Erdős-Ko-Rado Combinatorics

Karen Meagher

University of Regina

The Australasian Combinatorics Conference (ACC), Dec. 2 2025 Slides available at: https://uregina.ca/~meagherk/ACC.pdf

Intersecting Families of Sets

Definition

An intersecting k-set family on an n-set is

- \bullet a collection of subsets from $\{1, 2, \dots, n\}$,
- each of size k, with
- any two subsets from the family have at least one element in common.

A family is t-intersecting if any two sets from the system have at least t elements in common.

Example (A intersecting (7,3)-family)

$$\begin{array}{c} \{\mathbf{1},\mathbf{2},\mathbf{3}\} \text{ , } \{\mathbf{1},\mathbf{2},4\}, \, \{\mathbf{1},\mathbf{2},5\}, \, \{\mathbf{1},\mathbf{2},6\}, \, \{\mathbf{1},\mathbf{2},7\}, \\ \{\mathbf{1},\mathbf{3},4\}, \, \{\mathbf{1},\mathbf{3},5\}, \, \{\mathbf{1},\mathbf{3},6\}, \, \{\mathbf{1},\mathbf{3},7\}, \, \{\mathbf{2},\mathbf{3},4\}, \\ \{\mathbf{2},\mathbf{3},5\}, \, \{\mathbf{2},\mathbf{3},6\}, \, \{\mathbf{2},\mathbf{3},7\} \end{array}$$

Every set has at least 2 elements from $\{1,2,3\}$ with size $\binom{n-3}{k-3} + \binom{3}{2} \binom{n-3}{k-2}$.

Canonical Intersecting Families

Example (Another intersecting (7,3)-family)

```
 \begin{aligned} &\{1,2,3\}, \{1,2,4\}, \{1,2,5\}, \{1,2,6\}, \{1,2,7\}, \\ &\{1,3,4\}, \{1,3,5\}, \{1,3,6\}, \{1,3,7\}, \{1,4,5\}, \\ &\{1,4,6\}, \{1,4,7\}, \{1,5,6\}, \{1,5,7\}, \{1,6,7\} \\ & \text{Every set contains 1 size } \binom{n-1}{k-1}. \end{aligned}
```

The family of all sets that contains a common element has size $\binom{n-1}{k-1}$; is called **canonically** or **trivially intersecting** or a **star** or **point pencil**.

The family of all sets that contains a common t-subset has size $\binom{n-t}{k-t}$; is called **canonically** t-intersecting.

Erdős-Ko-Rado Theorem

Theorem (Erdős-Ko-Rado, EKR)

Let \mathcal{F} be a t-intersecting k-set system on an n-set. If n > f(k, t), then

- ② and \mathcal{F} meets this bound if and only if \mathcal{F} is canonically t-intersecting.
- For t = 1 this bound is f(k, 1) = 2k.
- 1961 Erdős, Ko and Rado had $f(k,t) \ge t + (k-t) {k \choose t}^3$ (but knew it wasn't exact).
- 1978 Frankl proved f(k,t) = (t+1)(k-t+1) when t is large [F].
- 1984 Wilson gave an algebraic proof with f(k,t)=(t+1)(k-t+1) for all t [W].
- 1997 Ahslwede and Khachatrian found the largest t-intersecting family every triple t,k,n [AK].

Last week a search on MathSciNet revealed **1,294 articles** Erdős-Ko-Rado results. There are several surveys [DF, E, FT, GM].

EKR for Other Objects

Object	Definition of intersection
k-Sets	a common element
Blocks in a design	a common element
Multi-sets	a common element
Vector spaces over a field	a common 1-D subspace
Lines in a partial geometry	a common point
Different geometries	common subspaces
Integer sequences	same entry in same position
Permutations	both map i to j
Permutations	a common cycle
Permutations in a group ₩	both map i to j
Set Partitions	a common class
Trees on n vertices	a common edge
Cocliques in a graph ₩	a common vertex
Triangulations of a polygon 🧸	a common triangle

For any object with a type of intersection, what is the largest intersecting family?

General Framework

• Each **object** is made of *k* atoms.

