
Statistics 852 Fall 2011 Final Exam – Solutions

1. We will begin by showing that W (X1, . . . , Xn) is an unbiased estimator of θ2. This follows
since

Eθ(W (X1, . . . , Xn)) =
1

n(n− 1)
Eθ (T (T − 1)) =

1

n(n− 1)

(
Eθ(T

2)− Eθ(T )
)

=
1

n(n− 1)

(
Varθ(T ) + [Eθ(T )]2 − Eθ(T )

)
=
nθ(1− θ) + n2θ2 − nθ

n(n− 1)

=
n2θ2 − nθ2

n(n− 1)

= θ2.

In order to apply the Rao-Blackwell theorem, we need to show that T is a complete and
sufficient statistic for θ. One might try to argue that since T ∼ Bin(n, θ), the density for T
follows an exponential family so that T is therefore complete and sufficient. This would be
correct if the parameter space were 0 < θ < 1. However, since we are considering 0 ≤ θ ≤ 1,
the density for T does not follow an exponential family for all θ ∈ [0, 1]. If θ ∈ {0, 1}, then
the support of the distribution does depend on θ. Instead, one can use the factorization
theorem to conclude that T is a sufficient statistic for θ. Completeness follows from the fact
that

n∑
i=0

(
n

i

)
θi(1− θ)n−1g(i) = 0

for all 0 ≤ θ ≤ 1 if and only if g(i) = 0 for all i = 0, 1, . . . , n. Hence, we can now apply the
Rao-Blackwell theorem (Theorem 7.3.23) to conclude that W (X1, . . . , Xn) is the MVUE of
θ2 since W (X1, . . . , Xn) is a function of the sufficient and complete statistic T .

2. (a) The joint density of X1, . . . , Xn is

f(x1, . . . , xn|θ) =
1

(2π)n/2
exp

{
−1

2

n∑
i=1

(xi − iθ)2
}

and so the log-likelihood function is

`(θ) = logL(θ) = log f(x1, . . . , xn|θ) = −n
2

log(2π)− 1

2

n∑
i=1

(xi − iθ)2.

Since
d

dθ
`(θ) =

n∑
i=1

i(xi − iθ) =
n∑
i=1

ixi − θ
n∑
i=1

i2 = 0



if and only if

θ =

n∑
i=1

ixi

n∑
i=1

i2
,

and since
d2

dθ2
`(θ) =

n∑
i=1

i2 < 0

for all θ, we conclude that the MLE of θ is

θ̂(X1, . . . , Xn) =

n∑
i=1

iXi

n∑
i=1

i2

as required.

(b) Since X1, . . . , Xn are independent, the variance of θ̂(X1, . . . , Xn) is

Var(θ̂(X1, . . . , Xn)) =

n∑
i=1

i2 Var(Xi)(
n∑
i=1

i2

)2 =

n∑
i=1

i2(
n∑
i=1

i2

)2 =
1
n∑
i=1

i2
.

(c) The Cramér-Rao lower bound for unbiased estimation of θ is[
Eθ
(
∂

∂θ
log f(X1, . . . , Xn|θ)

)2
]−1

=

[
n∑
i=1

Eθ
(
∂

∂θ
log f(Xi|θ)

)2
]−1

where

f(xi|θ) =
1√
2π

exp

{
−1

2
(xi − iθ)2

}
Now,

∂

∂θ
log f(xi|θ) = − ∂

∂θ

1

2
(xi − iθ)2 = i(xi − θ)

and so
n∑
i=1

Eθ
(
∂

∂θ
log f(Xi|θ)

)2

=
n∑
i=1

Eθ (i(Xi − θ))2 =
n∑
i=1

i2Eθ ((Xi − θ))2 =
n∑
i=1

i2 Varθ(Xi)

=
n∑
i=1

i2.

