Intersecting Sets of Uniform Partitions

Karen Meagher: joint work with Mahsa Shirazi and Brett Stevens

University of Regina

Partitions

Definition

A (k, ℓ) -partition is a set partition of $\{1, 2, \dots, k\ell\}$ with exactly ℓ blocks each of size k.

$$P = \{P_1, P_2, \ldots, P_\ell\}$$

These are also called *uniform set partitions*. The set of all uniform- (k, ℓ) partitions is denoted by $\mathcal{U}(k, \ell)$.

Two set partitions

$$P = \{P_1, P_2, \dots, P_\ell\}$$
 and $Q = \{Q_1, Q_2, \dots, Q_\ell\}$

• are intersecting if $P_i = Q_j$ for some *i* and *j*.

2 are *t*-intersecting if $P_{i_1} = Q_{j_1}, P_{i_2} = Q_{j_2}, \ldots, P_{i_t} = Q_{j_t}$ for distinct i_1, \ldots, i_t and distinct j_1, \ldots, j_t .

③ are **partially**-*t* **intersecting** if $|P_i \cap Q_j| \ge t$ for some *i* and *j*.

P1:	$1\ 2\ 3\ \ 4\ 5\ 6\ \ 7\ 8\ 9\ \ 10\ 11\ 12$
P2:	1 2 3 4 5 6 7 8 10 9 11 12
P3:	1 4 7 2 5 10 3 8 11 6 9 12

Definition

A set of partitions is (intersecting / *t*-intersecting / *t*-partially intersecting) if the partitions are pairwise (intersecting / *t*-intersecting / *t*-partially intersecting).

What is a maximum set of (intersecting / *t*-intersecting / *t*-partially intersecting) partitions?

Karen Meagher: joint work with Mahsa Shirazi and Bre

Previous Results for *t*-intersection

The total number of (k, ℓ) -partitions is

$$U(k,\ell) = \frac{1}{\ell!} \binom{k\ell}{k} \binom{k\ell-k}{k} \cdots \binom{k}{k}.$$

Definition

A canonical *t*-intersecting set is all partitions containing a fixed set of *t* disjoint parts.

Example (1-intersecting (3,3)-partitions)

$1\ 2\ 3\ \ 4\ 5\ 6\ \ 7\ 8\ 9$	$1\ 2\ 3\ \ 4\ 5\ 7\ \ 6\ 8\ 9$	$1\ 2\ 3\ \ 4\ 5\ 8\ \ 6\ 8\ 9$
$1\ 2\ 3\ \ 4\ 5\ 9\ \ 6\ 7\ 8$	$1\ 2\ 3\ \ 4\ 6\ 7\ \ 5\ 8\ 9$	$1\ 2\ 3\ \ 4\ 6\ 8\ \ 5\ 7\ 9$
$1\ 2\ 3\ \ 4\ 6\ 9\ \ 5\ 7\ 8$	$1\ 2\ 3\ \ 4\ 7\ 8\ \ 5\ 6\ 9$	$1\ 2\ 3\ \ 4\ 7\ 9\ \ 5\ 6\ 8$
$1\ 2\ 3\ \ 4\ 8\ 9\ \ 5\ 6\ 7$		

The size of a canonical *t*-intersecting (k, ℓ) -partition is

$$U(k,\ell-t) = \frac{1}{(\ell-t)!} \binom{k\ell-kt}{k} \binom{k\ell-k(t+1)}{k} \cdots \binom{k}{k}.$$

Karen Meagher: joint work with Mahsa Shirazi and Bre

Previous Results for t-intersection

If k = 2, the partitions are **perfect matchings**.

Theorem

The largest *t*-intersecting set of perfect matchings are the canonical sets in the following cases:

- for t = 1 (Godsil and Meagher, 2017)
- for t = 2 (Fallat, Meagher and Shirazi, 2021; Lindzey, 2023).
- for all t and n sufficiently large (Lindzey, 2017)

Proofs are algebraic, using eigenvalues of a related graph.

Proposition

If n is small relative to t there are examples of t-intersecting sets larger than the canonical sets.

Conjecture

If $k \ge 3t/2 + 1$ then the largest set of *t*-intersecting perfect matchings are the canonical.

• Any two (k, ℓ) -uniform partially 1-intersecting.

