Name: SOLUTION

<u>ID#:</u>

Math 102-001 Fall 2015 Quiz #1

- 1. An object is heated at a constant rate. At time t=0, it is temperature is T=16.2°C. Every hour the temperature rises by 0.4°C. [8 marks]
 - a) Write an equation to express the temperature T in terms of the time passed t.

b) Use your equation to find the temperature after 6 ½ hours have passed. (use a full sentence for the final answer)

LET
$$t=6.5$$

THEN $T=16.2+(0.4)(6.5)=18.8$
AFTER 61/2 HOURS THE TEMPORATURE IS 18.8°C

c) After how many hours will the temperature of the object reach 30°C? (use a full sentence for the final answer)

LET
$$T=30$$

SOLVE $30=16.2+0.4t$
 $13.8=0.4t$
 $t=34.5$
THE TEMPERATURE WILL REACH 30° C AFTER 34.5 Hours.

d) A second object is cooled at the same time. Its temperature (T_2) is modeled by the equation $T_2 = 26.4 - 0.8t$ After how many hours will the two objects have the same temperature?

(use a full sentence for the final answer)

SOLVE
$$16.2 + 0.4 = 26.4 - 0.8 = 1.2 = 10.2$$

$$E = 8.5$$

a) Write as a single fraction:
$$\left(\frac{3}{2} - \frac{1}{3}\right) \div \frac{4}{3}$$

$$= \left(\frac{9}{6} - \frac{2}{6}\right) \times \frac{3}{4} = \frac{7}{6} \times \frac{3}{4} = \frac{7}{8}$$

b) Evaluate:
$$\left(\frac{4}{9}\right)^{\frac{3}{2}}$$

$$= \left(\frac{q}{4}\right)^{3/2} = \left(\sqrt{\frac{q}{4}}\right)^3 = \left(\frac{3}{2}\right)^3 = \frac{27}{8}$$

c) Factor completely:
$$2x^6 - 32x^2$$

$$= 2x^2 \left(x^4 - 16\right)$$

$$= 2x^2 \left(x^2 - 4\right) \left(x^2 + 4\right)$$

$$= 2x^2 \left(x - 2\right) \left(x + 2\right) \left(x^2 + 4\right)$$

d) Simplify:
$$\frac{(3x^{2}y^{-1})(2xy^{2})^{3}}{6x^{4}y^{-5}} = \frac{(3x^{2}y^{-1})(8x^{3}y^{6})}{6x^{4}y^{-5}} = \frac{24x^{5}y^{5}}{6x^{4}y^{-5}} = 4xy^{10}$$

e) Solve for x:
$$3x^2 + x = 2$$

$$3x^2 + x - 2 = 0$$

$$(3x + 2)(x + 1) = 0$$

$$x = 3$$
AND $x = -1$

$$COR USE COLUMNATIC FORMULA$$

f) Solve for x:
$$\frac{3}{2x+1} = \frac{2}{x-1}$$
$$3(x-1) = 2(2x+1)$$
$$3x - 3 = 4x + 2$$
$$-x = 5$$
$$x = -5$$