A TOPOLOGICAL PROPERTY OF THE EXPONENTIAL IMAGE

Liviu Mare

1. Preliminaries. If G is a Lie group, ≥ its Lie algebra and exp: B → G the exponential mapping, denote by E_G the image of this map. Many authors considered this set, obtaining algebraic descriptions for it (see for example, Lai [3], [4], [5] or Doković [1]). One may expect to deduce now some topological properties for E_G. The purpose of the present paper is that, by using the algebraic characterisation given by Lai in [3], to deduce that int E_G = E_G, first for G real, semisimple with finite center and then for GL(n, R) (for any subspaces A of G, A always represents the closure of A in G), The following result of Lai, [3, p.323] will be a basic

The following result of Lai, [3, p.323] will be a basic tool for us:

1.1. Theorem. Let G be a connected real semisimple Lie group with finite center. Then we can find a positive integer p such that $g^P \in E_G$ for any $g \in G$.

We shall call a such positive integer p a <u>sufficient</u> exponent for G. Also recall, from the same work [3], that if p is a sufficient exponent for the adjoint group Int (3) and r the order of the center of G then rp is a sufficient exponent for G.

In investigating the topological structure of $E_{\mathbb{G}}$, we are first interested if it is perhaps open or closed. In the beginning we shall see that both questions admit a nega-

tive answer, even for a connected semisimple G. Our counterexample will be SL(2, R).

A well-known result says that a matrix $A \in SL(2, \mathbb{R})$ belongs to $exp(sl(2, \mathbb{R}))$ if and only if $A = B^2$, with $B \in SL(2, \mathbb{R})$.

To prove that exp(s1 (2, R)) is not open, consider

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \exp\begin{pmatrix} 0 & \pi \\ -\pi & 0 \end{pmatrix}$$

while for any $\varepsilon > 0$ the matrix $\begin{pmatrix} -1 & 0 \\ \varepsilon & -1 \end{pmatrix}$ does not belong to exponential image. Our main result (Th. 2.5) is intended somehow to repair this drawback.

Let observe now that $\exp(sl\ (2, |R))$ is not closed. To show this, choose $\binom{-1}{0}$ from its complement [7, ex.5, ch. III]. Using the up-mentioned characterisation of $\exp(sl\ (2,R))$, one can easily deduce that

$$\begin{pmatrix} -1 & -1 \\ \varepsilon & -1 \end{pmatrix} \in \exp(s1, (2, \mathbb{R}))$$
, for any $\varepsilon > 0$.

2. Main result. We begin with three technical results:
2.1. Lemma. Let A ∈ GL(n, R) a non-singular matrix
and q > 2 an integer. The linear operator

$$\Phi_{A}: M_{n}(\mathbb{R}) \longrightarrow M_{n}(\mathbb{R})$$

$$X \longrightarrow A^{q-1}X + A^{q-2}XA + \cdots + XA^{q-1}$$

is an isomorphism if and only if for any $\lambda, \mu \in \mathcal{T}(A)$ and any $\xi \in \Sigma_{q} \setminus \{1\}$, $\lambda \neq \xi \mu$. Equivalently

det
$$[I]$$
 $P_{A}(\epsilon A) \neq 0_{e}$ $\epsilon \in \sum_{q} \{i\}$

Here $\sum_{q} = \{z \in C: z^q = 1\}$, C(A) denotes the set of proper values of the operator A and P_A is the characteristic polynomial of A. For the proof of this Lemma please see [6].

2.2. Lemma. Let X,Y be topological spaces and f a local homeomorphism of X into Y. If A is any subspace of Y, $f^{-1}(\bar{A}) = f^{-1}(\bar{A})$ a

2.3. Lemma. Let X be a topological space, Y an open subspace of X and A a subspace of Y. Then:

- (1) $(\overline{A})_{\underline{Y}} = (\overline{A})_{\underline{X}} \cap \underline{Y}$
- (ii) (int A) $_{\rm Y}$ = (int A) $_{\rm X}$.

These last two lemmas are immediate results of general topology.

Let now G be a real connected semisimple Lie group with finite conter, & its Lie algebra, $\exp\colon g \longrightarrow G$ the exponential mapping and $E_G = \exp(g)$. Denote by G_1 the adjoint group Int(g) of g, which is clearly a topological Lie subgroup of GL(g) [2, Th. 2.10., Ch.II]. If p is a sufficient exponent for G_1 and r = |Z(G)| then q = pr will be a sufficient exponent for $G(and also for G_1)$. Consider the maps $f(g) = g^q$ of G into G and $f_1(x) = x^q$ of G_1 into G_{12} . The set

 $Q_1 = \{g \in Int(g): \lambda \neq \varepsilon\}$ for any $\lambda_s \neq \varepsilon \in \{g\}$ and $g \in \Sigma_s \in \{i\}\}$ is an open subspace of G_1 . Being the complement of the zero set of an analytic function on G_1 , is also dense in $G_{1,\varepsilon}$

2.4. Proposition. The restriction $f_1|_{Q_1}$ is a local diffeomorphism of Q_1 into Q_1 .

Proof. For an arbitrary $g \in Q_1$, consider the map $h = L_{g \to q}$ of o $L_{g} : G_1 \longrightarrow G_1$ (L_{g} denotes the left translation by g). It will be sufficient to prove that h is a local diffeomorphism at the identity I of G_1 . Because G_1 is a submanifold of $GL(\mathcal{B})$, we can calculate the differential of h at I by means of the Gâteaux differential.