Hence, the Cramer-Rao lower bound is attained by the variance of θ̂(X1, . . . , Xn).
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3. (a) The joint density function of X1 and X2 is

f(x1, x2|θ) = Pθ(X1 = x1, X2 = x2) = Pθ(X1 = x1)Pθ(X2 = x2)

=
1

θ2
I(x1 ∈ {1, . . . , θ}, x2 ∈ {1, . . . , θ})

=
1

θ2
I(x1 ∈ N, x2 ∈ N, x1 ≤ θ, x2 ≤ θ)

=
1

θ2
I(x1 ∈ N, x2 ∈ N, max{x1, x2} ≤ θ).

Thus, by the factorization theorem, T is a sufficient statistic for θ.

(b) For t = 1, 2, . . . , θ, we find

Pθ(T ≤ t) = Pθ(max{X1, X2} ≤ t) = Pθ(X1 ≤ t,X2 ≤ t)

= Pθ(X1 ≤ t)Pθ(X2 ≤ t)

=

(
t

θ

)2

.

Thus,

Pθ(T = t) = Pθ(T ≤ t)− Pθ(T ≤ t− 1) =

(
t

θ

)2

−
(
t− 1

θ

)2

=
t2 − (t− 1)2

θ2
=

2t− 1

θ2

for t = 1, 2, . . . , θ.

(c) In order to show that the family of distributions of T is complete, we need to show that
Eθ[g(T )] = 0 for all θ implies that Pθ(g(T ) = 0) = 1 for all θ. Now

Eθ[g(T )] =
1

θ2

θ∑
t=1

g(t)(2t− 1)

so that Eθ[g(T )] = 0 for all θ implies that

θ∑
t=1

g(t)(2t− 1) = 0

for all θ. If θ = 1, then

0 =
θ∑
t=1

g(t)(2t− 1) =
1∑
t=1

g(t)(2t− 1) = g(1)(2− 1) = g(1).

If θ = 2, then

0 =
θ∑
t=1

g(t)(2t− 1) =
2∑
t=1

g(t)(2t− 1) = g(1)(2− 1) + g(2)(4− 1) = 3g(2)

since g(1) = 0. Continuing in this way shows that g(t) = 0 for all t = 1, 2, . . . so that
Pθ(g(T ) = 0) = 1 for all θ as required.
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(d) By the Rao-Blackwell theorem (Theorem 7.3.23), the (unique) MVUE of θ is a function
of T , say φ(T ), satisfying

θ = Eθ(φ(T )) =
θ∑
t=1

φ(t)Pθ(T = t).

In other words, φ satisfies

θ∑
t=1

φ(t)
(2t− 1)

θ2
= θ or, equivalently, θ3 =

θ∑
t=1

(2t− 1)φ(t)

for all θ = 1, 2, . . .. Using the hint, we find

θ∑
t=1

(3t2 − 3t+ 1) =
θ∑
t=1

(2t− 1)φ(t)

so that (3t2 − 3t+ 1) = (2t− 1)φ(t). Thus,

φ(T ) =
3T 2 − 3T + 1

2T − 1

is the MVUE of θ.

4. (a) If θ = Pλ(X1 ≤ 1), then

θ = Pλ(X1 = 0) + Pλ(X1 = 1) = e−λ(1 + λ).

Since the MLE of λ is

X =
1

n

n∑
i=1

Xi,

we conclude that the MLE of θ is

θ̂(X1, . . . , Xn) = e−X(1 +X).

(b) Since

T =
n∑
i=1

Xi ∼ Poisson(nλ)

and X = T/n, we can analyze

Eθ(θ̂(X1, . . . , Xn)) = Eθ(e−T/n(1 + T/n))

directly. That is,

Eθ(θ̂(X1, . . . , Xn)) = Eθ(e−T/n(1 + T/n)) =
∞∑
t=0

e−t/n(1 + t/n)
e−nλ(nλ)t

t!

=
∞∑
t=0

e−t/n
e−nλ(nλ)t

t!
+

1

n

∞∑
t=0

te−t/n
e−nλ(nλ)t

t!
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Now
∞∑
t=0

e−t/n
e−nλ(nλ)t

t!
= e−nλ exp{nλe−1/n}

and

1

n

∞∑
t=0

te−t/n
e−nλ(nλ)t

t!
=

1

n

∞∑
t=1

te−t/n
e−nλ(nλ)t

t!
=
e−nλ

n

∞∑
t=1

(nλe−1/n)t

(t− 1)!

