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Preface

Statistics 851 is the first graduate course in measure-theoretic probability at the University
of Regina. There are no formal prerequisites other than graduate student status, although
it is expected that students encountered basic probability concepts such as discrete and
continuous random variables at some point in their undergraduate careers. It is also expected
that students are familiar with some basic ideas of set theory including proof by induction
and countability.

The primary textbook for the course is [1] and references to chapter, theorem, and exercise
numbers are for that book. Lectures #1 and #9, however, are based on [2] which is one of
the supplemental course books.

These notes are for the exclusive use of students attending the Statistics 851 lectures and
may not be reproduced or retransmitted in any form.

Michael Kozdron
Regina, SK
January 2008
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Statistics 851 (Winter 2008) January 7, 2008
Prof. Michael Kozdron

Lecture #1: The Need for Measure Theory

Reference. Today’s notes and §1.1 of [2]

In order to study probability theory in a mathematically rigorous way, it is necessary to
learn the appropriate language which is “measure theory.”

Theoretical probability is used in a variety of diverse fields such as

• statistics,

• economics,

• management,

• finance,

• computer science,

• engineering,

• operations research.

More will be said about the applications as the course progresses.

For now, however, we will begin with some “easy” examples from undergraduate probability
(STAT 251/STAT 351).

Example. Let X be a Poisson(5) random variable. What does this mean?

Solution. It means that X takes on a “random” non-negative integer k (k ≥ 0) according
to the probability mass fuction

fX(k) := P{X = k} =
e−55k

k!
, k ≥ 0.

We can then compute things like the expected value of X2, i.e.,

E(X2) =
∞∑

k=0

k2P{X = k} =
∞∑

k=0

k2e−55k

k!
.

Note that X is an example of a discrete random variable.

Example. Let Y be a Normal(0, 1) random variable. What does this mean?
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Solution. It means that the probability that Y lies between two real numbers a and b (with
a ≤ b) is given by

P{a ≤ Y ≤ b} =

∫ b

a

1√
2π

e−y2/2 dy.

Of course, for any real number y, we have P{Y = y} = 0. (How come?) We say that the
probability density function for Y is

fY (y) =
1√
2π

e−y2/2, −∞ < y < ∞.

We can then compute things like the expected value of Y 2, i.e.,

E(Y 2) =

∫ ∞

−∞
y2 1√

2π
e−y2/2 dy.

Note that Y is an example of a (absolutely) continuous random variable.

Example. Introduce a new random variable Z as follows. Flip a fair coin (independently),
and set Z = X if it comes up heads and set Z = Y if it comes up tails. That is,

P{Z = X} = P{Z = Y } = 1/2.

What kind of random variable is Z?

Solution. We can formally define Z to be the random variable

Z = XW + Y (1−W )

where the random variable W satisfies

P{W = 1} = P{W = 0} = 1/2

and is independent of X and Y . Clearly Z is not discrete since it can take on uncountably
many values, and it is not absolutely continuous since P{Z = z} > 0 for certain values of z
(namely when z is a non-negative integer).

Question. How do we study Z? How could you compute things like E(Z2)? (Hint: If you
tried to compute E(Z2) using undergraduate probability then you would be conditioning on
an event of probability 0. That is not allowed.)

Answer. The distinction between discrete and absolutely continuous is artificial. Measure
theory gives a common definition to expected value which applies equally well to discrete
random variables (like X), absolutely continuous random variables (like Y ), combinations
(like Z), and ones not yet imagined.
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Statistics 851 (Winter 2008) January 9, 2008
Prof. Michael Kozdron

Lecture #2: Introduction

Reference. Chapter 1 pages 1–5

Intuitively, a probability is a measure of the likelihood of an event.

Example. There is a 60% chance of snow tomorrow:

P{snow tomorrow} = 0.60.

Example. There is a probability of 1/2 that this coin will land heads:

P{heads} = 0.50.

The method of assigning probabilities to events is a philosophical question.

• What does it mean for there to be a 60% chance of snow tomorrow?

• What does it mean for a fair coin to have a 50% chance of landing heads?

There are roughly two paradigms for assigning probabilities. One is the frequentist approach
and the other is the Bayesian approach.

The frequentist approach is based on repeated experimentation and long-run averages. If we
flip a coin many, many times, we expect to see a head about half the time. Therefore, we
conclude that the probability of heads on a single toss is 0.50.

In contrast, we cannot repeat “tomorrow.” There will only be one January 10, 2008. Either
it will snow or it will not. The weather forecaster can predict snow with probability 0.60
based on weather patterns, historical data, and intuition. This is a Bayesian, or subjectivist,
approach to assigning probabilities.

Instead of entering into a philosophical discussion, we will assume that we have a reasonable
way of assigning probabilities to events—either frequentist, Bayesian, or a combination of
the two.

Question. What are some properties that a probability must have?

Answer. Assign a number between 0 and 1 to each event.

• The impossible event will have probability 0.

• The certain event will have probability 1.

• All events will have probability between 0 and 1. That is, if A is an event, then
0 ≤ P{A} ≤ 1.
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However, an event is not the most basic outcome of an experiment. An event may be a
collection of outcomes.

Example. Roll a fair die. Let A be the event that an even number is rolled; that is,
A = {even number} = {2 or 4 or 6}. Intuitively, P{A} = 3/6.

Notation. Let Ω denote the set of all possible outcomes of an experiment. We call Ω the
sample space which is composed of all individual outcomes. These are labelled by ω so that
Ω = {ω ∈ Ω}.

Example. Model the experiment of rolling a fair die.

Solution. The sample space is Ω = {1, 2, 3, 4, 5, 6}. The individual outcomes ωi = i, i =
1, 2, . . . , 6, are all equally likely so that

P{ωi} =
1

6
.

Definition. An event is a collection of outcomes. Formally, an event A is a subset of the
sample space; that is, A ⊆ Ω.

