Intersection theorems for Uniform Partitions

Karen Meagher: joint work with Chris Godsil, Lucia Moura, Mahsa Shirazi and Brett Stevens

University of Regina

Slides available at: https://uregina.ca/~meagherk/Australia.pdf

The Motivating Problem

What is the largest collection of subsets from $\{1,2, \ldots, n\}$, so that any two subsets contain a common element?

Restrict to k-subsets, subsets with exactly k elements

Example

This is an example of 3 -subsets from $\{1,2, \ldots, 6\}$ with size 10 :

$$
\begin{array}{lllll}
\{1,2,3\} & \{1,2,4\} & \{1,2,5\} & \{1,2,6\} & \{1,3,4\} \\
\{1,3,5\} & \{1,3,6\} & \{2,3,4\} & \{2,3,5\} & \{2,3,6\}
\end{array}
$$

All sets contain at least two elements of $\{1,2,3\}$.
This is an example of 3 -subsets from $\{1,2, \ldots, 7\}$ with size 15 :

$\{1,2,3\}$	$\{1,2,4\}$	$\{1,2,5\}$	$\{1,2,6\}$	$\{1,2,7\}$
$\{1,3,4\}$	$\{1,3,5\}$	$\{1,3,6\}$	$\{1,3,7\}$	$\{1,4,5\}$
$\{1,4,6\}$	$\{1,4,7\}$	$\{1,5,6\}$	$\{1,5,7\}$	$\{1,6,7\}$

All sets contain 1.

Erdős-Ko-Rado Theorem

An intersecting k-set system is a collection of subsets of [1..n], each of size k, so that any two have at least one element in common.

Theorem (Erdős-Ko-Rado Theorem - 1961)

Let \mathcal{A} be an intersecting k-set system on an n-set. If $n \geq 2 k$, then $|\mathcal{A}| \leq\binom{ n-1}{k-1}$.
(1) A largest collection of intersecting k-sets is one in which all the sets that contain a common point.
(2) These collections are called trivially intersecting or canonically intersecting.

Generalizations Erdős-Ko-Rado Theorem

For any object that has an "intersection" we can ask:
What is the size of largest set of intersecting objects?

Which intersecting set attain the maximum size?
In general:

- Each object is made of k atoms.
- Two objects intersect if they contain a common atom.
- A canonically intersecting system is the set of all objects that contain a fixed atom.

Object	Atoms
k-Subsets of $[1 . . n]$	elements from $\{1, \ldots, n\}$
Integer sequences	pairs (i, a) (entry a is in position $i)$
Permutations	pairs (i, j) (the permutation maps i to j)
Perfect matchings in a graph	edges in the graph
Set partition	subsets (cells in the partition)

Partitions

Definition

A uniform (k, ℓ)-partition is a set partition of $\{1,2, \ldots, k \ell\}$ with exactly ℓ blocks each of size k.

$$
P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\}
$$

These are also called uniform set partitions.
The number of uniform (k, ℓ)-partitions is

$$
U(k, \ell)=\frac{1}{\ell!}\binom{k \ell}{k}\binom{k(\ell-1)}{k} \cdots\binom{k}{k}
$$

Example

A uniform (3, 4)-partition:

$$
147|2510| 3810 \mid 6912
$$

Intersecting sets

Two set partitions

$$
P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\} \quad \text { and } \quad Q=\left\{Q_{1}, Q_{2}, \ldots, Q_{\ell}\right\}
$$

(1) are intersecting if $P_{i}=Q_{j}$ for some i and j; (contain a common part)
(2) are t-intersecting if

$$
P_{i_{1}}=Q_{j_{1}}, P_{i_{2}}=Q_{j_{2}}, \ldots P_{i_{t}}=Q_{j_{t}}
$$

for distinct i_{1}, \ldots, i_{t} and distinct j_{1}, \ldots, j_{t}; (contain t common parts) 1 -intersecting is intersecting.
(3) are partially- t intersecting if $\left|P_{i} \cap Q_{j}\right| \geq t$ for some i and j. (a pair of parts contain t common elements).

Example

$123|456| 789|101112 \quad 123| 456|7810| 91112 \quad 147|2510| 3811 \mid 6912$

Intersecting Partitions

Definition

A set of partitions is t-intersecting if the partitions are pairwise t-intersecting.

What is a maximum set of t-intersecting partitions?