=
e−nλ

n
(nλe−1/n)

∞∑
t=1

(nλe−1/n)t−1

(t− 1)!

= λe−nλe−1/n
∞∑
t=0

(nλe−1/n)t

t!

= λe−nλe−1/n exp{nλe−1/n}
= λe−nλ exp{nλe−1/n − 1/n}

so that

Eθ(θ̂(X1, . . . , Xn)) = e−nλ exp{nλe−1/n}+ λe−nλ exp{nλe−1/n − 1/n}
= e−nλ exp{nλe−1/n}

[
1 + λe−1/n

]
= exp{λ(ne−1/n − n)}

[
1 + λe−1/n

]
.

Hence, θ̂(X1, . . . , Xn) is not an unbiased estimator of θ. Note that

lim
n→∞

(ne−1/n − n) = lim
n→∞

n(e−1/n − 1) = lim
n→∞

n

[
1− 1

n
+O

(
1

n2

)
− 1

]
= −1

so that Eθ(θ̂(X1, . . . , Xn)) → e−λ(1 + λ) implying that θ̂(X1, . . . , Xn) is asymptotically an
unbiased estimator of θ.

(c) From the central limit theorem, we know that
√
n (X − λ)√

λ
→ N (0, 1)

in distribution as n→∞. Moreover, X → λ in probability as n→∞ since

Pλ(|X − λ| ≥ ε) ≤ Varλ(X)

ε2
=

λ

nε2

so that e−X(1 +X)→ e−λ(1 + λ) in probability as well. If we now let g(y) = (1 + y)e−y for
y > 0 so that g′(y) = −ye−y, then

√
n
(
e−X(1 +X)− e−λ(1 + λ)

)
√
λ · λe−λ

→ N (0, 1)

or, equivalently, √
n ( θ̂(X1, . . . , Xn)− θ )→ N (0, λ3e−2λ)

in distribution as n→∞.

5



5. The distribution of
1

n

n∑
i=1

Xi

is normal with mean θ and variance

σ2

n
+
n(n− 1)

n2
ρσ2 =

σ2(1− ρ)

n
+ ρσ2.

This means that the asymptotic distribution of

Xn =
1

n

n∑
i=1

Xi

is N (θ, ρσ2) with ρσ > 0. Hence,

lim
n→∞

Pθ

(∣∣∣∣ 1n
n∑
i=1

Xi − θ
∣∣∣∣ ≤ ε

)
=

1

σ
√

2πρ

∫ ε

−ε
e
− y2

2ρσ2 dy < 1

for all ε > 0. Since this limit does not equal 1 for all ε > 0, we conclude that {Xn} is not a
consistent sequence of estimators of θ.

6. Note that T = max{X1, . . . , Xn} is sufficient and complete for θ. Moreover, if 0 ≤ t ≤ θ,
then

Pθ(T ≤ t) =

(
t

θ

)n
so that

Eθ(T ) =
1

θn

∫ θ

0

t · ntn−1 dt =
n

n+ 1
θ

which implies that
n+ 1

n
T

is an unbiased estimator of θ. Now observe that Eθ(Xi) = θ/2 so that Eθ(X ) = θ/2.
Thus, 2X is also an unbiased estimator of θ. We know from the Rao-Blackwell theorem
(Theorem 7.3.17) that for any unbiased estimatorW (X1, . . . , Xn) of θ, the (unique) minimum
variance unbiased estimator of θ is

φ(T ) = E(W (X1, . . . , Xn) |T ).

If we set W = n+1
n
T , then

φ(T ) = E(W |T ) = E

(
n+ 1

n
T

∣∣∣∣T ) =
n+ 1

n
T.

If we set W = 2X, then

φ(T ) = E(W |T ) = E
(

2X |T
)

= 2E
(
X |T

)
.

Thus, equating these two expressions for φ(T ) implies that

2E
(
X |T

)
=
n+ 1

n
T and so E

(
X |T = t

)
=
n+ 1

2n
t

as required.
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