Technical Matter. It will not be as easy as declaring all events as simply all possibly
subsets of Ω. (The set of all subsets of Ω is called the power set of Ω and denoted by 2Ω.) If
Ω is uncountable, then the power set will be too big!

Example. Model the experiment of flipping a fair coin. Include a list of all possible events.

Solution. The sample space is Ω = {H, T}. The list of all possible events is

∅, Ω, {H}, {T}.

Note that if we write A to denote the set of all possible events, then

A = {∅, Ω, {H}, {T}}

satisfies |A| = 2|Ω| = 22 = 4. Since the individual outcomes are each equally likely we can
assign probabilities to events as

P{∅} = 0, P{Ω} = 1, P{H} = P{T} =
1

2
.

Instead of worrying about this technical matter right now, we will first study countable
spaces. The collection A in the previous example has a special name.

Definition. A collection A of subsets Ai ⊆ Ω is called a σ-algebra if

(i) ∅ ∈ A,

(ii) Ω ∈ A,

(iii) A ∈ A implies Ac ∈ A, and
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(iv) A1, A2, A3, . . . ∈ A implies
∞⋃
i=1

Ai ∈ A.

Remark. Condition (iv) is called countable additivity.

Example. A = {∅, Ω} is a σ-algebra (called the trivial σ-algebra).

Example. For any subset A ⊂ Ω,

A = {∅, A,Ac, Ω}

is a σ-algebra.

Example. If Ω is any space (whether countable or uncountable), then the power set of Ω is
a σ-algebra.

Proposition. Suppose that A is a σ-algebra. If A1, A2, A3, . . . ∈ A, then

(v) A1 ∪ A2 ∪ · · · ∪ An ∈ A for every n < ∞, and

(vi)
∞⋂
i=1

Ai ∈ A.

Remark. Condition (v) is called finite additivity.

Proof. To show that finite additivity (v) follows from countable additivity simply take Ai,
i > n, to be ∅. That is,

A1 ∪ A2 ∪ · · · ∪ An ∪ ∅ ∪ ∅ ∪ · · · =
n⋃

i=1

Ai ∈ A

since A1, A2, . . . , An, ∅ ∈ A. Condition (vi) follows from De Morgan’s law (Exercise 2.3).
Suppose that A1, A2, . . . ∈ A so that Ac

1, A
c
2, . . . ∈ A by (iii). By countably additivity, we

have
∞⋃
i=1

Ac
i ∈ A.

Thus, by (iii) again we have [
∞⋃
i=1

Ac
i

]c

∈ A.

However, [
∞⋃
i=1

Ac
i

]c

=
∞⋂
i=1

[Ac
i ]

c =
∞⋂
i=1

Ai

which establishes (vi).
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Definition. A collection A of events satisfying (i), (ii), (iii), (v) (but not (iv)) is called an
algebra.

Remark. Some people say σ-field/field instead of σ-algebra/algebra.

Proposition. Suppose that A is a σ-algebra. If A1, A2, A3, . . . ∈ A, then

(vii) A1 ∩ A2 ∩ · · · ∩ An ∈ A for every n < ∞.

Proof. To show that this result follows from (vi) simply simply take Ai, i > n, to be Ω. That
is,

A1 ∩ A2 ∩ · · · ∩ An ∩ Ω ∩ Ω ∩ · · · =
n⋂

i=1

Ai ∈ A

since A1, A2, . . . , An, Ω ∈ A.

Definition. A probability (measure) is a set function P : A → [0, 1] satisfying

(i) P{∅} = 0, P{Ω} = 1, and 0 ≤ P{A} ≤ 1 for every A ∈ A, and

(ii) if A1, A2, . . . ∈ A are disjoint, then

P

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai}.

Definition. A probability space is a triple (Ω,A, P ) where Ω is a sample space, A is a
σ-algebra of subsets of Ω, and P is a probability measure.

Example. Consider the experiment of tossing a fair coin twice. In this case,

Ω = {HH,HT, TH, TT}

and A consists of the |A| = 2|Ω| = 24 = 16 elements

A =

{
∅, Ω, HH, HT, TH, TT, {HH,HT}, {HH,TH}, {HH,TT}, {HT, TH}, {HT, TT},

{TH, TT}, {HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT}
}

.

Example. Consider the experiment of rolling a fair die so that Ω = {1, 2, 3, 4, 5, 6}. In this
case, A consists of the 26 = 64 events

A = {∅, Ω, 1, 2, 3, 4, 5, 6, 12, 13, 14, 15, 16, 21, etc.} .

We can then define

P{A} =
|A|
6

for every A ∈ A. (∗)
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For instance, if A is the event {roll even number} = {2, 4, 6} and if B is the event {roll odd
number less than 4} = {1, 3}, then

P{A} =
3

6
and P{B} =

2

6
.

Furthermore, since A and B are disjoint (that is, A ∩B = ∅) we can use finite additivity to
conclude

P{A ∪B} = P{A}+ P{B} =
5

6
. (∗∗)

Since A ∪B = {1, 2, 3, 4, 6} ∈ A has cardinality |A ∪B| = 5, we see that from (∗) that

P{A ∪B} =
|A ∪B|

6
=

5

6

which is consistent with (∗∗).
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Lecture #3: Axioms of Probability

Reference. Chapter 2 pages 7–11

Example. Construct a probability space to model the experiment of tossing a fair coin
twice.

Solution. We must carefully define (Ω,A, P ). Thus, we take our sample space to be

Ω = {HH,HT, TH, TT}

and our σ-algebra A consists of the |A| = 2|Ω| = 24 = 16 elements

A =

{
∅, Ω, HH, HT, TH, TT, {HH,HT}, {HH,TH}, {HH,TT}, {HT, TH}, {HT, TT},

{TH, TT}, {HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT}, {HT, TH, TT}
}

.

