Math 302.102 Fall 2010
The Gamma Function

Suppose that p > 0, and define

F(p):/ uP~t e du.
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We call I'(p) the Gamma function and it appears in many of the formulas of density functions
of continuous random variables such as the Gamma distribution and Beta distribution.
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Proof. Since we are considering the value of the improper integral

o0
/ wP e " du
0

for all p > 0, there is need to be careful at both endpoints 0 and oc.

Theorem. For p > 0, the integral

15 absolutely convergent.

We begin with the easiest case. If p =1, then
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For the remaining cases 0 < p < 1 and p > 1 we will consider the integral from 0 to 1 and
the integral from 1 to oo separately.
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If 0 < p < 1, then the integral

is improper. Thus,
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since e * <1 for 0 <u <1.
Furthermore, if 0 < p < 1, then 0 < u?~! <1 for u > 1 and so
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Thus, we can conclude that for 0 < p < 1,
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If p> 1, then uP~! € [0,1] and e < 1 for 0 < u < 1. Thus,
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On the other hand, if p > 1, let |p| denote the smallest integer less than or equal to p so
that p — [p] € [0,1). Thus, 0 < u?~PI=1 <1 for u > 1. We then have
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Integration by parts |p| times (the so-called reduction formula) gives
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and so
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lim ulPl e du = [p] .
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Thus, we can conclude that for p > 1,
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In every case we have u?~!e™" > 0 and so
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That is, this integral is absolutely convergent, and so I'(p) is well-defined for p > 0. O



