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Show all of your work on the exam paper. Use the back of the page if necessary.

MARKS

[6] 1. Find the derivative of f(z) = z* using the limit definition of the derivative. (No marks
will be given if you do not use the limit definiton.)
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2. Find the following limits (if they exist)
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[5] 3. Find the value of the constant A which makes the function continuous for all values of

x.
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4. Differentiate the following functions.
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., dy .
[5] 5. Find o if
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[5] 6. Find the equation of the tangent line to the graph of g(z) = v/5z + 1 when = = 3.

Two = % +b )} va\;%)(g).
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[6] 7. Car A is travelling west at 50 kilometers/hr and car B is travelling north at 60 kilome-
ters/hr. Both are headed for the same intersection of the two roads. The roads meet
at right angles. At what rate are the cars approaching each other when car A is 0.3
kilometers and car B is 0.4 kilometers from the intersection?
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[6] 8. A tumor is modeled as a sphere of radius r cm. At what rate is the volume V' = gm"?’

changing yith respect t hen r = 0.75 cm?
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[6] 9. Determine if the function f(z) = ) has an absolute maximum or an absolute

minimum on the interval z > 0. Explain your answer.
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10. Compute the following integrals.
[4] (a) / (32° — Vo +1) dz

3 e

= X «—EX + x ~ C



NAME:

STUDENT NO.:
SECTION:
Inz
0 o [ w= O x
-\
duw = - AX

5 11. Find the position function, s(t), of an object moving in a straight line if the velocit
g Y
function v(t) = —3t* + 14t + 1 and s(0) = 2, where t is the time measured in seconds.
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[12] 12. Consider the graph of f(x)=4x> —x*

Identify (i) the domain, (ii) all intercepts, (iii) all relative and absolute extreme
points and (iv) all inflection points. Use your results to sketch a graph of f(x).
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