In general, if Ω is finite, then the power set A = 2Ω (i.e., the set of all subsets of Ω) is a
σ-algebra with |A| = 2|Ω|. We take as our probability a set function P : A → [0, 1] satisfying
certain conditions. Thus,

P{∅} = 0, P{Ω} = 1,

P{HH} = P{TT} = P{HT} = P{TH} =
1

4
,

P{HH,HT} = P{HH,TH} = P{HH,TT} = P{HT, TH} = P{HT, TT} = P{TH, TT} =
1

2
,

P{HH,HT, TH} = P{HH,HT, TT} = P{HH,TH, TT} = P{HT, TH, TT} =
3

4
.

That is, if A ∈ A, let

P{A} =
|A|
4

.

Random Variables

Definition. A function X : Ω → R given by ω 7→ X(ω) is called a random variable.

Remark. A random variable is NOT a variable in the algebraic sense. It is a function in
the calculus sense.

Remark. When Ω is more complicated than just a finite sample space we will need to be
more careful with this definition. For now, however, it will be fine.
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Example. Consider the experiment of tossing a fair coin twice. Let the random variable
X denote the number of heads. In order to define the function X : Ω → R we must define
X(ω) for every ω ∈ Ω. Thus,

X(HH) = 2, X(HT ) = 1, X(TH) = 1, X(TT ) = 0.

Note. Every random variable X on a probability space (Ω,A, P ) induces a probability
measure on R which is denoted PX and called the law (or distribution) of X. It is defined
for every B ∈ B by

PX(B) := P{ω ∈ Ω : X(ω) ∈ B} = P{X ∈ B} = P{X−1(B)}.

In other words, the random variable X transforms the probability space (Ω,A, P ) into the
probability space (R,B, PX):

(Ω,A, P )
X−→ (R,B, PX).

The σ-algebra B is called the Borel σ-algebra on R. We will discuss this in detail shortly.

Example. Toss a coin twice and let X denote the number of heads observed. The law of X
is defined by

PX(B) =
#(i, j) such that 1{i = H}+ 1{j = H} ∈ B

4

where 1 denotes the indicator function (defined below). For instance,

PX({2}) = P{ω ∈ Ω : X(ω) = 2} = P{X = 2} = P{HH} =
1

4
,

PX({1}) = P{X = 1} = P{HT, TH} =
1

2
,

PX({0}) = P{X = 0} = P{TT} =
1

4
,

and

PX

([
−1

2
,
3

2

])
= P

{
ω ∈ Ω : X(ω) ∈

[
−1

2
,
3

2

]}
= P

{
−1

2
≤ X ≤ 3

2

}
= P{X = 0 or X = 1}

= P{TT, HT, TH} =
3

4
.

Later we will see how PX will be related to FX , the distribution function of X.

Notation. The indicator function of the event A is defined by

1A(x) = 1{x ∈ A} =

{
1, if x ∈ A,

0, if x 6∈ A.

Note. On page 5, it should read: “(for example, PX({2}) = P ({1, 1}) = 1
36

. . .”
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Definition. If C ⊆ 2Ω, then the σ-algebra generated by C is the smallest σ-algebra containing
C. It is denoted by σ(C).

Note. By Exercise 2.1, the power set 2Ω is a σ-algebra. By Exercise 2.2, the intersection of
σ-algebras is itself a σ-algebra. Therefore, σ(C) always exists and

C ⊆ σ(C) ⊆ 2Ω.

Definition. The Borel σ-algebra on R, written B, is the σ-algebra generated by the open
sets. (Equivalently, B is generated by the closed sets.) That is, if C denotes the collection of
all open sets in R, then B = σ(C).

In fact, to understand B it is enough to consider intervals of the form (−∞, a] as the next
theorem shows.

Theorem. The Borel σ-algebra B is generated by intervals of the form (−∞, a] where a ∈ Q
is a rational number.

Proof. Let C denote the collection of all open intervals. Since every open set in R is a
countable union of open intervals, we must have σ(C) = B. Let D denote the collection of
all intervals of the form (−∞, a], a ∈ Q. Let (a, b) ∈ C for some b > a with b ∈ Q. Let

an = a +
1

n

so that an ↓ a as n →∞, and let

bn = b +
1

n
so that bn ↑ b as n →∞. Thus,

(a, b) =
∞⋃

n=1

(an, bn] =
∞⋃

n=1

{(−∞, bn] ∩ (−∞, an]c}

which implies that (a, b) ∈ σ(D). That is, C ⊆ σ(D) so that σ(C) ⊆ σ(D). However, every
element of D is a closed set which implies that

σ(D) ⊆ B.

This gives the chain of containments

B = σ(C) ⊆ σ(D) ⊆ B

and so σ(D) = B proving the theorem.

Remark. Exercises 2.9, 2.10, 2.11, 2.12 can be proved using Definition 2.3. For instance,
since A∪Ac = Ω and A∩Ac = ∅, we can use use countable additivity (axiom 2) to conclude

P{Ω} = P{A ∪ Ac} = P{A}+ P{Ac}.

We now use axiom 1, the fact that P{Ω} = 1, to find

1 = P{A}+ P{Ac} and so P{Ac} = 1− P{A}.
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Proposition. If A ⊆ B, then P{A} ≤ P{B}.

Proof. We write
B = (A ∩B) ∪ (Ac ∩B) = A ∪ (Ac ∩B)

and note that
(A ∩B) ∩ (Ac ∩B) = ∅.

Thus, by countable additivity (axiom 2) we conclude

P{B} = P{A}+ P{Ac ∩B} ≥ P{A}

using the fact that 0 ≤ P{A} ≤ 1 for every event A.
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Lecture #4: Definition of Probability Measure

Reference. Chapter 2 pages 7–11

We begin with the axiomatic definition of a probability measure.

Definition. Let Ω be a sample space and let A be a σ-algebra of subsets of Ω. A set function
P : A → [0, 1] is called a probability measure on A if

(1) P{Ω} = 1, and

(2) if A1, A2, . . . ∈ A are pairwise disjoint, then

P

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai}.

