Intersection theorems for Uniform Partitions

Karen Meagher: joint work with Chris Godsil, Lucia Moura, Mahsa Shirazi and Brett Stevens

University of Regina

Slides available at: https://uregina.ca/~meagherk/Australia.pdf

What is the largest collection of subsets from $\{1, 2, ..., n\}$, so that any two subsets contain a common element?

Restrict to k-subsets, subsets with exactly k elements

Example

This is an example of 3-subsets from $\{1, 2, \dots, 6\}$ with size 10:

$\{1, 2, 3\}$	$\{1, 2, 4\}$	$\{1, 2, 5\}$	$\{1, 2, 6\}$	$\{1, 3, 4\}$
$\{1, 3, 5\}$	$\{1, 3, 6\}$	$\{2, 3, 4\}$	$\{2, 3, 5\}$	$\{2, 3, 6\}$

All sets contain at least two elements of $\{1, 2, 3\}$.

This is an example of 3-subsets from $\{1, 2, ..., 7\}$ with size 15:

$\{1, 2, 3\}$	$\{1, 2, 4\}$	$\{1, 2, 5\}$	$\{1, 2, 6\}$	$\{1, 2, 7\}$
$\{1, 3, 4\}$	$\{1, 3, 5\}$	$\{1, 3, 6\}$	$\{1, 3, 7\}$	$\{1, 4, 5\}$
$\{1, 4, 6\}$	$\{1, 4, 7\}$	$\{1, 5, 6\}$	$\{1, 5, 7\}$	$\{1, 6, 7\}$

All sets contain 1.

An **intersecting** k-set system is a collection of subsets of [1..n], each of size k, so that any two have at least one element in common.

Theorem (Erdős-Ko-Rado Theorem - 1961)

Let \mathcal{A} be an intersecting k-set system on an n-set. If $n \geq 2k$, then $|\mathcal{A}| \leq {n-1 \choose k-1}$.

- A largest collection of intersecting k-sets is one in which all the sets that contain a common point.
- Interse collections are called trivially intersecting or canonically intersecting.

For any object that has an "intersection" we can ask:

What is the size of largest set of intersecting objects?

Which intersecting set attain the maximum size?

In general:

- Each **object** is made of *k* atoms.
- Two objects intersect if they contain a common atom.
- A **canonically intersecting system** is the set of all objects that contain a fixed atom.

Object	Atoms
k-Subsets of [1n]	elements from $\{1, \ldots, n\}$
Integer sequences	pairs (i, a) (entry a is in position i)
Permutations	pairs (i, j) (the permutation maps i to j)
Perfect matchings in a graph	edges in the graph
Set partition	subsets (cells in the partition)

Partitions

Definition

A uniform (k, ℓ) -partition is a set partition of $\{1, 2, ..., k\ell\}$ with exactly ℓ blocks each of size k.

$$P = \{P_1, P_2, \dots, P_\ell\}$$

These are also called *uniform set partitions*.

The number of uniform (k, ℓ) -partitions is

$$U(k,\ell) = \frac{1}{\ell!} \binom{k\ell}{k} \binom{k(\ell-1)}{k} \cdots \binom{k}{k}$$

Example

A uniform (3, 4)-partition:

 $1\ 4\ 7\ |\ 2\ 5\ 10\ |\ 3\ 8\ 10\ |\ 6\ 9\ 12$

Intersecting sets

Two set partitions

$$P = \{P_1, P_2, \dots, P_\ell\}$$
 and $Q = \{Q_1, Q_2, \dots, Q_\ell\}$

are intersecting if P_i = Q_j for some i and j; (contain a common part)
 are t-intersecting if

$$P_{i_1} = Q_{j_1}, P_{i_2} = Q_{j_2}, \dots P_{i_t} = Q_{j_t}$$

for distinct i_1, \ldots, i_t and distinct j_1, \ldots, j_t ; (contain *t* common parts) 1-intersecting is intersecting.

③ are **partially**-*t* **intersecting** if $|P_i \cap Q_j| \ge t$ for some *i* and *j*. (a pair of parts contain *t* common elements).