 $1\ 2\ 3\ |\ 4\ 5\ 6\ |\ 7\ 8\ 9\ |\ 10\ 11\ 12 \qquad 1\ 4\ 7\ |\ 3\ 5\ 10\ |\ 2\ 8\ 11\ |\ 6\ 9\ 12$

2 If t = k, then partially-t intersecting and intersecting are the same.

If $k > \ell(t-1)$, then any two (k, ℓ) -partitions are partially *t*-intersecting.

 $1\ 2\ 3\ 4\ 5\ 6\ |\ 7\ 8\ 9\ 10\ 11\ 12 \\ 1\ 2\ 3\ 7\ 8\ 9\ |\ 4\ 5\ 6\ 10\ 11\ 12 \\$

if the parts are really big, any two partitions will be partially *t*-intersecting.

Focus on (k, ℓ) -uniform **partially** 2-intersecting sets with k > 2.

 $P = \{P_1, P_2, \dots, P_\ell\}$ and $Q = \{Q_1, Q_2, \dots, Q_\ell\}$ have some i, j with $|P_i \cap Q_j| \ge 2$.

Definition

For $t \le k$, fix a *t*-subset $T \subset \{1, ..., k\ell\}$. The set of all partitions that have a part containing *T* is a **canonical** *t*-intersecting set of partitions.

Example			
Canonical partially 2-inte	rsecting set of $(3, 3)$)-partitions:	
123 456 789 123 467 589	123 457 689 123 468 579	123 458 679 123 469 578	$\frac{123 459 678}{123 567 489}$
129 356 478	129 367 458	129 368 457	129 378 456

The size of a canonical partially *t*-intersecting set of partitions is

$$\frac{1}{(\ell-1)!} \binom{k\ell-t}{k-t} \binom{k\ell-k}{k} \cdots \binom{k}{k}.$$

Conjecture

If $k \leq \ell(t-1)$, then the largest set of intersecting (k, ℓ) -partitions is a canonical set of *t*-intersecting partitions.

Definition

For any k, ℓ define the partition derangement graph, $\Gamma_{G_{(k,\ell)}}$.

- The vertices are the uniform (k, ℓ) -partitions.
- Vertices $P, Q \in U(k, \ell)$ are adjacent if and only if P and Q are **not** partially *t*-intersecting.

A set of uniform partitions is a coclique (independent set) in $\Gamma_{G_{(k,\ell)}}$, exactly if the set is a partially *t*-intersecting set of partitions.

Graph Properties:

- The graph $\Gamma_{G_{(k,\ell)}}$ is regular, denote the degree by $d_{k,\ell}$
- **②** The derangement graph is vertex-transitive, the group $Sym(k\ell)$ acts transitively on the vertices of $\Gamma_{G_{(k,\ell)}}$.
- A resolvable balanced incomplete block *t*-design on *kℓ* points with blocksize *k* and index *λ* = 1, if it exists, is a maximum clique.

Resolvable Designs

Definition

Suppose \mathcal{B} is a t- (n, k, λ) design.

- A *parallel class* in B is a collection of disjoint sets whose union is the *n*-set.
- A partition of \mathcal{B} into $r = \lambda \frac{\binom{n-1}{t-1}}{\binom{k-1}{t-1}}$ parallel classes is called a *resolution*.
- A t- (n, k, λ) design is *resolvable* if a resolution exists.

Example (Resolvable 2 - (9, 3, 1) Design)

123 456 789	(orange)
147 258 369	(red)
159 267 348	(green)
168 249 357	(blue)

If X is a vertex-transitive graph and $\alpha(X)$ is the size of the maximum coclique and $\omega(X)$ the size of the maximum clique, then

 $\alpha(X)\;\omega(X)=|V(X)|.$

Theorem

If there is a resolvable balanced incomplete block t-design on $k\ell$ points with blocksize k, then a canonical partially t-intersecting partitions is a largest intersecting set.