Note that this definition is slightly different than the one given in Lecture #2. The axioms
given in the definition are actually the minimal axioms one needs to assume about P . Every
other fact about P can (and must) be proved from these two.

Theorem. If P : A → [0, 1] is a probability measure, then P{∅} = 0.

Proof. Let A1 = Ω, A2 = ∅, A3 = ∅, . . . and note that this sequence is pairwise disjoint.
Thus, we have

P

{
∞⋃

n=1

An

}
= P{Ω ∪ ∅ ∪ ∅ ∪ · · · } = P{Ω} = 1

where the last equality follows from axiom 1. However, by axiom 2 we have

P

{
∞⋃

n=1

An

}
=

∞∑
n=1

P{An} = P{Ω}+ P{∅}+ P{∅}+ P{∅}+ · · · = P{Ω}+
∞∑

n=2

P{∅}.

This implies that

1 = 1 +
∞∑

n=2

P{∅} or
∞∑

n=2

P{∅} = 0.

However, since P{A} ≥ 0 for every A ∈ A, we see that the only way for a countable sum of
constants to equal 0 is if each of them equals zero. Thus, P{∅} = 0 as required.

In general, countable additivity implies finite additivity as the next theorem shows. Exer-
cise 2.17 shows the converse is not true; this is discussed in more detail below.
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Theorem. If A1, A2, . . . , An is a finite collection of pairwise disjoint elements of A, then

P

{
n⋃

i=1

Ai

}
=

n∑
i=1

P{Ai}.

Proof. For m > n, let Am = ∅. Therefore, we find

P

{
∞⋃

m=1

Am

}
= P{A1 ∪ A2 ∪ · · · ∪ An ∪ ∅ ∪ ∅ ∪ · · · }

=
∞∑

m=1

P{Am} by axiom 2

= P{A1}+ P{A2}+ · · ·+ P{An}+ P{∅}+ P{∅} · · ·

=
n∑

m=1

P{Am} since P{∅} = 0.

That is, we’ve shown that

P

{
n⋃

m=1

Am

}
=

n∑
m=1

P{Am}

as required.

Remark. Exercise 2.9 asks you to show that P{A∪B} = P{A}+P{B} if A∩B = ∅. This
fact follows immediately from this theorem.

Remark. For Exercises 2.10 and 2.12, it might be easier to do Exercise 2.12 first and show
this implies Exercise 2.10.

Remark. Venn diagrams are useful for intuition. However, they are not a substitute for a
careful proof. For instance, to show that (A∪B)c = Ac ∩Bc we show the two containments

(i) (A ∪B)c ⊆ Ac ∩Bc, and

(ii) Ac ∩Bc ⊆ (A ∪B)c.

The way to show (i) is to let x ∈ (A∪B)c be arbitrary. Use facts about unions, complements,
and intersections to deduce that x must then be in Ac ∩Bc.

Remark. Exercise 2.17 shows that finite additivity does not imply countable additivity. Use
the algebra defined in Exercise 2.17, but give an example of a sample space Ω for which the
algebra of finite sets or sets with finite complement is not a σ-algebra.
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Conditional Probability and Independence

Reference. Chapter 3 pages 15–16

Definition. Events A and B are said to be independent if

P{A and B} = P{A} · P{B}.

A collection (Ai)i∈I is an independent collection if every finite subset J of I satisfies

P

{⋂
i∈J

Ai

}
=
∏
i∈J

P{Ai}.

We often say that (Ai) are mutually independent.

Example. Let Ω = {1, 2, 3, 4} and let A = 2Ω. Define the probability P : A → [0, 1] by

P{A} =
|A|
4

, A ∈ A.

In particular,

P{1} = P{2} = P{3} = P{4} =
1

4
.

Let A = {1, 2}, B = {1, 3}, and C = {2, 3}.

• Since

P{A ∩B} = P{1} =
1

4
=

1

2
· 1

2
= P{A} · P{B}

we conclude that A and B are independent.

• Since

P{A ∩ C} = P{2} =
1

4
=

1

2
· 1

2
= P{A} · P{C}

we conclude that A and C are independent.

• Since

P{B ∩ C} = P{3} =
1

4
=

1

2
· 1

2
= P{B} · P{C}

we conclude that B and C are independent.

However,
P{A ∩B ∩ C} = P{∅} = 0 6= P{A} · P{B} · P{C}

so that A, B, C are NOT independent. Thus, we see that the events A, B, C are pairwise
independent but not mutually independent.

Notation. We often use independent as synonymous with mutually independent.
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Definition. Let A and B be events with P{B} > 0. The conditional probability of A given
B is defined by

P{A|B} =
P{A ∩B}

P{B}
.

Theorem. Let P : A → [0, 1] be a probability and let A, B ∈ A be events.

(a) If P{B} > 0, then A and B are independent if and only if P{A|B} = P{A}.

(b) If P{B} > 0, then the operation A 7→ P{A|B} from A to [0, 1] defines a new probability
measure on A called the conditional probability measure given B.

Proof. To prove (a) we must show both containments. Assume first that A and B are
independent. Then by definition,

P{A ∩B} = P{A} · P{B}.

But also by definition we have

P{A|B} =
P{A ∩B}

P{B}
.

Thus, substituting the first expression into the second gives

P{A|B} =
P{A} · P{B}

P{B}
= P{A}

as required. Conversely, suppose that P{A|B} = P{A}. By definition,

P{A|B} =
P{A ∩B}

P{B}

which implies that

P{A} =
P{A ∩B}

P{B}
and so P{A ∩B} = P{A} · P{B}. Thus, A and B are independent.

To show (b), define the set function Q : A → [0, 1] by setting Q{A} = P{A|B}. In order to
show that Q is a probability measure, we must check both axioms. Since Ω ∈ A, we have

Q{Ω} = P{Ω|B} =
P{Ω ∩B}

P{B}
=

P{B}
P{B}

= 1.