Example

$1\ 2\ 3\ |\ 4\ 5\ 6\ |\ 7\ 8\ 9\ |\ 10\ 11\ 12\qquad 1\ 2\ 3\ |\ 4\ 5\ 6\ |\ 7\ 8\ 10\ |\ 9\ 11\ 12\qquad 1\ 4\ 7\ |\ 2\ 5\ 10\ |\ 3\ 8\ 11\ |\ 6\ 9\ 12$

Definition

A set of partitions is *t*-intersecting if the partitions are pairwise *t*-intersecting.

What is a maximum set of *t*-intersecting partitions?

Definition

A set of partitions is *t*-partially intersecting, if the partitions are pairwise *t*-partially intersecting.

What is a maximum set of *t*-partially intersecting partitions?

Definition

Fix t disjoint k-subsets T_1, T_2, \ldots, T_t . The set of all partitions that have T_1, T_2, \ldots, T_t as parts is a **canonical** t-intersecting set of partitions.

Example

A canonical partially 1-intersecting set of (3, 3)-partitions with $T = \{1, 2, 3\}$ and size 10:

123 456 789	123 457 689	123 458 679	123 459 678	123 467 589
123 468 579	123 469 578	123 478 569	123 479 568	123 489 567

The size of a canonical *t*-intersecting set of (k, ℓ) -partitions is

$$\frac{1}{(\ell-t)!}\binom{k(\ell-t)}{k}\binom{k(\ell-t-1)}{k}\cdots\binom{k}{k}=U(k,\ell-t)$$

Canonical t-partially Intersecting Sets of Partitions

Definition

For $t \le k$, fix a *t*-subset $T \subset \{1, \ldots, k\ell\}$. The set of all partitions that have a part containing T is a **canonical partially** *t*-intersecting set of partitions.

Example			
A canonical partially 2-	intersecting set of (3,	(3)-partitions with T	$r = \{1, 2\}$ and size 70:
123 456 789 123 467 589	123 457 689 123 468 579	123 458 679 123 469 578	123 459 678 123 567 489
129 356 478	129 367 458	129 368 457	129 378 456

The size of a canonical *t*-intersecting set of (k, ℓ) -partitions is

$$\binom{k\ell-t}{k-t} \frac{1}{(\ell-1)!} \binom{k(\ell-1)}{k} \cdots \binom{k}{k} = \binom{k\ell-t}{k-t} U(k,\ell-1)$$

Karen Meagher: joint work with Chris Godsil, Lucia Mo

Theorem (M. and Moura)

If $n = k\ell$ is sufficiently large, a *t*-intersecting uniform partition system is no larger than a canonical system.

Use a counting method to find, bound the number of partitions in a non-canonical system. If n is large, this bound is smaller than the size of a canonical set.

Proof.

- **(**) Let \mathcal{A} be a non-canonical intersecting set of partitions.
- 2 Assume $P = \{P_1, P_2, ..., P_\ell\} \in A$.

Let A_i be all the partitions in A that contain P_i.
 since the system is intersecting every partitions will be in at least one A_i

Bound the size of each A_i, Bound uses that fact that it must intersect the partitions in A_j.

Easy Asymptotic Proof

Proof.

P	123 456 789
\mathcal{A}_1	123 * * * * * *
	123 * * * * * *
\mathcal{A}_2	456 * * * * * *
	456 * * * * * *
\mathcal{A}_3	789 * * * * * *
	789 * * * * * *

Since A is intersecting,

$$|\mathcal{A}_i| \leq \binom{\ell-2}{t} U(k,\ell{-}(t{+}1))$$

If (k is large relative to ℓ and t) or ($k \ge t + 2$ and ℓ large relative to k and t), then

$$|\mathcal{A}| \leq \ell \binom{\ell-2}{t} U(k,\ell-(t+1)) < \frac{1}{\ell-t} \binom{(\ell-t)k}{k} U(k,\ell-(t+1)) = U(k,\ell-t)$$

Proof is only difficult if k = 2 (perfect matching)

If k = 2, the uniform $(2, \ell)$ -partitions are **perfect matchings** of 2ℓ .