Object	Atoms
Sets	elements from $\{1,\ldots,n\}$
Blocks of a design	elements from $\{1,\ldots,n\}$
multisets	elements from $\{1,\ldots,n\}$
Lines in a partial geometry	points in geometry
Integer sequences	pairs (i, a) (entry a is in position i)
Permutations	pairs (i, j) (the permutation maps i to j)
Permutations	cycles
Set partitions	subsets (cells in the partition)
Trees	n-1 edges
Cocliques in a graph	vertices
Triangulations of a polygon	Triangles in the Triangulations

• Two objects **intersect** if they contain a common atom.

Canonically intersecting family is a collection of all objects that contain a fixed atom.

EKR-type Questions

- What is the size of the largest intersecting families of objects?
- Characterize all the intersecting families of largest size.

EKR property: a canonically intersecting family is a largest intersecting family. **Strict EKR property**: only the canonically intersecting families are the largest intersecting families.

Related Intersection questions:

- lacktriangle What is the size of the largest family so that any two sets have size **exactly** t.
- **③** Two families of objects from [n], \mathcal{A} and \mathcal{B} are **cross-intersecting** if for every $A \in \mathcal{A}$ and every $B \in \mathcal{B}$ $A \cap B \neq \emptyset$. What are the largest cross-intersecting families? Results on cross-intersecting families can be used to get results on intersecting families—take $\mathcal{A} = \mathcal{B}$.

Intersection Density

The **intersection density** for an object is the ratio of the size of the largest intersecting family to the size of the canonical intersecting family. [LSP]

- Intersection density is alway at least 1;
- Intersection density equals one if and only if the objects have the EKR property.

Intersection density measures how far objects are from having EKR property.

Related questions:

- For an object are there bounds on the intersection density?
- For an object what are the possible values of the intersecting density. Always rational, when it is integer?

Stability and Robustness

• For objects that have the EKR property, what is the largest intersecting family that is **not contained in a canonical** intersecting family?

These are called Hilton-Milner Theorems or stability theorems [HM]

"Stability versions of such theorems assert that if the size of a family is close to the maximum possible size, then the family itself must be close (in some appropriate sense) to a maximum-sized family."

- -Stability versions of Erdős-Ko-Rado type theorems, via isoperimetry by Ellis, Keller, and Lifshitz
- What is the maximum family, if we relax the conditions on intersection?
 - Randomly allow some non-intersecting pairs of sets with a given probability.
 - Almost intersecting for each element in the family there is at most one other element that it doesn't intersect.

These result measure how **strong** the EKR property is for some objects.

Proof Methods

- The original proof used a method called **shifting** or **compression**. This is an operation on subsets that takes the entire family and shifts it to an intersecting family in which all sets are smaller in co-lex ordering.
 Shifting can be a tricky operation to use!!
- A simple counting argument, called the kernel method can work asymptotically.
- There is a nice proof by Katona that uses a subfamily. Wikipedia has a version of this proof that is interesting and accessible at the high school level.
- My preferred method represent the problem in a graph and use algebraic graph theory.

Derangement Graphs

For a set of objects, define the **derangement graph** of the object

- the vertices are the objects,
- two vertices are adjacent if they are **not** intersecting.
- A coclique in the derangement graph is an intersecting family of objects.
 A coclique/independent set is a set of vertices in which no two are adjacent.

What is the size of the maximum coclique in a derangement graph?

Which cocliques achieve this bound?

- The objects have the EKR property if the canonical intersecting families are maximum cocliques (call these canonical cocliques).
- Some of the related questions also can be phrased as a graph question.

Examples of Derangement Graphs

Object	Derangement graph
Sets	Kneser graph
Blocks in a Design	Block Graph (SRG)
Vector spaces	q-Kneser graph
Integer sequences	n-Hamming graph
Permutations	Derangement graph
Triangulations of a polygon	n-3 distance graph of the associahedron

Define the Kneser graph K(n, k)

- vertices are k-subsets of $\{1, \ldots, n\}$;
- 2 two k-sets are adjacent if they are disjoint.

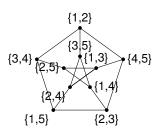


Figure: The Kneser Graph K(5,2), or our old friend Petersen.

Graph Homomorphisms

Definition

Let X and Y be graphs. A **graph homomorphism** f of X to Y is a map $f:V(X)\to V(Y)$ such that if $v\sim_X w$, then $f(v)\sim_Y f(w)$.