If A1, A2, . . . ∈ A are pairwise disjoint, then

Q

{
∞⋃
i=1

Ai

}
= P

{
∞⋃
i=1

Ai

∣∣∣∣B
}

=
P {(

⋃∞
i=1 Ai) ∩B}
P{B}

=
P {
⋃∞

i=1(Ai ∩B)}
P{B}

.
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However, since the (Ai) are pairwise disjoint, so too are the (Ai ∩B). Thus, by axiom 2,

P

{
∞⋃
i=1

(Ai ∩B)

}
=

∞∑
i=1

P{Ai ∩B} =
∞∑
i=1

P{Ai|B}P{B}

which implies that

Q

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai|B} =
∞∑
i=1

Q{Ai}

as required.

As noted earlier, finite additivity of P does not, in general, imply countable additivity of P
(axiom 2). However, the following theorem gives us some conditions under which they are
equivalent.

Theorem. Let A be a σ-algebra and suppose that P : A → [0, 1] is a set function satisfying

(1) P{Ω} = 1, and

(2) if A1, A2, . . . , An ∈ A are pairwise disjoint, then

P

{
n⋃

i=1

Ai

}
=

n∑
i=1

P{Ai}.

Then, the following are equivalent.

(i) countable additivity: If A1, A2, . . . ∈ A are pairwise disjoint, then

P

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai}.

(ii) If An ∈ A with An ↓ ∅, then P{An} ↓ 0.

(iii) If An ∈ A with An ↓ A, then P{An} ↓ P{A}.

(iv) If An ∈ A with An ↑ Ω, then P{An} ↑ 1.

(v) If An ∈ A with An ↑ A, then P{An} ↑ P{A}.

Notation. The notation An ↑ A means

An ⊆ An+1 for all n and
∞⋃

n=1

An = A

(i.e., grow out and stop at A), and the notation An ↓ A means

An ⊇ An+1 for all n and
∞⋂

n=1

An = A

(i.e., shrink in and stop at A).
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Lecture #5: Conditional Probability

Reference. Chapter 3 pages 15–18

Definition. A collection of events (En) is called a partition (of Ω) if En ∈ A with P{En} > 0
for all n, the events (En) are pairwise disjoint, and⋃

n

En = Ω.

Remark. Banach and Tarski showed that if one assumes the Axiom of Choice (as it is
throughout conventional mathematics), then given any two bounded subsets A and B of R3

(each with non-empty interior) it is possible to partition A into n pieces and B into n pieces,
i.e.,

A =
n⋃

i=1

Ai and B =
n⋃

i=1

Bi,

in such a way that Ai is Euclid-congruent to Bi for each i. That is, we can disassemble A
and rebuild it as B!

Theorem (Partition Theorem). If (En) partition Ω and A ∈ A, then

P{A} =
∑

n

P{A|En}P{En}.

Proof. Notice that

A = A ∩ Ω = A ∩

(⋃
n

En

)
=
⋃
n

(A ∩ En)

since (En) partition Ω. Since the (En) are disjoint, so too are the (A ∩ En). Therefore, by
axiom 2 of the definition of probability, we find

P{A} = P

{⋃
n

(A ∩ En)

}
=
∑

n

P{A ∩ En}.

By the definition of conditional probability, P{A ∩ En} = P{A|En}P{En} and so

P{A} =
∑

n

P{A|En}P{En}

as required.
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“Easy” Bayes’ Theorem

Since A ∩ B = B ∩ A we see that P{A ∩ B} = P{B ∩ A} and so by the definition of
conditional probability

P{A|B}P{B} = P{B|A}P{A}.

Solving gives

P{B|A} =
P{A|B}P{B}

P{A}
.

“Medium” Bayes’ Theorem

If P{B} ∈ (0, 1), then since (B, Bc) partition Ω, we can use the partition theorem to conclude

P{A} = P{A|B}P{B}+ P{A|Bc}P{Bc}

and so

P{B|A} =
P{A|B}P{B}

P{A|B}P{B}+ P{A|Bc}P{Bc}
.

“Hard” Bayes’ Theorem

Theorem (Bayes’ Theorem). If (En) partition Ω and A ∈ A with P{A} > 0, then

P{Ej|A} =
P{A|Ej}P{Ej}∑

n

P{A|En}P{En}
.

Proof. As in the “easy” Bayes’ theorem, we have

P{Ej|A} =
P{A|Ej}P{Ej}

P{A}
.

By the partition equation, we have

P{A} =
∑

n

P{A|En}P{En}

and so combining these two equations proves the theorem.

The following exercise illustrates the use of Bayes’ theorem.

Exercise. Approximately 1/125 of all births are fraternal twins and 1/300 of births are
identical twins. Elvis Presley had a twin brother (who died at birth). What is the probability
that Elvis was an identical twin? (You may approximate the probability of a boy or a girl
as 1/2.)
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Theorem. If A1, A2, . . . , An ∈ A and P{A1 ∩ A2 ∩ · · · ∩ An−1} > 0, then

P{A1 ∩ · · · ∩ An} = P{A1}P{A2|A1}P{A3|A1 ∩ A2} · · ·P{An|A1 ∩ · · · ∩ An−1}. (∗)

Proof. This result follows by induction on n. For n = 1 it is a tautology and for n = 2 we
have

P{A1 ∩ A2} = P{A1}P{A2|A1}

by the definition of conditional probability. For general k suppose that (∗) holds. We will
show that it must hold for k + 1. Let B = A1 ∩ A2 ∩ · · · ∩ Ak so that

P{Ak+1 ∩B} = P{B}P{Ak+1|B}.

By the inductive hypothesis, we have assumed that

P{B} = P{A1}P{A2|A1}P{A3|A1 ∩ A2} · · ·P{Ak|A1 ∩ · · · ∩ Ak−1}.

Substituting in for B and P{B} gives the result.

Remark. We have finished with Chapters 1, 2, 3. Read through these chapters, especially
the proof of Theorem 2.3.