So
$$(dh)_{I}$$
: ad $g \longrightarrow ad g$ is given by
$$(dh)_{I}(A) = \lim_{\lambda \longrightarrow 0} \frac{1}{\lambda} [h(I+\lambda A) - h(I)] =$$

$$= g^{-q+1} (A g^{q-1} + g A g^{q-2} + \cdots + g^{q-1} A).$$

Finally Lemma 1.1, completes the proof.

Consider now Ad: $G \longrightarrow G_1$ the adjoint representation of G, which is clearly a local diffeomorphism. The set $Q = Ad^{-1}(Q_1)$ is an open subspace of G. By Lemma 2.2, Q is also dense in G.

Because $f_1 \mid Q_1$ and Ad are local diffeomorphisms, the same $f_Q = Ad \longrightarrow G_1$ is true for $f \mid Q_2$.

So f(Q) is an open subset of G, $f(Q) \subseteq f(G) = E_G$. On the other hand, $E_G = f(G) = f(\overline{Q}) \subseteq \overline{f(Q)}$.

By $f(Q) \subseteq E_G \subseteq \overline{f(Q)}$ one can immediatly conclude:

2.5. Theorem. For any real connected semisimple Lie group G with finite center we have

3. An application. In the sequel we shall use Th.2.2. to obtain a similar result for the exponential mapping on the space $M_n(R)$ of real square n x n matrices.

The Lie algebra of the Lie group $GL(n, \mathbb{R})$ can be identified with $H_n(\mathbb{R})$. As for $SL(n, \mathbb{R})$, its Lie algebra is the subalgebra $sl(n, \mathbb{R})$ of $gl(n, \mathbb{R}) = H_n(\mathbb{R})$. The unit component of $GL(n, \mathbb{R})$ is

$$GL^+(n, \mathbb{R}) = \{ A \in GL(n, \mathbb{R}) : \det A > 0 \}$$

If $\mathbb{R}_+^{\frac{1}{2}}$ denotes the set of the strictly positive real numbers, the diffeomorphism

$$\varphi: \mathbb{R}^{\mathbb{R}}_{+} \times SL(n, \mathbb{R}) \longrightarrow GL^{+}(n, \mathbb{R})$$

$$(t, \Lambda) \longrightarrow t \Lambda$$

maps $\mathbb{R}_{+}^{\mathbb{R}} \times \mathbb{E}_{SL}$ homeomorphically onto \mathbb{E}_{GL} (we denoted by \mathbb{E}_{GL}). \mathbb{E}_{SL} the exponential images corresponding to $\mathbb{GL}(n, \mathbb{R})$ respectively $\mathbb{SL}(n, \mathbb{R})$). By using Lemma 2.3. one deduce

and because GL+(n, R) is closed (as a connected component),

Evidently all topological operators involved here (closure and interior) were considered relatively to the topology of GL(n, R).

4. Final remarks. Our main result (Th.2.5.) is certainly just a first step in the topological study of the set $R_{\rm G}$. It would be interesting for instance to see when $R_{\rm G}$ is dense in G.

All results of our 2-nd section remain valid in the complex case (that is considering complex connected semisimple Lie groups). But a result, mentioned for instance in [1], says that in this case E_G is dense in G. So the real case seems to be more interesting from the point of view of our present papers.

REFERENCES

- [1] a Doković, D.Z., The exponential image of simple complex Lie groups of exceptional type, Geometriae Dedicata 27(1988), lel-111.
- [2] . Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press 1978.
- [3] Lai, H.-L., Surjectivity of exponential map on semisimple Lie groups, J. Math. Soc. Japan 29(1977).
- [4] a Lai, Ha-L., Index of the exponential map of a center-free complex simple Lie group, Osaka J.Math. 15(1978), 553-560.
- [5] Lai, H.-L., Index of the exponential map on a complex Lie group, Osaka J. Math. 15(1978), 561-567.
- [6] . Mare, L., On a matrix linear operator (to appear).
- [7] Mneimné, Ro, Testard, F., Introduction à la théprie des groupes de Lie classiques, Hermann, Paris, 1986.