Lemma (No-Homomorphism Lemma)

If X and Y are vertex-transitive graphs and $X \rightarrow Y$, then

$$\alpha(Y) \le \frac{|V(Y)|}{|V(X)|}\alpha(X)$$

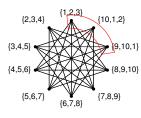
Proof.

- Fractional chromatic number satisfies $\chi^*(X) \leq \chi^*(Y)$ since $X \to Y$,
- Since X and Y are vertex transitive, their fractional chromatic numbers are

$$\chi^*(X) = \frac{|V(X)|}{\alpha(X)} \quad \text{and} \quad \chi^*(Y) = \frac{|V(Y)|}{\alpha(Y)}.$$

Circulant Graphs

Define C(n,k) to be graph with vertices cyclic k-intervals from $\{1,\ldots,n\}$ and two intervals are adjacent if they are disjoint.



- C(n,k) is a subgraph of K(n,k).
- ullet C(n,k) is vertex transitive.
- $\bullet \ \alpha(C(n,k)) = k.$
- $\bullet \chi^*(C(n,k)) = \frac{n}{k}.$

Figure: The graph C(10,3).

There is a homomorphism $C(n,k) \to K(n,k)$, by the no homomorphism lemma:

$$\alpha(K(n,k)) \le \frac{\binom{n}{k}}{n}k = \binom{n-1}{k-1}.$$

Delsarte-Hoffman Ratio Bound for Cocliques

A weighted adjacency matrix of a graph is a

- symmetric matrix with rows/columns indexed by the vertices of the graph;
- ullet and the (v,w)-entry is 0 if v and w are not adjacent.

Theorem

Let A a weighted adjacency matrix for the graph X with constant row sum d. Then

$$\alpha(X) \le \frac{|V(X)|}{1 - \frac{d}{\tau}}$$

where τ is the least eigenvalue of A(X). If equality holds and S is maximum coclique,

$$v_S - \frac{\alpha(X)}{|V(X)|} \mathbf{1}$$

is an eigenvector for τ where v_S is the characteristic vector of S.

Willem H. Haemers wrote a nice paper on this bound [H]

Wilson's Proof for sets

Define A(n,k,i) adjacency matrix for k-sets with entry equal to 1 if $|A\cap B|=k-i$

• $A = \sum_{i=k-t+1}^{k} A(n,k,i)$ is the adjacency matrix for the derangement graph for t-intersecting sets.

Rows and columns correspond to k-sets, two are adjacent if they are not t-intersecting.

- $oldsymbol{3}$ The A(n,k,i) commute so they are simultaneously diagonalizable and the eigenvalues are known.
- Wilson gave a weighted adjacent matrix for this graph

$$A = \sum_{i=k-t+1}^{k} w_i A(n, k, i)$$

- are: $\binom{n}{k}\binom{n-t}{k-t}^{-1}-1$, or -1 , or larger than -1.
- This matrix gives equality in ratio bound.

We can get the characterization of the maximum intersecting sets from the eigenspace of the least eigenvalue.

Permutations

Definition

Let G be a transitive permutation group, then two permutations $\sigma, \pi \in G$ intersect if for some $i \in \{1, \dots, n\}$.

$$\sigma(i) = \pi(i)$$
 or $\pi^{-1}\sigma(i) = i$.

Permutations σ and π are intersecting if and only if $\pi^{-1}\sigma$ is **not** a derangement.

Example

$$\sigma = (1, 2, 3)(4, 5)$$
 and $\sigma = (1, 2)(3, 5, 4, 6)$ intersect since

$$\pi^{-1}\sigma = (1,2)(3,6,4,5) \; (1,2,3)(4,5) = \textbf{(1)}(5)(2,6,4,3) \quad \leftarrow \text{two fixed points}$$

Example

$$\sigma = (1, 4, 3, 2)(5, 6)$$
 and $\rho = (1, 2, 3)(4, 5)$ don't intersect since

$$\rho^{-1}\sigma = (1,3,2)(4,5)(1,4,3,2)(5,6) = (1,5,6,4,2,3)$$
 \leftarrow no fixed points

Permutations

Definition

For a transitive group G with degree n, the set

$$S_{i,j} = \{ \sigma \in G \,|\, i^{\sigma} = j \}.$$

is a canonical intersecting set with size $\frac{|G|}{n}$.