Probability on a Countable Space

Reference. Chapter 4 pages 21–25

Definition. A space Ω is finite if for some natural number N < ∞, the elements of Ω can
be written

Ω = {ω1, ω2, . . . , ωN}.

We write |Ω| = #(Ω) = N for the cardinality of Ω.

Fact. If Ω is finite, then the power set of Ω, written 2Ω, is a finite σ-algebra with cardinality
2|Ω|.

Definition. A space Ω is countable if its elements can be put into a one-to-one correspon-
dence with N, the set of natural numbers.

Example. The following sets are all countable:

• the natural numbers, N = {1, 2, 3, . . .},

• the non-negative integers, Z+ = {0, 1, 2, 3, . . .},

• the integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, and

• the rational numbers, Q = {p/q : p, q ∈ Z, q 6= 0}.

The cardinality of a countable set is defined as ℵ0 and pronounced aleph-nought.
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With countable sets “funny things” can happen such as the following example shows.

Example. Although the even numbers are a strict subset of the natural numbers, there are
the “same” number of evens as naturals! That is, they both have cardinality ℵ0 since the
set of even numbers can be put into a one-to-one correspondence with the natural numbers:

1 2 3 4 etc.
l l l l
2 4 6 8

Definition. A space which is neither countable nor finite is called uncountable.

Example. The space R is uncountable, the interval [0, 1] is uncountable, and the irrational
numbers are uncountable.

Fact. Exercise 2.1 can be modified to show that the power set of any space (whether finite,
countable, or uncountable) is a σ-algebra.

Our goal now is to define probability measures on countable spaces Ω. That is, we have
Ω = {ω1, ω2, . . .} and the σ-algebra 2Ω.

To define P we need to define P{A} for all A ∈ A. It is enough to specify P{ω} for all
ω ∈ Ω instead. (We will prove this.) We must also ensure that

∑
ω∈Ω

P{ω} =
∞∑
i=1

P{ωi} = 1.

Definition. We often say that P is supported on Ω′ ⊆ Ω is P{ω} > 0 for every ω ∈ Ω′, and
we call these elements of Ω′ the atoms of P .

Example. Let Ω = {1, 2, 3, . . .} and let

P{2} =
1

3
, P{17} =

5

9
, P{851} =

1

9
,

and P{ω} = 0 for all other ω. The support of P is Ω′ = {2, 17, 851} and the atoms of P are
2, 17, 851.

Example. The Poisson distribution with parameter λ > 0 is the probability defined on Z+

by

P{n} =
e−λλn

n!
, n = 0, 1, 2, . . . .

Note that P{n} > 0 for all n ∈ Z+ so that the support of P is Z+. Furthermore,

∞∑
n=0

P{n} =
∞∑

n=0

e−λλn

n!
= e−λ

∞∑
n=0

λn

n!
= e−λeλ = 1.
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Example. The geometric distribution with parameter α, 0 ≤ α < 1, is the probability
defined on Z+ by

P{n} = (1− α)αn, n = 0, 1, 2, . . . .

By convention, we take 00 = 1. Note that if α = 0, then P{0} = 1 and P{n} = 0 for all
n = 1, 2, . . .. Furthermore,

∞∑
n=0

P{n} = P{0} = 1.

If α 6= 0, then P{n} > 0 for all n ∈ Z+. We also have

∞∑
n=0

P{n} =
∞∑

n=0

(1− α)αn = (1− α)
∞∑

n=0

αn = (1− α) · 1

1− α
= 1.

Theorem. (a) A probability P on a finite or countable set Ω is characterized by P{ω}, its
value on the atoms.

(b) Let (pω), ω ∈ Ω, be a family of real numbers indexed by Ω (either finite or countable).
There exists a unique probability P such that P{ω} = pω if and only if pω ≥ 0 and∑

ω∈Ω

pω = 1.
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Lecture #6: Probability on a Countable Space

Reference. Chapter 4 pages 21–24

We begin with the proof of the theorem given at the end of last lecture.

Theorem. (a) A probability P on a finite or countable set Ω is characterized by P{ω}, its
value on the atoms.

(b) Let (pω), ω ∈ Ω, be a family of real numbers indexed by Ω (either finite or countable).
There exists a unique probability P such that P{ω} = pω if and only if pω ≥ 0 and∑

ω∈Ω

pω = 1.

Proof. (a) Let A ∈ A. We can then write

A =
⋃
ω∈A

{ω}

which is a disjoint union of at most countably many elements. Therefore, by axiom 2 we
have

P{A} = P

{⋃
ω∈A

{ω}

}
=
∑
ω∈A

P{ω}.

Hence, to compute the probability of any event A ∈ A it is sufficient to know P{ω} for every
atom ω.

(b) Suppose that P{ω} = pω. Since P is a probability, we have by definition that pω ≥ 0
and

1 = P{Ω} = P

{⋃
ω∈Ω

{ω}

}
=
∑
ω∈Ω

P{ω} =
∑
ω∈Ω

pω.

Conversely, suppose that (pω), ω ∈ Ω, are given, and that pω ≥ 0 and∑
ω∈Ω

pω = 1.

Define the function P{ω} = pω for every ω ∈ Ω and define

P{A} =
∑
ω∈A

pω

for every A ∈ A. By convention, the “empty” sum equals zero; that is,∑
ω∈∅

pω = 0.
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Now all we need to do is check that P : A → [0, 1] satisfies the definition of probability.
Since

P{Ω} =
∑
ω∈Ω

pω = 1

by assumption, and since countable additivity follows from∑
i∈I

∑
ω∈Ai

pω =
∑

ω∈
S

i∈I Ai

pω

if (Ai) are pairwise disjoint, the proof is complete.

Example. Since
∞∑

n=1

1

n2
=

π2

6

we can define a probability measure on N by setting

P{k} =
6

π2k2

for k = 1, 2, 3, . . ..