 $1\ 2\ |\ 3\ 4\ |\ 5\ 6, \quad 1\ 2\ |\ 3\ 5\ |\ 4\ 6, \quad 1\ 3\ |\ 2\ 6\ |\ 4\ 5, \quad 1\ 3\ |\ 2\ 4\ |\ 5\ 6, \quad 1\ 3\ |\ 2\ 5\ |\ 4\ 6, \quad 1\ 3\ |\ 2\ 6\ |\ 4\ 5$

The number of perfect matchings is

 $(2\ell - 1)!! = (2\ell - 1)(2\ell - 3)(2\ell - 5)\cdots 3\cdot 1$

and the number of perfect matchings containing a fixed edge is

$$(2\ell - 3)!! = (2\ell - 3)(2\ell - 5) \cdots 3 \cdot 1.$$

The number of perfect matchings containing a *t*-fixed edges is $(2\ell - 2t - 1)!!$.

Theorem

The size of the largest intersecting set of perfect matchings is $(2\ell - 3)!!$.

We will see a totally different proof method for this.

Conjecture

For $\ell \geq 3t/2+1$ the size of the largest $t\text{-intersecting set of perfect matchings is }(2(\ell-t)-1)!!.$

Recall the 3-sets, each contains at least two elements from $\{1, 2, 3\}$.

Example

If $t + 3 \le \ell < 3t/2 + 1$ then there is a larger set of intersecting perfect matchings.

- Fix a set of t + 2 disjoint edges $\{e_1, e_2, \ldots, e_{t+2}\}$.
- Take all the perfect matchings that have at least t + 1 of these t + 2 edges.
- This set has size

$$\binom{t+2}{t+2}(2\ell-2(t+2)-1)!! + \binom{t+2}{t+1}(2\ell-2(t+2))(2\ell-2(t+2)-1)!!$$

which is larger than the canonical, if $\ell < 3t/2 + 1$

This construction works for the uniform (k, ℓ) -partitions too, so the lower bound is needed.

Trivial Cases for Partial Intersection

- Any two (k, ℓ) -uniform partitions are partially 1-intersecting.
- 2 If t = k, then partially *t*-intersecting and intersecting are the same.

Proposition

If $k > \ell(t-1)$, then any two (k, ℓ) -partitions are partially *t*-intersecting.

If the parts are really big, any two partitions will be partially *t*-intersecting.

Example

```
Consider k = 5, t = 3, \ell = 2 and n = 10:
```

```
01234 | 56789 01245 | 36789 01569 | 234789
```

Conjecture

If $k \leq \ell(t-1)$, then the largest set of *t*-partially intersecting (k, ℓ) -partitions is a canonical set of partially *t*-intersecting partitions

Focus on partially 2-intersecting uniform partitions.

- If k = 2, this is the intersecting perfect matchings.
- Ocunting doesn't work, we use a totally different method.

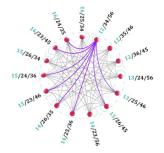
Derangement Graph

Definition

For any k, ℓ define the partition derangement graph, $\Gamma_{(k,\ell)}$.

- The vertices are the uniform (k, ℓ) -partitions.
- Vertices $P, Q \in U(k, \ell)$ are adjacent if and only if P and Q are **not** partially 2-intersecting.

Can use any definition of intersection.



The graph $\Gamma_{(2,3)}$ (Image by Mahsa Shirazi).

A coclique (independent set or stable set) in $\Gamma_{(k,\ell)}$, exactly if the set is a partially *t*-intersecting set of partitions.

Graph Properties:

- The graph $\Gamma_{(k,\ell)}$ is **regular**; denote the degree by $d_{k,\ell}$
- 3 The derangement graph is vertex-transitive, the group Sym(kℓ) acts transitively on the vertices of Γ_(k,ℓ). Sym(kℓ) permutes the elements in the partitions

What are the maximum coclique in $\Gamma_{k,\ell}$?

Resolvable Designs

Definition

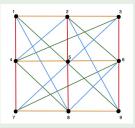
Suppose \mathcal{B} is a t- (n, k, λ) design.

- Collection of k-sets from $\{1, \ldots, n\}$, every t-subset is in exactly λ sets.
- A parallel class in B is a collection of disjoint sets whose union is the n-set.
- A partition of \mathcal{B} into $r = \lambda \frac{\binom{n-1}{t-1}}{\binom{k-1}{t-1}}$ parallel classes is called a *resolution*.
- A *t*- (n, k, λ) design is *resolvable* if a resolution exists.