A canonical intersecting is the coset of a stabilizer of a point

A permutation group G has the EKR property if a stabilizer of a point is a largest intersecting set.

Depends on the group action!

For a t-transitive group G, the coset of stabilizer of a t-set is a canonical t- intersecting set with size $\frac{|G|}{n(n-1)...(n-t+1)}$.

Properties of the derangement graphs

Definition

For any $G \leq \operatorname{Sym}(n)$ we can define the **derangement graph**, Γ_G .

- The vertices are the elements of G.
- Vertices $\sigma, \pi \in G$ are adjacent if and only if $\pi^{-1}\sigma$ is a derangement.

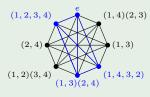
Permutations are adjacent if they are **not** intersecting.

- An intersecting set in G is a **coclique** (independent set) in Γ_G .
- The **degree** of any vertex equal the number of derangements in *G*.
- The derangement graph is **vertex transitive**, G acts transitively on the vertices Γ_G .
- Γ_G is the union of cliques if and only if G is a Frobenius group.
- The derangement graph is connected if and only if the group is generated by its derangements.

Connected for Imost all non-Frobenius groups, but this is an open problem [BCGR]

Example and Homomorphism

Example



The graph $\Gamma_{D(4)}$.

There is a homomorphism $K_4 \to \Gamma_{D(4)}$, from the subgroup C_4 , so

$$\alpha(\Gamma_{D(4)}) \le \frac{8}{4} \alpha(K_4) = \frac{|D(4)|}{4} = 2.$$

This is also the clique-coclique bound.

Lemma

If G contains a regular subgroup, then G has the EKR property.

Eigenvalues of Cayley Graphs

The derangement graph is a Cayley graph

$$\Gamma_G = \operatorname{Cay}(G, \operatorname{Der}(G))$$

where the connection set is Der(G), the set of derangements of G.

The vertices are elements of G and $\sigma\pi$ are adjacent if $\pi^{-1}\sigma\in \mathrm{Der}(G)$.

- The derangement graph is a normal Cayley graph, connection set is closed under conjugation.
- **1** The connection set $\mathrm{Der}(G)$ is the union of conjugacy classes, so it is closed under conjugation.

Theorem

If Cay(G,C) is a **normal** Cayley graph, then its eigenvalues are

$$\frac{1}{\chi(1)} \sum_{\sigma \in C} \chi(\sigma)$$

where χ is an irreducible character of G.

The eigenvalues of the derangement graph are not so difficult to calculate.

Characterization for Permutations

The eigenvalues of the derangement graph can tell us information about its structure.

- The graph is connected if the degree has multiplicity 1.
- ullet If the least eigenvalue is -1, then the graph is the union of complete graphs
- If difference of the degree and the least eigenvalue is the number of vertices, then
 the graph is a join.

Definition

A **cograph**, or complement-reducible graph, is a graph that can be generated from the single-vertex graph K_1 by complementation and disjoint union.

It is easy to spot a vertex-transitive cograph from its eigenvalues, and many of the derangement graphs are co-graphs.

I don't know why or when a derangement graph is a cograph!

Characterization for Permutations

Theorem

The symmetric group Sym(n) has the strict EKR property.

Any intersecting family of all permutations of maximum size is the coset of a stabilizer of a point.

Brief history of the proof

- Bound by Deza and Frankl [DF] (1977), they conjectured the characterization.
- Cameron and Ku [CK] (2003) proved the characterization by a form of shifting (only works since there is a large clique)
- Larose and Malvenuto [LM] (2003) gave an alternate proof.
- Wang and Zhang [WZ] (2008) used clever repeated application of the clique/coclique bound.
- Godsil and M. [GM] (2009) used the ratio bound
- Ellis, Friedgut and Pilpel [EFP] (2011) proved the EKR theorem for t-intersecting permutations and n large.
- Chase, Dafni, Filmus and Lindzey [CDFL] (2022) gave a nice characterization for the maximum sets with larger t.

Refinement the Derangement Graph.

For a conjugacy class C_i of G define a graph X_i by

- the vertices elements of G,
- and σ, π are adjacent if $\pi^{-1}\sigma \in C_i$.