Example. A probability P on a finite set Ω is called uniform if P{ω} = pω does not depend
on ω. That is, if

P{ω} =
1

|Ω|
=

1

#(Ω)
.

For A ∈ A, let

P{A} =
|A|
|Ω|

=
#(A)

#(Ω)
.

Example. Fix a natural number N and let Ω = {0, 1, 2, . . . , N}. Let p be a real number
with 0 < p < 1. The binomial distribution with parameter p is the probability P defined on
(the power set of) Ω by

P{k} =

(
N

k

)
pk(1− p)N−k, k = 0, 1, . . . , N

where (
N

k

)
=

N !

k!(N − k)!
= NCk.

Remark. Jacod and Protter choose to introduce the hypergeometric and binomial distribu-
tions in Chapter 4 via random variables. We will wait until Chapter 5 for this approach.
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Random Variables on a Countable Space

Reference. Chapter 5 pages 27–32

Let (Ω,A, P ) be a probability space. Recall that this means that Ω is a space of outcomes
(also called the sample space), A is a σ-algebra of subsets of Ω (see Definition 2.1), and
P : A → [0, 1] is a probability measure on A (see Definition 2.3).

As we have already seen, care needs to be shown when dealing with “infinities.” In particular,
A must be closed under countable unions and P is countably additive.

Assume for the rest of this lecture that Ω is either finite or countable. As such, unless
otherwise noted, we can consider A = 2Ω as our underlying σ-algebra.

Definition. A random variable is a function X : Ω → R given by ω 7→ X(ω).

Note. A random variable is not a variable in the high-school or calculus sense. It is a
function.

• In calculus, we study the function f : R → R given by x 7→ f(x)

• In probability, we study the function X : Ω → R given by ω → X(ω).

Note. Since Ω is countable, every function X : Ω → R is a random variable. There will be
problems with this definition when Ω is uncountable.

Note. Since Ω is countable, the range of X, denoted X(Ω) = T ′, is also countable. This
notation might lead to a bit of confusion. A random variable defined on a countable space
Ω is a real-valued function although its range is a countable subset of R. The term that is
often used is codomain to describe the role of the target space (in this case R).

Definition. The law (or distribution) of X is the probability measure on (T ′, 2T ′) given by

PX{B} = P{ω : X(ω) ∈ B}, B ∈ 2T ′ .

Note that X transforms the probability space (Ω,A, P ) into the probability space (T ′, 2T ′ , PX).

Notation.
PX{B} = P{ω : X(ω) ∈ B} = P{X ∈ B} = P{X−1(B)}.

Notation. We write
P{ω} = pω and PX{j} = pX

j .

Since T ′ is countable, PX , the law of X, can be characterized by pX
j . That is,

PX{B} =
∑
j∈B

PX{j} =
∑
j∈B

pX
j .

However, we also have

pX
j =

∑
ω∈Ω:X(ω)=j

pω.
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That is,

P{X = j} =
∑

ω:X(ω)=j

P{ω}.

In undergraduate probability, we would say that the random variable X is discrete if T ′ is
either finite or countable, and we would call P{X = j}, j ∈ T ′, the probability mass function
of X.

Definition. We say that X is a NAME random variable if the law of X has the NAME
distribution.

Example. X is a Poisson random variable if PX is the Poisson distribution. Recall that
PX has a Poisson distribution if

PX{j} =
e−λλj

j!
, j = 0, 1, 2, . . . .

That is,

P{X = j} = PX{j} =
e−λλj

j!
.
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Lecture #7: Random Variables on a Countable Space

Reference. Chapter 5 pages 27–32

Suppose that Ω is a countable (or finite) space, and let (Ω,A, P ) be a probability space.

Let X : Ω → T be a random variable which means that X is a T -valued function on Ω. We
call T the state space (or range space or co-domain) and usually take T = R or T = Rn.
The range of X is defined to be

T ′ = X(Ω) = {t ∈ T : X(ω) = t for some ω ∈ Ω}.

In particular, since Ω is countable, so too is T ′.

As we saw last lecture, the random variable X transforms the probability space (Ω,A, P )
into a new probability space (T ′, 2T ′ , PX) where

PX(A) = P{ω ∈ Ω : X(ω) ∈ A} = P{X ∈ A} = P{X−1(A)}

is the law of X and characterized by

pX
j = P{X = j} =

∑
{ω:X(ω)=j}

P{ω}.

We often write P{ω} = pω.

One useful way to summarize a random variable is through its expected value.

Definition. Suppose that X is a random variable on a countable space Ω. The expected
value, or expectation, of X is defined to be

E(X) =
∑
ω∈Ω

X(ω)P{ω} =
∑
ω∈Ω

X(w)pω

provided the sum makes sense.

• If Ω is finite, then E(X) makes sense.

• If Ω is countable, then E(X) makes sense only if
∑

X(ω)pω is absolutely convergent.

• If Ω is countable and X ≥ 0, then E(X) makes sense but E(X) = +∞ is allowed.

Remark. This definition is given in the “modern” language. We prefer to use it in antici-
pation of later developments.

7–1



In undergraduate probability classes, you were told: If X is a discrete random variable, then

E(X) =
∑

j

jP{X = j}.

We will now show that these definitions are equivalent. Begin by writing

Ω =
⋃
j

{ω : X(ω) = j}

which represents the sample space Ω as a disjoint, countable union. This is a very, very
useful decomposition. Notice that we are really partitioning Ω according to range of X. A
less-useful decomposition is to partition Ω according to the domain of X, namely Ω itself.
That is, if we enumerate Ω as Ω = {ω1, ω2, . . .}, then

Ω =
⋃
j

{ωj}

is also a disjoint, countable union. We now find

E(X) =
∑
ω∈Ω

X(ω)pω =
∑

ω∈
S

j{ω:X(ω)=j}

X(ω)pω =
∑

j

∑
ω∈{X(ω)=j}

X(ω)pω =
∑

j

∑
ω∈{X(ω)=j}

jpω

=
∑

j

j
∑

ω∈{X(ω)=j}

pω

=
∑

j

jpX
j

=
∑

j

jP{X = j}

which shows that our modern usage agrees with our undergraduate usage.