Example

Resolvable 2-(9, 3, 1) Design:

- 123 | 456 | 789 (orange)
- 147 | 258 | 369 (red)
- 159 | 267 | 348 (green)
- 168 | 249 | 357 (blue)



Lemma

A resolvable t- $(k\ell, k, 1)$ design is a maximum clique in $\Gamma_{k,\ell}$ with size

$$\frac{1}{\ell} \frac{\binom{n}{t}}{\binom{k}{t}}$$

Theorem (Clique-Coclique Bound)

If X is a vertex-transitive graph and $\alpha(X)$ is the size of the maximum coclique and $\omega(X)$ the size of the maximum clique, then

 $\alpha(X) \ \omega(X) \le |V(X)|.$

Theorem

If there is a resolvable t- $(k\ell, k, 1)$ design, then the canonical partially t-intersecting partitions are the largest intersecting sets.

Proof.

By the clique/clique bound, a coclique is no larger than

$$\frac{U(k,\ell)}{\frac{1}{\ell}\frac{\binom{k\ell}{t}}{\binom{k}{t}}}\frac{1}{(\ell-1)!}\binom{k\ell-t}{k-t}\binom{k\ell-k}{k}\binom{k}{k} = U(k,\ell-1)$$

Lemma (Meagher)

For n = 3k and k odd, partially 2-intersecting uniform k-partition system is no larger than a canonical system.

Motivating Problem

Example

What is the largest set uniform (3,3)-partitions so that no two are 2-partially intersecting?

- This is the size of the largest clique in $\Gamma_{3,3}$.
- The number of uniform (3,3)-partitions is

$$\frac{1}{3!} \begin{pmatrix} 9\\ 3 \end{pmatrix} \begin{pmatrix} 6\\ 3 \end{pmatrix} \begin{pmatrix} 3\\ 3 \end{pmatrix} = 280.$$

• A canonical 2-partially intersecting is a coclique of size $7 * \frac{1}{2} {6 \choose 3} = 70$.

• There is a clique of size 4.

 $1\ 2\ 3\ |\ 4\ 5\ 6\ |\ 7\ 8\ 9, \quad 1\ 4\ 7\ |\ 2\ 5\ 8\ |\ 3\ 6\ 9, \quad 1\ 5\ 9\ |\ 2\ 6\ 7\ |\ 3\ 4\ 8, \quad 1\ 6\ 8\ |\ 2\ 4\ 9\ |\ 3\ 5\ 7$

• This is maximum since

 $70 * 4 \le \alpha(\Gamma_{3,3}) \ \omega(\Gamma_{3,3}) \le |V(\Gamma_{3,3})| = 280.$

A set in which no two are 2-partially intersecting corresponds to an Orthogonal array.

Ratio Bound

The eigenvalues of a graph are the eigenvalues of the adjacency matrix.

The largest eigenvalue of a d-regular graph is d.

Theorem (Delsarte-Hoffman Ratio bound)

Let *A* be the adjacency matrix for a *d*-regular graph *X* on vertex set V(X). If the least eigenvalue of *A* is τ , then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}.$$

If equality holds for some coclique S with characteristic vector ν_S , then

$$\nu_S - \frac{|S|}{|V(X)|} \mathbf{1}$$

is an eigenvector with eigenvalue τ .

See: "Hoffman's ratio bound" by Haemers (https://arxiv.org/abs/2102.05529)

The eigenspaces of Γ_{k,ℓ} are invariant under the action of Sym(kℓ) and thus are a union of irreducible modules in the decomposition of

ind
$$(1_{\operatorname{Sym}(k)\wr\operatorname{Sym}(\ell)})^{\operatorname{Sym}(k\ell)}$$
.

- We say that an eigenvalue θ belongs to a module if the module is a subspace of the θ-eigenspace.
- **If** $\lambda \vdash n$ is an integer partition of n, then

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_j)$$

(and $\lambda_1 + \lambda_2 + \cdots + \lambda_j = n$).

Each irreducible module of the symmetric group corresponds to an integer partition

What this looks like for the Perfect Matchings

The stabilizer of a single perfect matching is

 $\operatorname{Sym}(2) \wr \operatorname{Sym}(\ell).$

2 Since

ind
$$(1_{\mathrm{Sym}(2)\wr\mathrm{Sym}(\ell)})^{\mathrm{Sym}(2\ell)} = \sum 2\lambda$$

where $\lambda = [\lambda_1, \lambda_2, \dots, \lambda_j]$ is an integer partition of ℓ and $2\lambda = [2\lambda_1, 2\lambda_2, \dots, 2\lambda_j]$.