Definition

A set of partitions is t-partially intersecting, if the partitions are pairwise t-partially intersecting.

What is a maximum set of t-partially intersecting partitions?

Canonical Intersecting Sets of Partitions

Definition

Fix t disjoint k-subsets $T_{1}, T_{2}, \ldots, T_{t}$. The set of all partitions that have $T_{1}, T_{2}, \ldots, T_{t}$ as parts is a canonical t-intersecting set of partitions.

Example

A canonical partially 1 -intersecting set of $(3,3)$-partitions with $T=\{1,2,3\}$ and size 10 :

$123\|456\| 789$	$123\|457\| 689$	$123\|458\| 679$	$123\|459\| 678$	$123\|467\| 589$
$123\|468\| 579$	$123\|469\| 578$	$123\|478\| 569$	$123\|479\| 568$	$123\|489\| 567$

The size of a canonical t-intersecting set of (k, ℓ)-partitions is

$$
\frac{1}{(\ell-t)!}\binom{k(\ell-t)}{k}\binom{k(\ell-t-1)}{k} \cdots\binom{k}{k}=U(k, \ell-t)
$$

Canonical t-partially Intersecting Sets of Partitions

Definition

For $t \leq k$, fix a t-subset $T \subset\{1, \ldots, k \ell\}$.
The set of all partitions that have a part containing T is a canonical partially t-intersecting set of partitions.

Example

A canonical partially 2 -intersecting set of $(3,3)$-partitions with $T=\{1,2\}$ and size 70 :

$123\|456\| 789$	$123\|457\| 689$	$123\|458\| 679$	$123\|459\| 678$
$123\|467\| 589$	$123\|468\| 579$	$123\|469\| 578$	$123\|567\| 489$
\ldots			
$129\|356\| 478$	$129\|367\| 458$	$129\|368\| 457$	$129\|378\| 456$

The size of a canonical t-intersecting set of (k, ℓ)-partitions is

$$
\binom{k \ell-t}{k-t} \frac{1}{(\ell-1)!}\binom{k(\ell-1)}{k} \cdots\binom{k}{k}=\binom{k \ell-t}{k-t} U(k, \ell-1)
$$

Easy Asymptotic Proof for t-intersecting

Theorem (M. and Moura)

If $n=k \ell$ is sufficiently large, a t-intersecting uniform partition system is no larger than a canonical system.

Use a counting method to find, bound the number of partitions in a non-canonical system. If n is large, this bound is smaller than the size of a canonical set.

Proof.

(1) Let \mathcal{A} be a non-canonical intersecting set of partitions.
(2) Assume $P=\left\{P_{1}, P_{2}, \ldots, P_{\ell}\right\} \in \mathcal{A}$.
(3) Let \mathcal{A}_{i} be all the partitions in \mathcal{A} that contain P_{i}. since the system is intersecting every partitions will be in at least one \mathcal{A}_{i}
(4) Bound the size of each \mathcal{A}_{i}, Bound uses that fact that it must intersect the partitions in \mathcal{A}_{j}.

Easy Asymptotic Proof

Proof.

| P | 123 \| 456 | 789 |
| :---: | :---: |
| \mathcal{A}_{1} | 123\|***** |
| | 123 \| ***** |
| \mathcal{A}_{2} | 456\|*** ${ }^{*}$ |
| | $\left.\left.456\right\|^{* * *}\right\|^{* *}$ |
| \mathcal{A}_{3} | 789 \| *** ${ }^{*}$ |
| | 789 \| *** ** |

Since \mathcal{A} is intersecting,

$$
\left|\mathcal{A}_{i}\right| \leq\binom{\ell-2}{t} U(k, \ell-(t+1))
$$

If (k is large relative to ℓ and t) or ($k \geq t+2$ and ℓ large relative to k and t), then

$$
|\mathcal{A}| \leq \ell\binom{\ell-2}{t} U(k, \ell-(t+1))<\frac{1}{\ell-t}\binom{(\ell-t) k}{k} U(k, \ell-(t+1))=U(k, \ell-t)
$$

Proof is only difficult if $k=2$ (perfect matching)

Perfect Matchings

If $k=2$, the uniform $(2, \ell)$-partitions are perfect matchings of 2ℓ.

$$
12|34| 56, \quad 12|35| 46, \quad 12|36| 45, \quad 13|24| 56, \quad 13|25| 46, \quad 13|26| 45
$$

The number of perfect matchings is

$$
(2 \ell-1)!!=(2 \ell-1)(2 \ell-3)(2 \ell-5) \cdots 3 \cdot 1
$$

and the number of perfect matchings containing a fixed edge is

$$
(2 \ell-3)!!=(2 \ell-3)(2 \ell-5) \cdots 3 \cdot 1 .
$$

The number of perfect matchings containing a t-fixed edges is $(2 \ell-2 t-1)!$!.