Proof. By the clique/clique bound, a coclique is no larger than

$$\frac{\text{number vertices}}{\text{clique size}} = \frac{U(k,\ell)}{\frac{1}{\ell} \binom{k\ell}{t}} = \frac{1}{(\ell-1)!} \binom{k\ell-t}{k-t} \binom{k\ell-k}{k} \binom{k\ell-2k}{k} \cdots \binom{k}{k}$$

= the size of a canonical partially *t*-intersecting set

Theorem (Delsarte-Hoffman bound)

Let A be the adjacency matrix for a *d*-regular graph X on vertex set V(X). If the least eigenvalue of A is τ , then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}.$$

If equality holds for some coclique S with characteristic vector ν_S , then

$$\nu_S - \frac{|S|}{|V(X)|} \mathbf{1}$$

is an eigenvector with eigenvalue τ .

Master Plan:

- find 3 specific eigenvalues of the graph,
- Show all other eigenvalues are smaller, (in absolute value)
- apply the ratio bound.

Eigenspaces of the Derangement graphs

● The eigenspaces of X_{k,ℓ} are invariant under the action of Sym(kℓ) and thus a union of irreducible modules in the decomposition of

$$\operatorname{ind}\left(1_{\operatorname{Sym}(k)\wr\operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k\ell)}$$

Every irreducible representation of Sym(n) is labelled by an integer partition of n.

For each irreducible representation in ind (1_{Sym(k)(Sym(l)})^{Sym(kl)} has a corresponding eigenvalue:

$$\eta_{\phi}(A_{\ell}) = \frac{d_{\ell}}{|H|} \sum_{x_{\ell}} \sum_{h \in H} \phi(x_{\ell}h),$$

This includes a sum of characters over group cosets which is hard.

- The irreducible representations $[k\ell], [k\ell 2, 2]$ and $[k\ell 3, 3]$ are included in $ind (1_{Sym(k)lSym(\ell)})^{Sym(k\ell)}$
- The irreducible representations $[1^{k\ell}]$, $[k\ell 1, 1]$, $[2, 1^{k\ell-2}]$, $[2, 2, 1^{k\ell-4}]$, $[k\ell 2, 1, 1]$, $[3, 1^{k\ell-3}]$, $[2, 2, 2, 1^{k\ell-6}]$ are not. Proof by orbit counting.

For any k, ℓ ,

- The eigenvalue belonging to $[k\ell]$ is the degree $d = d(k, \ell)$.
- 2 The eigenvalue belonging to $[k\ell 2, 2]$ is

$$\tau = -\frac{(k-1)d}{k(\ell-1)}$$

• The eigenvalue belonging to $[k\ell - 3, 3]$ is

$$\theta = \frac{2(k-1)(k-2)d}{k^2(\ell-1)(\ell-2)}.$$

For any other representation, the eigenvalue is smaller in absolute value τ.

By the ratio bound, the maximum size of coclique in $X_{k,\ell}$ is

$$\frac{|V(X_{k,\ell})|}{1-\frac{d}{\tau}} = \frac{v}{1-\frac{(k-1)d}{-\frac{(k-1)d}{k(\ell-1)}}} = \frac{v}{1+\frac{k(\ell-1)}{k-1}} = \frac{v(k-1)}{k\ell-1} = \binom{k\ell-2}{k-2}U(k,\ell-1).$$

Quotient Graphs

- The action of a subgroup of the automorphism group on the partitions forms orbits.
- These orbits can be used to build a quotient graph.

Quotient Graphs

Young's subgroup $Sym(k\ell)$:

Has one orbit, so the quotient graph is

(d)

• This means d is the eigenvalue corresponding to $[k\ell]$.

Young's subgroup $Sym([k\ell - 2, 2]) = Sym(k\ell - 2) \times Sym(2)$

- Has two orbits: the partitions with 1 and 2 together in one part and the partitions where they are in two parts.
- The quotient matrix is the 2×2 matrix

$$\begin{pmatrix} 0 & d \\ -\tau & d+\tau \end{pmatrix}$$

- The eigenvalues are d and $\tau = -\frac{d(k-1)}{k(\ell-1)}$.
- This means $-\tau$ is the eigenvalue corresponding to $[k\ell 2, 2]$.