The eigenvalues of Γ_{k,ℓ} can be found from the irreducible representations of Sym(2ℓ), with the formula:

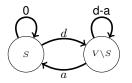
$$\eta_{\phi}(A_{\ell}) = \frac{d_{\ell}}{|H|} \sum_{x_{\ell}} \sum_{h \in H} \phi(x_{\ell}h),$$

 $H = \text{Sym}(2) \wr \text{Sym}(\ell), d_{\ell}$ is the degree, x_{ℓ} is a permutation in $\text{Sym}(2\ell)$ so that the cosets H and x_{ℓ} are intersecting partitions. This formula is hard to use.

Srinivasan in "The perfect matching association scheme", has a better recursive algorithm.

Finding Eigenvalues with Equitable Partitions

Let S be a coclique in a graph, and V - S the remaining vertices.



$$egin{array}{ccc} S & Vackslash S \ S & \left(egin{array}{ccc} 0 & d \ a & d-a \end{array}
ight) \end{array}$$

This is the quotient graph.

If S is a coclique in a $d\operatorname{-regular}$ graph

- Counting edges gives $a = \frac{d|S|}{|V| |S|}$.
- 2 The eigenvalues of the quotient graph are d and $-a = -\frac{d|S|}{|V|-|S|}$.
- Eigenvalues of the quotient matrix interlace eigenvalues of the adjacency matrix.
- If {S, V\S} form an equitable partition, the d and −a are also eigenvalues of the adjacency matrix.

- Let S be the set of all the perfect matchings with the edge 12, and V S all the perfect matchings without the edge 12.
- 2 Every vertex in S is adjacent to no other vertices in S, and $d_{2,\ell}$ vertices in V S.
- Every vertex in V S is adjacent to a = ^d/_{2l-2} vertices in S, and d a other vertices in V S.

The quotient matrix is

$$\begin{pmatrix} 0 & d \\ a & d-a \end{pmatrix}$$

d belongs to the representation $[2\ell]$ and -a belongs to $[2\ell - 2, 2]$.

Lemma

In $\Gamma_{2,\ell}$, d is an eigenvalue of with multiplicity 1, (dimension of $[2\ell]$), and $-\frac{d}{2\ell-2}$ is an eigenvalue with multiplicity at least $\binom{2\ell}{2} - \binom{2\ell}{1}$ (dimension of $[2\ell-2,2]$).

Ratio bound

• The trace of $A(\Gamma_{2,\ell})^2$ is equal to the sum of the eigenvalues squared:

$$vd = \sum \lambda_i^2 m_i = d^2(1) + \left(-\frac{d}{2\ell-2}\right)^2 \left(\binom{2\ell}{2} - \binom{2\ell}{1}\right) + \sum_{i\geq 2} \lambda_i^2 m_i$$

2 So for any other eigenvalue λ_i ,

$$\frac{vd - d^2(1) + \left(-\frac{d}{2\ell - 2}\right)^2 \left(\binom{2\ell}{2} - \binom{2\ell}{1}\right)}{m_i} \ge \lambda_i^2$$

- Symconsidering the degrees of the irreducible representations of Sym(2ℓ), we can show that -^d/_{2ℓ-2} is the least eigenvalue.
- Apply the ratio bound:

$$\alpha(\Gamma_{2,\ell}) \le \frac{(2k-1)!!}{1 - \frac{d}{-\frac{d}{2k-2}}} = (2k-3)!!$$

Theorem (Godsil and Meagher)

The size of the largest intersecting set of perfect matchings is $(2\ell - 3)!!$.

Characterization by the perfect matching polytope.

Theorem (Fallat, Meagher, Shirazi)

For $\ell \ge 4$, the size of the largest 2-intersecting set of perfect matchings is $(2\ell - 5)!!$.

Theorem (Chase, Dafni, Filmus and Lindzey)

The only sets of 2-intersecting set of perfect matchings with size $(2\ell - 5)!!$ are the canonical intersecting sets.

