts transitively on the vertices of $\Gamma_{G_{(k, \ell)}}$.
(3) A resolvable balanced incomplete block $t$-design on $k \ell$ points with blocksize $k$ and index $\lambda=1$, if it exists, is a maximum clique.

## Resolvable Designs

## Definition

Suppose $\mathcal{B}$ is a $t-(n, k, \lambda)$ design.

- A parallel class in $\mathcal{B}$ is a collection of disjoint sets whose union is the $n$-set.
- A partition of $\mathcal{B}$ into $r=\lambda \frac{\binom{n-1}{t-1}}{\binom{k-1}{t-1}}$ parallel classes is called a resolution.
- A $t-(n, k, \lambda)$ design is resolvable if a resolution exists.


## Example (Resolvable 2 - $(9,3,1$ ) Design)

| $123\|456\| 789$ | (orange) |
| :--- | :--- |
| $147\|258\| 369$ | (red) |
| $159\|267\| 348$ | (green) |
| $168\|249\| 357$ | (blue) |



## Clique/Coclique Bound

## Theorem

If $X$ is a vertex-transitive graph and $\alpha(X)$ is the size of the maximum coclique and $\omega(X)$ the size of the maximum clique, then

$$
\alpha(X) \omega(X)=|V(X)|
$$

## Theorem

If there is a resolvable balanced incomplete block $t$-design on $k \ell$ points with blocksize $k$, then a canonical partially $t$-intersecting partitions is a largest intersecting set.

Proof. By the clique/clique bound, a coclique is no larger than

$$
\begin{aligned}
\frac{\text { number vertices }}{\text { clique size }}=\frac{U(k, \ell)}{\frac{1}{\ell} \frac{\binom{k \ell}{t}}{\binom{k}{t}}} & =\frac{1}{(\ell-1)!}\binom{k \ell-t}{k-t}\binom{k \ell-k}{k}\binom{k \ell-2 k}{k} \ldots\binom{k}{k} \\
& =\text { the size of a canonical partially } t \text {-intersecting set }
\end{aligned}
$$

## Ratio Bound

## Theorem (Delsarte-Hoffman bound)

Let $A$ be the adjacency matrix for a d-regular graph $X$ on vertex set $V(X)$. If the least eigenvalue of $A$ is $\tau$, then

$$
\alpha(X) \leq \frac{|V(X)|}{1-\frac{d}{\tau}}
$$

If equality holds for some coclique $S$ with characteristic vector $\nu_{S}$, then

$$
\nu_{S}-\frac{|S|}{|V(X)|} \mathbf{1}
$$

is an eigenvector with eigenvalue $\tau$.

## Master Plan:

(1) find 3 specific eigenvalues of the graph,
(2) show all other eigenvalues are smaller, (in absolute value)
(3) apply the ratio bound.

## Eigenspaces of the Derangement graphs

(1) The eigenspaces of $X_{k, \ell}$ are invariant under the action of $\operatorname{Sym}(k \ell)$ and thus a union of irreducible modules in the decomposition of

$$
\text { ind }\left(1_{\operatorname{Sym}(k) \imath \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)} .
$$

Every irreducible representation of $\operatorname{Sym}(n)$ is labelled by an integer partition of $n$.
(2) For each irreducible representation in ind $\left(1_{\operatorname{Sym}(k) 2 \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)}$ has a corresponding eigenvalue:

$$
\eta_{\phi}\left(A_{\ell}\right)=\frac{d_{\ell}}{|H|} \sum_{x_{\ell}} \sum_{h \in H} \phi\left(x_{\ell} h\right)
$$

This includes a sum of characters over group cosets which is hard.
(3) The irreducible representations $[k \ell],[k \ell-2,2]$ and $[k \ell-3,3]$ are included in ind $\left(1_{\operatorname{Sym}(k) 2 \operatorname{Sym}(\ell))^{\operatorname{Sym}(k \ell)}}\right.$
(4) The irreducible representations $\left[1^{k \ell}\right],[k \ell-1,1],\left[2,1^{k \ell-2}\right],\left[2,2,1^{k \ell-4}\right]$, $[k \ell-2,1,1],\left[3,1^{k \ell-3}\right],\left[2,2,2,1^{k \ell-6}\right]$ are not.
Proof by orbit counting.