Young's subgroup $Sym([k\ell - 3, 3]) = Sym(k\ell - 3) \times Sym(3)$

- For $[k\ell 3, 3]$, the Young's subgroup is $Sym(k\ell 3, 3)$ has three orbits: partitions where 1,2,3 are in one part, two parts or three parts.
- The quotient matrix is the 3×3 matrix

$$M = \begin{pmatrix} 0 & 0 & d \\ 0 & a & d-a \\ b & c & d-b-c \end{pmatrix}$$

- The eigenvalues are $d, -\tau, \theta$.
- $tr(M) = d b c + a = d \tau + \theta$
- Counting edges between the orbits gives equations for *a*, *b*, *c*, then

$$\theta = \frac{2(k-1)(k-2)d}{k^2(\ell-1)(\ell-2)}.$$

Assume $k\ell \ge 13$ and $k \ge 3$. Then the only partitions in the decomposition of $(1_{Sym(k)\wr Sym(\ell)})^{Sym(k\ell)}$ with dimension less than or equal to $\binom{k\ell}{3} - \binom{k\ell}{2}$ are

 $\chi_{[k\ell]}, \quad \chi_{[k\ell-2,2]}, \quad \chi_{[k\ell-3,3]}.$

Proof. Use induction and the "branching rule".

The eigenvalues d, τ and θ are the three largest, in absolute value, in the derangement graph. The smallest eigenvalue for $\Gamma_{(k,\ell)}$ is τ .

Proof. By squaring the adjacency matrix and taking the trace, we have

$$vd = d^{2} + m_{\tau}\tau^{2} + m_{\theta}\theta^{2} + \sum_{i=2}^{j} m_{i}\lambda_{i}^{2}.$$

Hence for every $2 \le i \le j$ we have

$$vd - d^2 - m_\tau \tau^2 - m_\theta \theta^2 \ge m_i \lambda_i^2.$$

This gives an upper bound on $|\lambda_i|$ in terms of *d*.

Theorem (Bender)

Let $\mathcal{M}_{k,\ell}$ be the number of all $\ell \times \ell$ matrices with entries either 0 or 1, and row and columns sums equal to k. For positive integers k, ℓ

$$\lim_{\ell \to \infty} \frac{(k!)^{2\ell}}{(k\ell)!} |\mathcal{M}_{k,\ell}| = e^{-\frac{(k-1)^2}{2}}$$

Lemma

For positive integers k, ℓ with $k \leq \ell$, let d be the degree of $\Gamma_{(k,\ell)}$. Then

$$d = \frac{k!^{\ell}}{\ell!} |\mathcal{M}_{k,\ell}|.$$

Further, for a fixed integer k with $k \ge 2$,

$$\lim_{\ell \to \infty} \frac{U(k,\ell)}{d} = e^{\frac{(k-1)^2}{2}}$$

Bound on Degree

We had

$$\left(\frac{vd - d^2 - m_{\tau} \left(\frac{d(k-1)}{k(\ell-1)}\right)^2 - m_{\theta} \left(\frac{2(k-1)(k-2)d}{k^2(\ell-1)(\ell-2)}\right)^2}{m_i}\right)^{\frac{1}{2}} \ge |\lambda_i|$$

- $\lim_{\ell \to \infty} \frac{U(k,\ell)}{d} = e^{\frac{(k-1)^2}{2}}$ gives an upper bound for λ_i .
- If another eigenvalue is larger than τ, in absolute value, that eigenvalue has to have a multiplicity smaller than $\binom{k\ell}{3} \binom{k\ell}{2}$,
- **Only** d, τ or θ have multiplicity this small.
- So τ is the least eigenvalue of $\Gamma_{k,\ell}$.
- Apply the ratio bound.

Fix an integer $k \ge 3$. For ℓ sufficiently large, the largest set of partially 2-intersecting uniform (k, ℓ) -partitions has size $\binom{k\ell-2}{k-2}U_{k,\ell-1}$.

Conjecture

For $k \geq 3$ and ℓ sufficiently large, the only sets of partially 2-intersecting (k, ℓ) -partitions with size $\binom{k\ell-2}{k-2}U_{k,\ell-1}$ are the sets $S_{i,j}$.

With a more tedious calculation on the degree approximation we get the follow:

Theorem

For k=3 and all $\ell\geq 3$ the largest set of partially 2-intersecting uniform partitions has size

$$(3\ell - 2)U_{3,\ell-1}.$$

Karen Meagher: joint work with Mahsa Shirazi and Bre

There are two obvious questions:

Question

Can a non-canonical 2-partially intersecting set also have the maximum size?

Question

Can this method be extended *t*-partially intersecting uniform partitions for large values of *t*?