Theorem (Lindzey)

For ℓ sufficiently large, the size of the largest *t*-intersecting set of perfect matchings is $(2(\ell - t) - 1)!!$.

Eigenvalues for 2-Partially Intersecting (k, ℓ) Partitions

Master Plan:

- find 3 specific eigenvalues of the graph,
- Show all other eigenvalues are smaller, (in absolute value)
- apply the ratio bound.

Details:

The eigenspaces of Γ_{k,ℓ} are invariant under the action of Sym(kℓ) and thus a union of irreducible modules in the decomposition of

$$\operatorname{ind} \left(1_{\operatorname{Sym}(k)\wr \operatorname{Sym}(\ell)} \right)^{\operatorname{Sym}(k\ell)}.$$

- **3** For each irreducible representation in $\operatorname{ind} (1_{\operatorname{Sym}(k) \wr \operatorname{Sym}(\ell)})^{\operatorname{Sym}(k\ell)}$ has a corresponding eigenvalue.
- The irreducible representations $[k\ell], [k\ell 2, 2]$ and $[k\ell 3, 3]$ are included in $ind (1_{Sym(k)lSym(\ell)})^{Sym(k\ell)}$

• The irreducible representations $[1^{k\ell}]$, $[k\ell - 1, 1]$, $[2, 1^{k\ell-2}]$, $[2, 2, 1^{k\ell-4}]$, $[k\ell - 2, 1, 1]$, $[3, 1^{k\ell-3}]$, $[2, 2, 2, 1^{k\ell-6}]$ are not. Proof by orbit counting.

Theorem

For any k, ℓ ,

- The eigenvalue belonging to $[k\ell]$ is the degree $d = d_{k,\ell}$.
- 2 The eigenvalue belonging to $[k\ell 2, 2]$ is

$$\tau = -\frac{(k-1)d}{k(\ell-1)}$$

• The eigenvalue belonging to $[k\ell - 3, 3]$ is

$$\theta = \frac{2(k-1)(k-2)d}{k^2(\ell-1)(\ell-2)}.$$

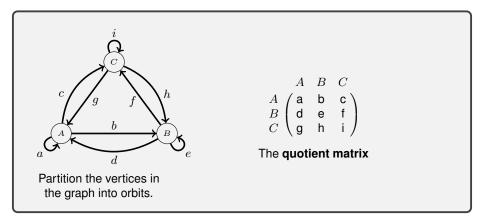
For any other representation, the eigenvalue is smaller in absolute value τ.

By the ratio bound, the maximum size of coclique in $X_{k,\ell}$ is

$$\frac{V(\Gamma_{k,\ell})|}{1-\frac{d}{\tau}} = \frac{U_{k,\ell}}{1-\frac{d}{-\frac{(k-1)d}{k(\ell-1)}}} = \frac{U_{k,\ell}}{1+\frac{k(\ell-1)}{k-1}} = \frac{U_{k,\ell}\ (k-1)}{k\ell-1} = \binom{k\ell-2}{k-2} U_{k,\ell-1}.$$

Quotient Graphs

- The action of a subgroup of the automorphism group on the partitions forms orbits.
- These orbits can be used to build a quotient graph.



Quotient Graphs

Young's subgroup $Sym(k\ell)$:

Has one orbit, so the quotient graph is

(d)

• This means d is the eigenvalue corresponding to $[k\ell]$.

Young's subgroup $Sym([k\ell - 2, 2]) = Sym(k\ell - 2) \times Sym(2)$

- Has two orbits: the partitions with 1 and 2 together in one part and the partitions where they are in two parts.
- The quotient matrix is the 2×2 matrix

$$\begin{pmatrix} 0 & d \\ -\tau & d+\tau \end{pmatrix}$$

- The eigenvalues are d and $\tau = -\frac{d(k-1)}{k(\ell-1)}$.
- This means $-\tau$ is the eigenvalue corresponding to $[k\ell 2, 2]$.