Romania

"Babes-Bolyai" University
"Paculty of Natheastics
Str. H. Keghindren, 1
R-3400 Cluj-Rapacu

On a linear matrix operator

Liviu Mare

Facultatea de Matematică Universitatea din Cluj-Napoca Str. M.Kogălniceanu, 1 3400 Cluj-Napoca

Let $A \in GL(n,\mathbb{R})$ be a non-singular matrix and $q \geq 2$ an integer. We stated through Lemma 2.1. of [3] a characterisation of all A for which the operator $F: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$,

$$F(X) = X A^{q-1} + AXA^{q-2} + ... + A^{q-1}X$$
 (1)

is a linear isomorphism. We shall give in this note a complete proof of this result, based on some general considerations of linear algebra.

It will be convenient for our treatment to write F

as

$$F(X) = (X+AXA^{-1} + ... + A^{q-1} XA^{-(q-1)})A^{q-1}$$

and consider the map G: $M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$,

$$G(X) = X + AXA^{-1} + \cdots + A^{q-1} XA^{-(q-1)}$$
 (2)

To every C - linear endomorphism E of a certain C^P , associate the set denoted by $\nabla(E)$ of all proper values of E. Let H be an R- linear endomorphism of a certain space R^P .

Define
$$H^{\mathbb{C}}: \mathbb{C}^{\mathbb{P}} \longrightarrow \mathbb{C}^{\mathbb{P}}$$
 by
$$H^{\mathbb{C}}(x+iy) = H(x) + 1H(y)$$

for any $x,y \in \mathbb{R}^P$. One evidently obtains a C-linear endomorphism of \mathbb{C}^P , which is a C-linear isomorphism if and only if H is an \mathbb{R} -linear one. Define

$$abla(H) =
abla(H^{\mathbb{C}}).$$

We are interested now by the proper values of the C-linear endomorphism $G^{\mathbb{C}}\colon M_{\mathbf{n}}(\mathbb{C}) \longrightarrow M_{\mathbf{n}}(\mathbb{C})$,

$$G^{(1)} = X + AXA^{-1} + \cdots + A^{q-1} X A^{-(q-1)}$$
 (3)

In a natural way, consider $\varphi_A: M_n(\mathfrak{C}) \longrightarrow M_n(\mathfrak{C})$,

$$\varphi_{A}(x) = A \times A^{-1}$$
.

Lemma. The proper values of ϕ_A are given by

$$\nabla(\varphi_{A}) = \left\{\frac{\lambda}{\mu} : \lambda, \mu \in \nabla(A)\right\}$$
.

Proof. Let first be $\alpha \in \mathcal{I}(\varphi_A)$, so $AX - X(\alpha A) = 0$,

for a non-zero matrix. X. By a well-known result of matrix theory (see for instance [1] p.288 or [2] p.222), \propto must be on the form $\frac{\lambda}{\mu}$, λ , $\mu \in \Gamma(A)$.

Conversely, let λ , $\mu \in \sigma(A) = \sigma(^tA)$ and let

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_n \end{pmatrix}$$

be two vectors of C^n such that $Ax = \lambda x$ and

then
$$A^{-1} = \frac{1}{\mu} \cdot t_y \cdot \text{ if } X = (x_i y_j)_{1 \le i, j \le n}$$
then
$$AX = \frac{\lambda}{\mu} XA.$$

Put $\sum_{q} = \{z \in C: z^q = 1\}$. We are in position to state our main result.

Theorem. The following conditions are equivalent.

(i) The map $F: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$ given by (1) is an \mathbb{R} -linear isomorphism.

(ii) The map $G^{\mathbb{C}}: M_n(\mathbb{C}) \longrightarrow M_n(\mathbb{C})$ given by (3) is a C-linear isomorphism.

(111) For any
$$\lambda,\mu \in \mathcal{T}(A)$$
 and any $\epsilon \in \mathcal{L}_{q} \setminus \{1\}$
 $\lambda \neq \epsilon \mu$.

Proof. We must only observe that

and so
$$\nabla(G^{C}) = \left\{ \sum_{k=0}^{q-1} (\frac{\lambda}{\mu})^{k} : \lambda_{\mu} \in \nabla(A) \right\}.$$

A simple result of linear algebra says that $G^{\mathbb{C}}$ is an isomorphism if and only if $0 \in \nabla(G^{\mathbb{C}})$.

Example. As an imediate consequence, obseve that for any $A \in GL(2, \mathbb{R})$ and any integer $q \ge 1$, the map $F: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$,

$$F(X) = XA^{2q} + AXA^{2q-1} + ... + A^{2q}X$$

is a linear isomorphism.

REFERENCES

- 1. Bellman, R., Introduction to Matrix Analysis (romanian), Editura Tehnica 1969
- 2. Gantmacher, F.R., Théorie des matrices, tome 1, Ed. Dunod, 1966.
- 3. Mare, L., A topological property of the exponential image (to appear).