## Eigenvalues of the Derangement graphs

## Theorem

For any $k, \ell$,
(1) The eigenvalue belonging to $[k \ell]$ is the degree $d=d(k, \ell)$.
(2) The eigenvalue belonging to $[k \ell-2,2]$ is

$$
\tau=-\frac{(k-1) d}{k(\ell-1)}
$$

(3) The eigenvalue belonging to $[k \ell-3,3]$ is

$$
\theta=\frac{2(k-1)(k-2) d}{k^{2}(\ell-1)(\ell-2)} .
$$

(9) For any other representation, the eigenvalue is smaller in absolute value $\tau$.

By the ratio bound, the maximum size of coclique in $X_{k, \ell}$ is

$$
\frac{\left|V\left(X_{k, \ell}\right)\right|}{1-\frac{d}{\tau}}=\frac{v}{1-\frac{d}{-\frac{d-1) d}{k(\ell-1)}}}=\frac{v}{1+\frac{k(\ell-1)}{k-1}}=\frac{v(k-1)}{k \ell-1}=\binom{k \ell-2}{k-2} U(k, \ell-1) .
$$

## Quotient Graphs

(1) The action of a subgroup of the automorphism group on the partitions forms orbits.
(2) These orbits can be used to build a quotient graph.


The quotient matrix
Partition the vertices in the graph into orbits.

## Quotient Graphs

Young's subgroup Sym $(k \ell)$ :

- Has one orbit, so the quotient graph is (d)
- This means $d$ is the eigenvalue corresponding to $[k \ell]$.

Young's subgroup $\operatorname{Sym}([k \ell-2,2])=\operatorname{Sym}(k \ell-2) \times \operatorname{Sym}(2)$

- Has two orbits: the partitions with 1 and 2 together in one part and the partitions where they are in two parts.
- The quotient matrix is the $2 \times 2$ matrix

$$
\left(\begin{array}{cc}
0 & d \\
-\tau & d+\tau
\end{array}\right)
$$

- The eigenvalues are $d$ and $\tau=-\frac{d(k-1)}{k(\ell-1)}$.
- This means $-\tau$ is the eigenvalue corresponding to $[k \ell-2,2]$.


## Eigenvalues of the Derangement graphs

Young's subgroup $\operatorname{Sym}([k \ell-3,3])=\operatorname{Sym}(k \ell-3) \times \operatorname{Sym}(3)$

- For $[k \ell-3,3]$, the Young's subgroup is $\operatorname{Sym}(k \ell-3,3)$ has three orbits: partitions where 1,2,3 are in one part, two parts or three parts.
- The quotient matrix is the $3 \times 3$ matrix

$$
M=\left(\begin{array}{ccc}
0 & 0 & d \\
0 & a & d-a \\
b & c & d-b-c
\end{array}\right)
$$

- The eigenvalues are $d,-\tau, \theta$.
- $\operatorname{tr}(M)=d-b-c+a=d-\tau+\theta$
- Counting edges between the orbits gives equations for $a, b, c$, then

$$
\theta=\frac{2(k-1)(k-2) d}{k^{2}(\ell-1)(\ell-2)}
$$

## Bound on the Multiplicity

## Theorem

Assume $k \ell \geq 13$ and $k \geq 3$. Then the only partitions in the decomposition of ind $\left(1_{\mathrm{Sym}(k) \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)}$ with dimension less than or equal to $\binom{k \ell}{3}-\binom{k \ell}{2}$ are

$$
\chi_{[k]]}, \quad \chi_{[k \ell-2,2]}, \quad \chi_{[k \ell-3,3]} .
$$

Proof. Use induction and the "branching rule".