Theorem

The size of the largest intersecting set of perfect matchings is $(2 \ell-3)!!$.
We will see a totally different proof method for this.

Non-canonical Intersecting Perfect Matchings

Conjecture

For $\ell \geq 3 t / 2+1$ the size of the largest t-intersecting set of perfect matchings is $(2(\ell-t)-1)!$!.

Recall the 3-sets, each contains at least two elements from $\{1,2,3\}$.

Example

If $t+3 \leq \ell<3 t / 2+1$ then there is a larger set of intersecting perfect matchings.

- Fix a set of $t+2$ disjoint edges $\left\{e_{1}, e_{2}, \ldots, e_{t+2}\right\}$.
- Take all the perfect matchings that have at least $t+1$ of these $t+2$ edges.
- This set has size

$$
\binom{t+2}{t+2}(2 \ell-2(t+2)-1)!!+\binom{t+2}{t+1}(2 \ell-2(t+2))(2 \ell-2(t+2)-1)!!
$$

which is larger than the canonical, if $\ell<3 t / 2+1$
This construction works for the uniform (k, ℓ)-partitions too, so the lower bound is needed.

Trivial Cases for Partial Intersection

(1) Any two (k, ℓ)-uniform partitions are partially 1 -intersecting.
(2) If $t=k$, then partially t-intersecting and intersecting are the same.

Proposition

If $k>\ell(t-1)$, then any two (k, ℓ)-partitions are partially t-intersecting.
If the parts are really big, any two partitions will be partially t-intersecting.

Example

Consider $k=5, t=3, \ell=2$ and $n=10$:

$$
01234|56789 \quad 01245| 36789 \quad 01569 \mid 234789
$$

The Big Conjecture

Conjecture

If $k \leq \ell(t-1)$, then the largest set of t-partially intersecting (k, ℓ)-partitions is a canonical set of partially t-intersecting partitions

Focus on partially 2 -intersecting uniform partitions.
(1) If $k=2$, this is the intersecting perfect matchings.
(2) Counting doesn't work, we use a totally different method.

Derangement Graph

Definition

For any k, ℓ define the partition derangement $\operatorname{graph}, \Gamma_{(k, \ell)}$.

- The vertices are the uniform (k, ℓ)-partitions.
- Vertices $P, Q \in \mathcal{U}(k, \ell)$ are adjacent if and only if P and Q are not partially 2-intersecting.

Can use any definition of intersection.

The graph $\Gamma_{(2,3)}$ (Image by Mahsa Shirazi).

Properties of Derangement Graphs

A coclique (independent set or stable set) in $\Gamma_{(k, \ell)}$, exactly if the set is a partially t-intersecting set of partitions.

Graph Properties:

(1) The graph $\Gamma_{(k, \ell)}$ is regular; denote the degree by $d_{k, \ell}$
(2) The derangement graph is vertex-transitive, the group $\operatorname{Sym}(k \ell)$ acts transitively on the vertices of $\Gamma_{(k, \ell)}$.
$\operatorname{Sym}(k \ell)$ permutes the elements in the partitions

What are the maximum coclique in $\Gamma_{k, \ell}$?

Resolvable Designs

Definition

Suppose \mathcal{B} is a $t-(n, k, \lambda)$ design.

- Collection of k-sets from $\{1, \ldots, n\}$, every t-subset is in exactly λ sets.
- A parallel class in \mathcal{B} is a collection of disjoint sets whose union is the n-set.
- A partition of \mathcal{B} into $r=\lambda \frac{\left(\begin{array}{c}n-1 \\ t-1 \\ \binom{k-1}{t-1}\end{array}\right)}{\text { parallel classes is called a resolution. }}$
- A t - (n, k, λ) design is resolvable if a resolution exists.