Set $A_i = A(X_i)$, then

0

$$\Gamma_G = \bigcup_{C_i \text{ derangement}} X_i, \quad \text{ and } \quad A(\Gamma_G) = \sum_{C_i \text{ derangement}} A_i$$

- $A_0 = I$ if $C_0 = \{e\}$ and $\sum A_{\lambda}$ is the all ones matrix,
- Each A_i is symmetric.
- For any i and j

$$A_i A_j = \sum_{i} p_{i,j}^k A_k$$

 The algebra generated by all the A_i is commutative and spanned by the {A_i : C_i is a conjugacy class of G}.

The adjacency matrices A_i form an **Association Scheme**!

Weightings for Derangement Graphs

• The eigenvalues of X_i are

$$\xi_{\chi} = \frac{\chi(c_i)|C_i|}{\chi(\mathrm{id})}$$

where χ is an irreducible character of G and c_i is an element in C_i . The eigenvalues of Γ_G can be very easy to calculate.

② A weighted adjacency matrix for a derangement graph be formed like:

$$A = \sum_{C_i \text{ derangement}} w_i A_i,$$

and the eigenvalues of the weighted matrix are

$$\xi_{\chi} = \sum_{C_i \text{ derangement}} w_i \frac{\chi(c_i)|C_i|}{\chi(\mathrm{id})}.$$

lacktriangledown For many groups it is not difficult to find w_i so that the ratio bound is tight.

Theorem (M, Spiga, Tiep)

All two transitive groups have the EKR property.

Use a graph homomorphism, classification of finite simple groups and weighting.

Intersection Density

The intersection density of a transitive group G is the ratio of the size largest intersecting family, to the size of a stabilizer of a point. [LSP]

Always at least 1, equal to 1 exactly when the group has the EKR property.

If the degree of the group is:

- \bullet n > 2, the intersection density is no more than n/3.
- a prime power, the intersection density is one. [MRS]
- **3** 2p where p prime, the intersection density is either 1 or 2. [HKMM]
- ullet is pq, two primes with q < p, the intersection density of many of the group is 1; there are examples where it is q.

The construction depends heavily on certain equidistant cyclic codes over the field \mathbb{F}_q

Link to data base of intersection density of small groups.

Robustness of the EKR theorem *

If Γ is the derangement graph for some object that has the EKR property, can we randomly remove edges, without creating a larger coclique with high probability?

- For the k-sets if we remove edges from the Kneser graph K(n,k) probability is less than $\frac{\ln(n\binom{n-1}{k})}{\binom{n-k-1}{k-1}}$ then the cocliques don't get any bigger with high probability. [BBN, BKL, TD] this is the probability of forming a coclique by adding a single vertex to a maximum coclique.
- For perfect matchings and permutation the analogous result holds [GMMPS].

For a permutation group G the derangement graph is

$$\Gamma_G = Cay(G, Der(G))$$

What happens if we make a new Cayley graph from a derangement graph by randomly remove vertices from the connection set $\mathrm{Der}(G)$? [GMMPS2]

Using the Ratio Bound to get a Characterization **

Ratio Bound - second part

If equality holds in the ratio bound and S is a maximum coclique, then

$$v_S - \frac{|S|}{|V(X)|} \mathbf{1}$$

is a τ -eigenvector (τ is the least eigenvalue).

The ratio bound holds with equality for: sets, vector spaces, many permutations groups, perfect matchings, designs.

Let V be the span of the characteristic vectors of all the canonical cocliques.

If equality holds in the ratio bound, then V is a **subspace** of the span of the au-eigenspace and the d-eigenspace. If these spaces are equal, we have a method to get the characterization:

The characteristic vector for any maximum intersecting set will be a linear combination of the characteristic vectors of the canonical cocliques.

More on the characterization **

For permutations this approach is uses finite Fourier analysis on the group [FL].

- Often V is span of all functions with a Fourier transform that is concentrated on specific irreducible representations.
 Representations in the decomposition of the permutation representation.
- 2 Take the Fourier transform of the characteristic function for any coclique.
- If the coclique is large, the Fourier transform is concentrated on specific irreducible representations.

We can also ask what are the 01-vectors in V?