## Bound on the Multiplicity

## Theorem

The eigenvalues $d, \tau$ and $\theta$ are the three largest, in absolute value, in the derangement graph. The smallest eigenvalue for $\Gamma_{(k, \ell)}$ is $\tau$.

Proof. By squaring the adjacency matrix and taking the trace, we have

$$
v d=d^{2}+m_{\tau} \tau^{2}+m_{\theta} \theta^{2}+\sum_{i=2}^{j} m_{i} \lambda_{i}^{2}
$$

Hence for every $2 \leq i \leq j$ we have

$$
v d-d^{2}-m_{\tau} \tau^{2}-m_{\theta} \theta^{2} \geq m_{i} \lambda_{i}^{2}
$$

This gives an upper bound on $\left|\lambda_{i}\right|$ in terms of $d$.

## Bound on Degree

## Theorem (Bender)

Let $\mathcal{M}_{k, \ell}$ be the number of all $\ell \times \ell$ matrices with entries either 0 or 1 , and row and columns sums equal to $k$. For positive integers $k, \ell$

$$
\lim _{\ell \rightarrow \infty} \frac{(k!)^{2 \ell}}{(k \ell)!}\left|\mathcal{M}_{k, \ell}\right|=e^{-\frac{(k-1)^{2}}{2}}
$$

## Lemma

For positive integers $k, \ell$ with $k \leq \ell$, let $d$ be the degree of $\Gamma_{(k, \ell)}$. Then

$$
d=\frac{k!^{\ell}}{\ell!}\left|\mathcal{M}_{k, \ell}\right|
$$

Further, for a fixed integer $k$ with $k \geq 2$,

$$
\lim _{\ell \rightarrow \infty} \frac{U(k, \ell)}{d}=e^{\frac{(k-1)^{2}}{2}}
$$

## Bound on Degree

We had

$$
\left(\frac{v d-d^{2}-m_{\tau}\left(\frac{d(k-1)}{k(\ell-1)}\right)^{2}-m_{\theta}\left(\frac{2(k-1)(k-2) d}{k^{2}(\ell-1)(\ell-2)}\right)^{2}}{m_{i}}\right)^{\frac{1}{2}} \geq\left|\lambda_{i}\right|
$$

(1) $\lim _{\ell \rightarrow \infty} \frac{U(k, \ell)}{d}=e^{\frac{(k-1)^{2}}{2}}$ gives an upper bound for $\lambda_{i}$.
(2) If another eigenvalue is larger than $\tau$, in absolute value, that eigenvalue has to have a multiplicity smaller than $\binom{k \ell}{3}-\binom{k \ell}{2}$,
(3) Only $d, \tau$ or $\theta$ have multiplicity this small.
(9) So $\tau$ is the least eigenvalue of $\Gamma_{k, \ell}$.
(0) Apply the ratio bound.

## Final Summary

## Theorem

Fix an integer $k \geq 3$. For $\ell$ sufficiently large, the largest set of partially 2 -intersecting uniform ( $k, \ell$ )-partitions has size $\binom{k \ell-2}{k-2} U_{k, \ell-1}$.

## Conjecture

For $k \geq 3$ and $\ell$ sufficiently large, the only sets of partially 2-intersecting ( $k, \ell$ )-partitions with size $\binom{k \ell-2}{k-2} U_{k, \ell-1}$ are the sets $S_{i, j}$.

With a more tedious calculation on the degree approximation we get the follow:

## Theorem

For $k=3$ and all $\ell \geq 3$ the largest set of partially 2-intersecting uniform partitions has size

$$
(3 \ell-2) U_{3, \ell-1}
$$

## Future Work

There are two obvious questions:

## Question

Can a non-canonical 2-partially intersecting set also have the maximum size?

## Question

Can this method be extended $t$-partially intersecting uniform partitions for large values of $t$ ?