Example

Resolvable 2-(9, 3, 1) Design:

$123\|456\| 789$	(orange)
$147\|258\| 369$	(red)
$159\|267\| 348$	(green)
$168\|249\| 357$	(blue)

Clique/Coclique Bound

Lemma

A resolvable $t-(k \ell, k, 1)$ design is a maximum clique in $\Gamma_{k, \ell}$ with size

$$
\frac{1}{\ell}\binom{n}{t}
$$

Theorem (Clique-Coclique Bound)

If X is a vertex-transitive graph and $\alpha(X)$ is the size of the maximum coclique and $\omega(X)$ the size of the maximum clique, then

$$
\alpha(X) \omega(X) \leq|V(X)| .
$$

Clique/Coclique Bound

Theorem

If there is a resolvable t - $(k \ell, k, 1)$ design, then the canonical partially t-intersecting partitions are the largest intersecting sets.

Proof.

By the clique/clique bound, a coclique is no larger than

$$
\frac{U(k, \ell)}{\frac{1}{\ell} \frac{(k+}{\ell} \begin{array}{l}
k \\
\binom{k}{t}
\end{array}} \frac{1}{(\ell-1)!}\binom{k \ell-t}{k-t}\binom{k \ell-k}{k}\binom{k}{k}=U(k, \ell-1)
$$

Lemma (Meagher)

For $n=3 k$ and k odd, partially 2-intersecting uniform k-partition system is no larger than a canonical system.

Motivating Problem

Example

What is the largest set uniform (3,3)-partitions so that no two are 2-partially intersecting?

- This is the size of the largest clique in $\Gamma_{3,3}$.
- The number of uniform (3,3)-partitions is

$$
\frac{1}{3!}\binom{9}{3}\binom{6}{3}\binom{3}{3}=280
$$

- A canonical 2-partially intersecting is a coclique of size $7 * \frac{1}{2}\binom{6}{3}=70$.

$$
12 *|* * *| * * *
$$

- There is a clique of size 4.

$$
123|456| 789, \quad 147|258| 369, \quad 159|267| 348, \quad 168|249| 357
$$

- This is maximum since

$$
70 * 4 \leq \alpha\left(\Gamma_{3,3}\right) \omega\left(\Gamma_{3,3}\right) \leq\left|V\left(\Gamma_{3,3}\right)\right|=280 .
$$

A set in which no two are 2-partially intersecting corresponds to an Orthogonal array.

Ratio Bound

The eigenvalues of a graph are the eigenvalues of the adjacency matrix.
The largest eigenvalue of a d-regular graph is d.

Theorem (Delsarte-Hoffman Ratio bound)

Let A be the adjacency matrix for a d-regular graph X on vertex set $V(X)$. If the least eigenvalue of A is τ, then

$$
\alpha(X) \leq \frac{|V(X)|}{1-\frac{d}{\tau}}
$$

If equality holds for some coclique S with characteristic vector ν_{S}, then

$$
\nu_{S}-\frac{|S|}{|V(X)|} \mathbf{1}
$$

is an eigenvector with eigenvalue τ.
See: "Hoffman's ratio bound" by Haemers (https://arxiv.org/abs/2102.05529)

Eigenspaces of the Derangement graphs

(1) The eigenspaces of $\Gamma_{k, \ell}$ are invariant under the action of $\operatorname{Sym}(k \ell)$ and thus are a union of irreducible modules in the decomposition of

$$
\operatorname{ind}\left(1_{\operatorname{Sym}(k) / \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)} .
$$

(2) We say that an eigenvalue θ belongs to a module if the module is a subspace of the θ-eigenspace.
(3) If $\lambda \vdash n$ is an integer partition of n, then

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right)
$$

(and $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j}=n$).
(1) Each irreducible module of the symmetric group corresponds to an integer partition

What this looks like for the Perfect Matchings

(1) The stabilizer of a single perfect matching is

$$
\operatorname{Sym}(2) \text { ¿ } \operatorname{Sym}(\ell)
$$

(2) Since

$$
\operatorname{ind}\left(1_{\operatorname{Sym}(2) / \operatorname{Sym}(\ell))^{\operatorname{Sym}(2 \ell)}}=\sum 2 \lambda\right.
$$

where $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{j}\right]$ is an integer partition of ℓ and $2 \lambda=\left[2 \lambda_{1}, 2 \lambda_{2}, \ldots, 2 \lambda_{j}\right]$.
(3) The eigenvalues of $\Gamma_{k, \ell}$ can be found from the irreducible representations of $\operatorname{Sym}(2 \ell)$, with the formula:

$$
\eta_{\phi}\left(A_{\ell}\right)=\frac{d_{\ell}}{|H|} \sum_{x_{\ell}} \sum_{h \in H} \phi\left(x_{\ell} h\right),
$$