For many objects, these are considered to be **low dimensional Boolean Functions** [FKN, FI] or **Cameron-Liebler sets** [BSS, DMP].

Intersecting Trees ***

Two trees on the same vertex set are **intersecting** if they have a common edge.

What is the size of the largest family of intersecting trees on n vertices?

- **•** A **canonical** intersecting family of trees is the set of all trees that contain a common edge, the size is $2n^{n-3}$.
- Any star (tree formed by taking all edges on a fixed vertex) is intersecting with every other tree

Not all trees are the same!

Theorem (FHIKLMP)

For $n \ge 2^{19}$, let \mathcal{F} be a 1-intersecting family of trees on n vertices. Then

$$|\mathcal{F}| \le 2n^{n-3} + (n-2).$$

Equality holds if and only if ${\mathcal F}$ consists of all trees containing a fixed edge and all stars.

There is also a *t*-intersecting theorem.

Outline of the Spread Approximation Technique [KZ] ***

First identify the objects as sets, denoted bt A. Represent a tree by its set of edges.

```
This is a (n-1)-subset from \{1, 2, \dots, \binom{n}{2}\}
```

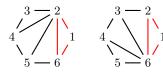
② A type of object $\mathcal{A} \subset 2^{[m]}$ is r-spread if the number of elements in \mathcal{A} that contain an r-subset X is bounded above by $r^{-|X|} \mid \mathcal{A} \mid$.

The **spreadedness** captures the amount of quasi-randomness of the objects

- **③** If A is spread and $F \subseteq A$ is a family of t-intersecting subsets no bigger than k
 - \bullet A t-intersecting family of smaller subsets S called the **spread approximation** of F.
 - **Most** of \mathcal{F} contain a set from S.
 - \blacksquare An intersecting family in A, all containing a set in S, is no bigger than a canonical family.
- $\begin{tabular}{ll} \hline \textbf{0} \\ \hline \textbf{0}$
 - The leftover pile is always small.
 - If the spread approximation is not canonical, then the part contained in it is small.
 - If the spread approximation is a canonical family, and the leftover pile is not empty then the family is small.
 - The number of sets removed from the canonical family by an element in the leftover pile, is more than the elements in the left-overs pile.

Triangulations of Polygons 🙎

- Start with a convex n-gon.
- Make a triangulation by adding n-3 edges that only intersect at vertices of the n-gon.
- Intersect if they have a common triangle.



What is the largest family of intersecting triangulations?

- The number of triangulations is the $(n-2)^{th}$ -Catalan number, and
- ullet the number of triangulations with a short edges is the $(n-3)^{th}$ -Catalan number
- See Gil Kalai's "Intersecting family of triangulations." MathOverflow. mathoverflow.net/g/114646.

Thanks!

References on the following pages!

A Few References

- [EKR] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser.(2), 12:313-320, 1961.
- [F] P. Frankl. The Erdős-Ko-Rado theorem is true for n = ckt. In Combinatorics, volume 18 of Collog. Math. Soc. János Bolyai, pages 365-375. North-Holland, Amsterdam, 1978.
- [DF] M. Deza and P. Frankl, The Erdős-Ko-Rado theorem-22 years later, SIAM J. Algebraic Discrete Methods 4 (1983) 419-431.
- [E] David Ellis. Intersection problems in extremal combinatorics: theorems, techniques and questions old and new. In Surveys in combinatorics 2022, volume 481 of London Math. Soc. Lecture Note Ser., pages 115-173, 2022.
- [FT] P. Frankl and N. Tokushige, Extremal Problems for Finite Sets, American Mathematical Society, 2018.
- [GM] Chris Godsil and Karen Meagher. Erdős-Ko-Rado Theorems: algebraic approaches, volume 149 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.
- [LSP] C. H. Li, S. J. Song, and V. Pantangi. Erdős-Ko-Rado problems for permutation groups. arXiv preprint arXiv:2006.10339, 2020.
- [HM] A. J. W. Hilton and E. C. Milner. Some intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2), 18:369-384, 1967.
- [AK] Rudolf Ahlswede and Levon H. Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18(2):125-136, 1997.
- [H] W. H. Haemers. Hoffman's ratio bound. Linear Algebra Appl., 617:215-219, 2021.

