
Math 302.102 Fall 2010
The Poisson Approximation to the Binomial Distribution

Suppose that X ∼ Bin(n, p) so that E(X) = np and Var(X) = np(1 − p). We know from
the central limit theorem that if n is sufficiently large, then X is approximately normal with
mean np and variance np(1− p). The continuity correction makes this precise; that is,
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where Z ∼ N (0, 1). This means that the probability in question can be determined using a
table of normal probabilities. That is,
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where Φ denotes the standard normal distribution function
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However, if p is near 0 or 1, then n needs to be extremely large in order for this approximation
to be good. Think about this. If p is near 0, say p = 0.000001, then this says that the
probability of success is 1 in a million. That means that, on average, if we examined 1
billion trials (say, roughly, the population of China or India), then we would observe only
1000 successes. Although 1000 successes might seems like a lot, it is insignificant in a sample
of size 1 billion. This example might seem extreme, but it is meant to point out that care
needs to be taken with rare events. The general rule of thumb that is “taught” is that one
needs both np > 10 and n(1− p) > 10 in order for the normal approximation to be good.

If the normal approximation does not apply, then one can use a Poisson approximation. Here
it is. We know
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If we now take n → ∞ in such a way that λ = np remains constant, then since k is fixed,
we find
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Hence, if X ∼ Bin(n, p) and at least one of np and n(1 − p) is small so that the normal
approximation does not apply, then

P {X = k} ≈ P {Y = k}

where Y ∼ Poisson(np). Thus,

P {X = k} ≈ (np)k
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Example. Suppose that 25 families are surveyed at random. Suppose further that each
family surveyed has 4 children. What is the probability that exactly 2 of these families have
4 children all of whom are boys? You may assume that children are equally likely to be
either a boy or a girl.

Solution. Let X denote the number of families with 4 boys so that

X ∼ Bin(n = 25, p = 1/16).

We know exactly that
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For comparison, the Poisson approximation with λ = np = 25/16 gives
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