$H=\operatorname{Sym}(2) \imath \operatorname{Sym}(\ell), d_{\ell}$ is the degree, x_{ℓ} is a permutation in $\operatorname{Sym}(2 \ell)$ so that the cosets H and x_{ℓ} are intersecting partitions.
This formula is hard to use.
(1) Srinivasan in "The perfect matching association scheme", has a better recursive algorithm.

Finding Eigenvalues with Equitable Partitions

Let S be a coclique in a graph, and $V-S$ the remaining vertices.

$$
\begin{aligned}
& \\
& S \\
& V \backslash S
\end{aligned} \begin{array}{cc}
S & V \backslash S \\
\left(\begin{array}{cc}
0 & d \\
a & d-a
\end{array}\right)
\end{array}
$$

This is the quotient graph.
(1) Counting edges gives $a=\frac{d|S|}{|V|-|S|}$.
(2) The eigenvalues of the quotient graph are d and $-a=-\frac{d|S|}{|V|-|S|}$.
(3) Eigenvalues of the quotient matrix interlace eigenvalues of the adjacency matrix.
(9) If $\{S, V \backslash S\}$ form an equitable partition, the d and $-a$ are also eigenvalues of the adjacency matrix.

Perfect Matchings

(1) Let S be the set of all the perfect matchings with the edge 12 , and $V-S$ all the perfect matchings without the edge 12 .
(2) Every vertex in S is adjacent to no other vertices in S, and $d_{2, \ell}$ vertices in $V-S$.
(3) Every vertex in $V-S$ is adjacent to $a=\frac{d}{2 \ell-2}$ vertices in S, and $d-a$ other vertices in $V-S$.
The quotient matrix is

$$
\left(\begin{array}{cc}
0 & d \\
a & d-a
\end{array}\right)
$$

d belongs to the representation $[2 \ell]$ and $-a$ belongs to $[2 \ell-2,2]$.

Lemma

In $\Gamma_{2, \ell}, d$ is an eigenvalue of with multiplicity 1 , (dimension of [2€]), and $-\frac{d}{2 \ell-2}$ is an eigenvalue with multiplicity at least $\binom{2 \ell}{2}-\binom{2 \ell}{1}$ (dimension of $[2 \ell-2,2]$).

Ratio bound

(1) The trace of $A\left(\Gamma_{2, \ell}\right)^{2}$ is equal to the sum of the eigenvalues squared:

$$
v d=\sum \lambda_{i}^{2} m_{i}=d^{2}(1)+\left(-\frac{d}{2 \ell-2}\right)^{2}\left(\binom{2 \ell}{2}-\binom{2 \ell}{1}\right)+\sum_{i \geq 2} \lambda_{i}^{2} m_{i}
$$

(2) So for any other eigenvalue λ_{i},

$$
\frac{v d-d^{2}(1)+\left(-\frac{d}{2 \ell-2}\right)^{2}\left(\binom{2 \ell}{2}-\binom{2 \ell}{1}\right)}{m_{i}} \geq \lambda_{i}^{2}
$$

(3) By considering the degrees of the irreducible representations of $\operatorname{Sym}(2 \ell)$, we can show that $-\frac{d}{2 \ell-2}$ is the least eigenvalue.
(1) Apply the ratio bound:

$$
\alpha\left(\Gamma_{2, \ell}\right) \leq \frac{(2 k-1)!!}{1-\frac{d}{-\frac{d}{2 k-2}}}=(2 k-3)!!
$$

Perfect Matchings - List of Results

Theorem (Godsil and Meagher)

The size of the largest intersecting set of perfect matchings is $(2 \ell-3)!!$.
Characterization by the perfect matching polytope.

Theorem (Fallat, Meagher, Shirazi)

For $\ell \geq 4$, the size of the largest 2 -intersecting set of perfect matchings is $(2 \ell-5)!!$.

Theorem (Chase, Dafni, Filmus and Lindzey)

The only sets of 2-intersecting set of perfect matchings with size $(2 \ell-5)!!$ are the canonical intersecting sets.