A Few More References

- [BCGR] R. A. Bailey, Peter J. Cameron, Michael Giudici, and Gordon F. Royle. Groups generated by derangements. J. Algebra, 572:245-262, 2021.
- [DF] M. Deza and P. Frankl. On the maximum number of permutations with given maximal or minimal distance. J. Combin. Theory Ser. A, 22(3):352-360, 1977.
- [LM] Benoit Larose and Claudia Malvenuto. Stable sets of maximal size in Kneser-type graphs. European J. Combin., 25(5):657–673, 2004.
- [GM] Chris Godsil and Karen Meagher. A new proof of the Erdős-Ko theorem for intersecting families of permutations. European J. Combin., 30(2):404–414, 2009.
- [CK] Peter J. Cameron and C. Y. Ku. Intersecting families of permutations. European J. Combin., 24(7):881-890, 2003.
- [EFP] David Ellis, Ehud Friedgut, and Haran Pilpel. Intersecting families of permutations. J. Amer. Math. Soc., 24(3):649–682, 2011.
- [CDFL] Gilad Chase, Neta Dafni, Yuval Filmus, Nathan Lindzey Uniqueness for 2-Intersecting Families of Permutations and Perfect Matchings
- [WZ] Jun Wang and Sophia J. Zhang. An Erdős-Ko-Rado-type theorem in Coxeter groups. European J. Combin., 29(5):1112?1115, 2008.
- [MRS] K. Meagher, A. S. Razafarana aran, and P. Spiga. On triangles in derangement graphs. J.
- Combin. Theory Ser. A, 180:105390, 2021.
- [HKMM] Ademir Hujdurović, Klavdija Kutnar, Dragan Marušič, and Štefko Miklavič. Intersection density of transitive groups of certain degrees. Algebr. Comb., 5(2):289-297, 2022.
- [FL] Yuval Filmus and Nathan Lindzey. Simple algebraic proofs of uniqueness for Erdős-Ko-Rado theorems. https://arxiv.org/abs/2201.02887, 2022.
- [FKN] E. Friedgut, G. Kalai, and A. Naor. Boolean functions whose Fourier transform is concentrated on the first two levels. Adv. in Appl. Math., 29(3):427-437, 2002.

Even More References

- [FI] Yuval Filmus and Ferdinand Ihringer. Boolean degree 1 functions on some classical association schemes. J. Combin. Theory Ser. A, 162:241-270, 2019.
- [BSS] M. De Boeck, L. Storme, and A. Švob, The Cameron-Liebler problem for sets, Discrete Math. 339 (2016), no. 2, 470–474.
- [DMP] J D'haeseleer, K. Meagher, V. Pantangi, Cameron-Liebler sets in permutation groups. Algebraic Combinatorics. 7(4): (2024) 1157-1182.
- [BBN] József Balogh, Béla Bollobás, and Bhargav P Narayanan. Transference for the Erdős-Ko-Rado theorem. In Forum of Mathematics, Sigma, volume 3, page e23. Cambridge University Press, 2015.
- [BKL] József Balogh, Robert A Krueger, and Haoran Luo. Sharp threshold for the Erdős-Ko-Rado theorem. Random Structures and Algorithms, 62(1):3-28, 2023.
- [TD] Tuan Tran and Shagnik Das. A simple removal lemma for large nearly-intersecting families.
- Electronic Notes in Discrete Mathematics, 49:93-99, 2015.
- [GMMPS] Karen Gunderson, Karen Meagher, Joy Morris, Venkata Raghu Tej pantangi, Mahsa N. Shirazi Robustness of Erdős-Ko-Rado theorems on permutations and perfect matchings. [GMMPS2] Karen Gunderson, Karen Meagher, Joy Morris, Venkata Raghu Tej Pantangi, Mahsa N Shirazi A new measure of robustness of Erdős–Ko–Rado Theorems on permutation groups [FHIKLMP] Intersecting Families of Spanning Trees, Peter Frankl, Glenn Hurlbert, Ferdinand Ihringer, Andrey Kupavskii, Nathan Lindzey, Karen Meagher, Venkata Raghu Tej Pantangi [KZ] Andrey Kupavskii and Dmitrii Zakharov. Spread approximations for forbidden intersections problems. Advances in Mathematics, 445:109653, 2024.