Young's subgroup $Sym([k\ell - 3, 3]) = Sym(k\ell - 3) \times Sym(3)$

- This group has three orbits: partitions where 1,2,3 are in one part, two parts or three parts.
- The quotient matrix is the 3×3 matrix

$$M = \begin{pmatrix} 0 & 0 & d \\ 0 & a & d-a \\ b & c & d-b-c \end{pmatrix}$$

- The eigenvalues are $d, -\tau, \theta$.
- $tr(M) = d b c + a = d \tau + \theta$
- Counting edges between the orbits gives equations for *a*, *b*, *c*, then

$$\theta = \frac{2(k-1)(k-2)d}{k^2(\ell-1)(\ell-2)}.$$

Theorem

Assume $k\ell \geq 13$ and $k \geq 3$. Then the only partitions in the decomposition of $\operatorname{ind}(1_{\operatorname{Sym}(k)\wr\operatorname{Sym}(\ell)})^{\operatorname{Sym}(k\ell)}$ with dimension less than or equal to $\binom{k\ell}{3} - \binom{k\ell}{2}$ are

 $\chi_{[k\ell]}, \quad \chi_{[k\ell-2,2]}, \quad \chi_{[k\ell-3,3]}.$

Proof.

Use induction and the "branching rule".

Theorem

The eigenvalues d, τ and θ are the three largest, in absolute value, in the derangement graph. The smallest eigenvalue for $\Gamma_{(k,\ell)}$ is τ .

Proof.

By squaring the adjacency matrix and taking the trace, we have

$$vd = d^2 + m_ au au^2 + m_ heta heta^2 + \sum_{i=2}^j m_i \lambda_i^2.$$

Hence for every $2 \le i \le j$ we have

$$vd - d^2 - m_{\tau}\tau^2 - m_{\theta}\theta^2 \ge m_i\lambda_i^2.$$

This gives an upper bound on $|\lambda_i|$ in terms of *d*.

Theorem (Bender)

Let $\mathcal{M}_{k,\ell}$ be the number of all $\ell \times \ell$ matrices with entries either 0 or 1, and row and columns sums equal to k. For positive integers k, ℓ

$$\lim_{\ell \to \infty} \frac{(k!)^{2\ell}}{(k\ell)!} |\mathcal{M}_{k,\ell}| = e^{-\frac{(k-1)^2}{2}}$$

Lemma

For positive integers k, ℓ with $k \leq \ell$, let d be the degree of $\Gamma_{(k,\ell)}$. Then

$$d = \frac{k!^{\ell}}{\ell!} |\mathcal{M}_{k,\ell}|.$$

Further, for a fixed integer k with $k \ge 2$,

$$\lim_{\ell \to \infty} \frac{U(k,\ell)}{d} = e^{\frac{(k-1)^2}{2}}$$

Bound on Degree

We had

$$\left(\frac{vd - d^2 - m_{\tau} \left(\frac{d(k-1)}{k(\ell-1)}\right)^2 - m_{\theta} \left(\frac{2(k-1)(k-2)d}{k^2(\ell-1)(\ell-2)}\right)^2}{m_i}\right)^{\frac{1}{2}} \ge |\lambda_i|$$

- $\lim_{\ell \to \infty} \frac{U(k,\ell)}{d} = e^{\frac{(k-1)^2}{2}}$ gives an upper bound for λ_i .
- If another eigenvalue is larger than τ, in absolute value, that eigenvalue has to have a multiplicity smaller than $\binom{k\ell}{3} \binom{k\ell}{2}$,
- **Only** d, τ or θ have multiplicity this small.
- So τ is the least eigenvalue of $\Gamma_{k,\ell}$.
- Apply the ratio bound.

Theorem

Fix an integer $k \ge 3$. For ℓ sufficiently large, the largest set of partially 2-intersecting uniform (k, ℓ) -partitions has size $\binom{k\ell-2}{k-2}U_{k,\ell-1}$.

Conjecture

For $k \geq 3$ and ℓ sufficiently large, the only sets of partially 2-intersecting (k, ℓ) -partitions with size $\binom{k\ell-2}{k-2}U_{k,\ell-1}$ are the sets $S_{i,j}$.

With a more tedious calculation on the degree approximation we get the follow:

Theorem

For k=3 and all $\ell\geq 3$ the largest set of partially 2-intersecting uniform partitions has size

$$(3\ell - 2)U_{3,\ell-1}.$$

There are two obvious questions:

Question

Can a non-canonical 2-partially intersecting set also have the maximum size?

Question

Can this method be extended *t*-partially intersecting uniform partitions for large values of *t*?