
Math 302.102 Fall 2010
The Central Limit Theorem

As you saw in preparation for Midterm #2, if we know that X1, X2, . . . , Xn are iid N (µ, σ2),
then the distribution of

X =
X1 +X2 + · · ·+Xn

n
can be determined using moment generating functions. In fact,

X ∼ N
(
µ,
σ2

n

)
.

Moreover, by normalizing we conclude that

X − µ
σ/
√
n
∼ N (0, 1).

As we will now see, the special case of normal random variables is an idealized version of
the Central Limit Theorem. Suppose, therefore, that X1, X2, . . . , Xn are independent and
identically distributed random variables with common mean µ and common variance σ2, and
let

X =
X1 +X2 + · · ·+Xn

n
.

Without knowing the common distribution of X1, X2, . . . , Xn, it is not possible to determine
the exact distribution of X. However, we can conclude that

E(X) = E
(
X1 +X2 + · · ·+Xn

n

)
=

E(X1) + E(X2) + · · ·+ E(Xn)

n
=
µ+ µ+ · · ·+ µ

n

=
nµ

n
= µ,

and using the fact that X1, X2, . . . , Xn are independent,

Var(X) = Var

(
X1 +X2 + · · ·+Xn

n

)
=

Var(X1) + Var(X2) + · · ·+ Var(Xn)

n2

=
σ2 + σ2 + · · ·+ σ2

n2

=
nσ2

n2
=
σ2

n
.

Therefore,

E
(
X − µ
σ/
√
n

)
= 0 and Var

(
X − µ
σ/
√
n

)
= 1.

Now, even though we cannot determine the exact distribution of

X − µ
σ/
√
n

without knowledge of the common distribution of X1, X2, . . . , Xn, we will see that it is
possible to determine its approximate distribution.



Observe that

X − µ
σ/
√
n

=
nX − nµ
σ
√
n

=
(X1 − µ) + (X2 − µ) + · · ·+ (Xn − µ)

σ
√
n

=
X1 − µ
σ
√
n

+
X2 − µ
σ
√
n

+ · · ·+ Xn − µ
σ
√
n
. (∗)

We now write

Y =
X − µ
σ/
√
n

and Yj =
Xj − µ
σ
√
n

so that Y1, Y2, . . . , Yn are iid and (∗) is equivalent to

Y = Y1 + · · ·+ Yn.

We can determine the moment generating function of Y in terms of the moment generating
functions of Yj. That is,

mY (t) = E(etY ) = E[et(Y1+···+Yn)] = E(etY1 · · · etYn) = E(etY1) · · ·E(etYn) = [E(etY1)]n (∗∗)
using the fact that Y1, . . . , Yn are iid. The next step is to approximate E(etY1). The basic
idea is to write out the power series expansion for ea and take expectations. That is,

ea = 1 + a+
a2

2!
+ · · ·

and so

E(etY1) = E
[
1 + tY1 +

t2Y 2
1

2!
+ · · ·

]
= 1 + tE(Y1) +

t2E(Y 2
1 )

2!
+ · · ·

= 1 +
t2

2n
+ · · ·

since E(Y1) = 0 and Var(Y1) = E(Y 2
1 ) = 1/n. Hence, we see from (∗∗) that

mY (t) = [E(etY1)]n =

[
1 +

t2

2n
+ · · ·

]n
But the quantity on the right side above just happens to look like the limit definition of e.
That is,

lim
n→∞

mY (t) = lim
n→∞

[
1 +

t2

2n
+ · · ·

]n
= et

2/2

which just so happens to be the moment generating function of a N (0, 1) random variable.

Theorem (Central Limit Theorem). If X1, X2, . . . , Xn are independent and identically dis-
tributed with common mean µ and common variance σ2, then the limiting distribution of

X − µ
σ/
√
n

is N (0, 1). That is,

lim
n→∞

P

{
X − µ
σ/
√
n
∈ A

}
=

1√
2π

∫
A

e−x
2/2 dx.

Surprise! Wikipedia has an article titled Illustration of the Central Limit Theorem.
http://en.wikipedia.org/wiki/Illustration of the central limit theorem


