Math 302.102 Fall 2010
Some Examples of a One-Dimensional Change of Variables

Suppose that X is a continuous random variable and that ¥ = ¢(X) for some continuous
function g : R — R so that Y is itself a continuous random variable. It is often the case
in practice that one knows the density function of X and seeks the density function of Y.
Fortunately, if g is a nice function (as it usually is in practice), then it is straightforward to
determine the density of Y from first principles. Basically, one starts with the definition of
the distribution function of Y substitutes in Y = ¢(X), and solves for X. This produces
an integral expression involving the density function of X which can then be differentiated
using the fundamental theorem of calculus to yield the density function for Y. Sometimes
this is called a one-dimensional change of variables. The following examples illustrate this
technique. Remember that in order to use the fundamental theorem of calculus, it must
be the case that a variable appears in the upper limit of integration and that no variable
appears in the lower limit of integration.

Example. Suppose that X ~ N(0,1). Let Y = e*. Determine the density function of Y.

Solution. Let Y = . For y > 0, the distribution function of Y is
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d d [lev 1 1 > 1 2
- [ - e /2 dr = _6—(10gy) /2. = lo _ 6—(logy) /2

for y > 0. The random variable Y is an example of a log-normal random variable which is
reqularly encountered in the mathematical theory of stock option pricing.

Example. Suppose that X ~ N(0,1). Let Y = X2, Determine the density function of Y.

Solution. Let Y = X? so that
Fy(y) =P{Y <y} =P{X*<y}.

Note that since X can take on any real value, we have
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for y > 0. Note that the random variable Y has a Gamma(1/2,1/2) distribution, or equiva-
lently, Y ~ x*(1) and often appears in statistical inference.

Example. Suppose that X € I'(a, b) so that the density of X is
ba
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for x > 0. Let Y = 1/X. Determine the density function of Y.

Solution. Let Y = 1/X. For y > 0, the distribution function of Y is

Fy(y) =P{Y <y} =P{l/X <y} =P{X>1/y} =1-P{X <1/y}
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so that the density function of Y is
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for y > 0. The random variable Y is an example of an inverse gamma random variable with
parameters a and b and is used primarily in Bayesian statistics though it sometimes finds
applications in actuarial science.