Theorem (Lindzey)

For ℓ sufficiently large, the size of the largest t-intersecting set of perfect matchings is $(2(\ell-t)-1)!$!.

Eigenvalues for 2-Partially Intersecting (k, ℓ) Partitions

Master Plan:

(1) find 3 specific eigenvalues of the graph,
(2) show all other eigenvalues are smaller, (in absolute value)
(3) apply the ratio bound.

Details:
(1) The eigenspaces of $\Gamma_{k, \ell}$ are invariant under the action of $\operatorname{Sym}(k \ell)$ and thus a union of irreducible modules in the decomposition of

$$
\operatorname{ind}\left(1_{\operatorname{Sym}(k) \imath \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)} .
$$

(2) For each irreducible representation in ind $\left(1_{\operatorname{Sym}(k) \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)}$ has a corresponding eigenvalue.
(3) The irreducible representations $[k \ell],[k \ell-2,2]$ and $[k \ell-3,3]$ are included in $\operatorname{ind}\left(1_{\mathrm{Sym}(k) \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(k \ell)}$
(9) The irreducible representations $\left[1^{k \ell}\right],[k \ell-1,1],\left[2,1^{k \ell-2}\right],\left[2,2,1^{k \ell-4}\right]$, [$k \ell-2,1,1],\left[3,1^{k \ell-3}\right],\left[2,2,2,1^{k \ell-6}\right]$ are not.
Proof by orbit counting.

Eigenvalues for 2-Partially Intersecting (k, ℓ) Partitions

Theorem

For any k, ℓ,
(1) The eigenvalue belonging to $[k \ell]$ is the degree $d=d_{k, \ell}$.
(2) The eigenvalue belonging to $[k \ell-2,2]$ is

$$
\tau=-\frac{(k-1) d}{k(\ell-1)}
$$

(3) The eigenvalue belonging to $[k \ell-3,3]$ is

$$
\theta=\frac{2(k-1)(k-2) d}{k^{2}(\ell-1)(\ell-2)}
$$

(4) For any other representation, the eigenvalue is smaller in absolute value τ.

By the ratio bound, the maximum size of coclique in $X_{k, \ell}$ is

$$
\frac{\left|V\left(\Gamma_{k, \ell}\right)\right|}{1-\frac{d}{\tau}}=\frac{U_{k, \ell}}{1-\frac{d}{-\frac{(k-1) d}{k(\ell-1)}}}=\frac{U_{k, \ell}}{1+\frac{k(\ell-1)}{k-1}}=\frac{U_{k, \ell}(k-1)}{k \ell-1}=\binom{k \ell-2}{k-2} U_{k, \ell-1}
$$

Quotient Graphs

(1) The action of a subgroup of the automorphism group on the partitions forms orbits.
(2) These orbits can be used to build a quotient graph.

The quotient matrix
Partition the vertices in the graph into orbits.

Quotient Graphs

Young's subgroup Sym $(k \ell)$:

- Has one orbit, so the quotient graph is (d)
- This means d is the eigenvalue corresponding to $[k \ell]$.

Young's subgroup $\operatorname{Sym}([k \ell-2,2])=\operatorname{Sym}(k \ell-2) \times \operatorname{Sym}(2)$

- Has two orbits: the partitions with 1 and 2 together in one part and the partitions where they are in two parts.
- The quotient matrix is the 2×2 matrix

$$
\left(\begin{array}{cc}
0 & d \\
-\tau & d+\tau
\end{array}\right)
$$

- The eigenvalues are d and $\tau=-\frac{d(k-1)}{k(\ell-1)}$.
- This means $-\tau$ is the eigenvalue corresponding to $[k \ell-2,2]$.

Eigenvalues of the Derangement graphs

Young's subgroup $\operatorname{Sym}([k \ell-3,3])=\operatorname{Sym}(k \ell-3) \times \operatorname{Sym}(3)$

- This group has three orbits: partitions where 1,2,3 are in one part, two parts or three parts.
- The quotient matrix is the 3×3 matrix

$$
M=\left(\begin{array}{ccc}
0 & 0 & d \\
0 & a & d-a \\
b & c & d-b-c
\end{array}\right)
$$

- The eigenvalues are $d,-\tau, \theta$.
- $\operatorname{tr}(M)=d-b-c+a=d-\tau+\theta$
- Counting edges between the orbits gives equations for a, b, c, then

$$
\theta=\frac{2(k-1)(k-2) d}{k^{2}(\ell-1)(\ell-2)}
$$

Bound on the Multiplicity

Theorem

Assume $k \ell \geq 13$ and $k \geq 3$. Then the only partitions in the decomposition of $\operatorname{ind}\left(1_{\operatorname{Sym}(k) \operatorname{Sym}(\ell)}\right)^{\operatorname{Sym}(\overline{k \ell \ell})}$ with dimension less than or equal to $\binom{k \ell}{3}-\binom{k \ell}{2}$ are

$$
\chi_{[k \ell]}, \quad \chi_{[k \ell-2,2]}, \quad \chi_{[k \ell-3,3]} .
$$

Proof.

Use induction and the "branching rule".

Bound on the Multiplicity

Theorem

The eigenvalues d, τ and θ are the three largest, in absolute value, in the derangement graph. The smallest eigenvalue for $\Gamma_{(k, \ell)}$ is τ.

Proof.

By squaring the adjacency matrix and taking the trace, we have

$$
v d=d^{2}+m_{\tau} \tau^{2}+m_{\theta} \theta^{2}+\sum_{i=2}^{j} m_{i} \lambda_{i}^{2}
$$

Hence for every $2 \leq i \leq j$ we have

$$
v d-d^{2}-m_{\tau} \tau^{2}-m_{\theta} \theta^{2} \geq m_{i} \lambda_{i}^{2}
$$

This gives an upper bound on $\left|\lambda_{i}\right|$ in terms of d.

Bound on Degree

Theorem (Bender)

Let $\mathcal{M}_{k, \ell}$ be the number of all $\ell \times \ell$ matrices with entries either 0 or 1 , and row and columns sums equal to k. For positive integers k, ℓ

$$
\lim _{\ell \rightarrow \infty} \frac{(k!)^{2 \ell}}{(k \ell)!}\left|\mathcal{M}_{k, \ell}\right|=e^{-\frac{(k-1)^{2}}{2}}
$$

Lemma

For positive integers k, ℓ with $k \leq \ell$, let d be the degree of $\Gamma_{(k, \ell)}$. Then

$$
d=\frac{k!^{\ell}}{\ell!}\left|\mathcal{M}_{k, \ell}\right|
$$

Further, for a fixed integer k with $k \geq 2$,

$$
\lim _{\ell \rightarrow \infty} \frac{U(k, \ell)}{d}=e^{\frac{(k-1)^{2}}{2}}
$$

Bound on Degree

We had

$$
\left(\frac{v d-d^{2}-m_{\tau}\left(\frac{d(k-1)}{k(\ell-1)}\right)^{2}-m_{\theta}\left(\frac{2(k-1)(k-2) d}{k^{2}(\ell-1)(\ell-2)}\right)^{2}}{m_{i}}\right)^{\frac{1}{2}} \geq\left|\lambda_{i}\right|
$$

(1) $\lim _{\ell \rightarrow \infty} \frac{U(k, \ell)}{d}=e^{\frac{(k-1)^{2}}{2}}$ gives an upper bound for λ_{i}.
(2) If another eigenvalue is larger than τ, in absolute value, that eigenvalue has to have a multiplicity smaller than $\binom{k \ell}{3}-\binom{k \ell}{2}$,
(3) Only d, τ or θ have multiplicity this small.
(9) So τ is the least eigenvalue of $\Gamma_{k, \ell}$.
(0) Apply the ratio bound.

Final Summary

Theorem

Fix an integer $k \geq 3$. For ℓ sufficiently large, the largest set of partially 2 -intersecting uniform (k, ℓ)-partitions has size $\binom{k \ell-2}{k-2} U_{k, \ell-1}$.

Conjecture

For $k \geq 3$ and ℓ sufficiently large, the only sets of partially 2-intersecting (k, ℓ)-partitions with size $\binom{k \ell-2}{k-2} U_{k, \ell-1}$ are the sets $S_{i, j}$.

With a more tedious calculation on the degree approximation we get the follow:

Theorem

For $k=3$ and all $\ell \geq 3$ the largest set of partially 2-intersecting uniform partitions has size

$$
(3 \ell-2) U_{3, \ell-1}
$$

Future Work

There are two obvious questions:

Question

Can a non-canonical 2-partially intersecting set also have the maximum size?

Question

Can this method be extended t-partially intersecting uniform partitions for large values of t ?