Definition. Write L1 to denote the set of all real-valued random variables on (Ω,A, P ) with
finite expectation. That is,

L1 = L1(Ω,A, P ) = {X : (Ω,A, P ) → R : E(X) < ∞}.

Proposition. E is a linear operator on L1. That is, if X, Y ∈ L1 and α, β ∈ R, then

E(αX + βY ) = αE(X) + βE(Y ).

Proof. Using properties of summations, we find

E(αX + βY ) =
∑
ω∈Ω

(αX(ω) + βY (ω))pω = α
∑
ω∈Ω

X(ω)pω + β
∑
ω∈Ω

Y (ω)pω = αE(X) + βE(Y )

as required.

Remark. It follows from this result that if X, Y ∈ L1 and α, β ∈ R, then αX + βY ∈ L1.
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Proposition. If X, Y ∈ L1 with X ≤ Y , then E(X) ≤ E(Y ).

Proof. Using properties of summations, we find

E(X) =
∑
ω∈Ω

X(ω)pω ≤
∑
ω∈Ω

Y (ω)pω = E(Y )

as required.

Proposition. If A ∈ A and X(ω) = 1A(ω), then E(X) = P{A}.

Proof. Recall that

1A(ω) =

{
1, if ω ∈ A,

0, if ω 6∈ A.

Therefore,

E(X) =
∑
ω∈Ω

X(ω)pω =
∑
ω∈Ω

1A(ω)pω =
∑
ω∈A

1A(ω)pω +
∑
ω∈Ac

1A(ω)pω =
∑
ω∈A

pω = P{A}

as required.

Fact. Other facts about L1 include:

• L1 is a vector space,

• L1 is an inner product space with

(X,Y ) = 〈X, Y 〉 = E(XY ),

• L1 contains all bounded random variables (that is, X ≤ c implies E(X) ≤ c), and

• if X2 ∈ L1, then X ∈ L1.
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Lecture #8: Expectation of Random Variables on a Countable
Space

Reference. Chapter 5 pages 27–32

Recall that last lecture we defined the concept of expectation, or expected value, of a random
variable on a countable space.

Throughout this lecture, we will assume that Ω is a countable space and we will let (Ω,A, P )
be a probability space.

Definition. Suppose that X : Ω → R is a random variable. The expected value, or expecta-
tion, of X is defined to be

E(X) =
∑
ω∈Ω

X(ω)P{ω} =
∑
ω∈Ω

X(w)pω

provided the sum makes sense.

An important inequality involving expectation is given by the following theorem.

Theorem. Suppose that X : Ω → R is a random variable and h : R → [0,∞) is a non-
negative function. Then,

P{ω : h(X(ω)) ≥ a} ≤ E(h(X))

a

for any a > 0.

Proof. Let Y = h(X) and note that Y is also a random variable. Let a > 0 and define the
set A to be

A = Y −1([a,∞)) = {ω : h(X(ω)) ≥ a} = {h(X) ≥ a}.

Notice that h(X) ≥ a1A where

1A(ω) =

{
1, if h(X(ω)) ≥ a,

0, if h(X(ω)) < a.

Thus,
E(h(X)) ≥ E(a1A) = aE(1A) = aP{A},

or, in other words,

P{h(X) ≥ a} ≤ E(h(X))

a

as required.
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Corollary (Markov’s Inequality). If a > 0, then

P{|X| ≥ a} ≤ E(|X|)
a

.

Proof. Take h(x) = |x| in the previous theorem.

Corollary (Chebychev’s Inequality). If X2 is a random variable with finite expectation, then

(i) P{|X| ≥ a} ≤ E(X2)

a2
, and

(ii) P{|X − E(X)| ≥ a} ≤ σ2
X

a2

for any a > 0 where σ2
X = E(X − E(X))2 denotes the variance of X.

Proof. For (i), take h(x) = x2 and note that

P{|X| ≥ a} = P{X2 ≥ a2}.

For (ii), take Y = |X − E(X)| and note that

P{|X − E(X)| ≥ a} = P{Y ≥ a} = P{Y 2 ≥ a2}.

The results now follow from the previous theorem.

Also recall that if X is a discrete random variable, then we can express the expected value
of X as

E(X) =
∑

j

jP{X = j}.

This formula is often useful for calculations as the following examples show.

Example. Recall that X is a Poisson random variable with parameter λ > 0 if

P{X = j} = PX{j} =
e−λλj

j!
.

Compute E(X).

Solution. We find

E(X) =
∞∑

j=0

j · e−λλj

j!
= e−λ

∞∑
j=1

λj

(j − 1)!
= λe−λ

∞∑
j=1

λj−1

(j − 1)!
= λe−λ

∞∑
k=0

λk

k!
= λ.

Exercise. If X is a Poisson random variable with parameter λ > 0, compute E(X(X − 1)).
Use this result to determine E(X2).
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Example. The random variable X is Bernoulli with parameter α if

P{X = 1} = α and P{X = 0} = 1− α

for some 0 < α < 1. Compute E(X).

Solution. We find

E(X) =
1∑

j=0

jP{X = j} = 0 · P{X = 0}+ 1 · P{X = 1} = α.

Example. Fix a natural number N and let Ω = {0, 1, 2, . . . , N}. Let p be a real number
with 0 < p < 1. Recall that X is a Binomial random variable with parameter p if

P{X = k} =

(
N

k

)
pk(1− p)N−k, k = 0, 1, . . . , N

where (
N

k

)
=

N !

k!(N − k)!
.

Compute E(X).

Solution. It is a fact that X can be represented as X = Y1 + · · ·+ YN where Y1, Y2, . . . , YN

are independent Bernoulli random variables with parameter p. (We will prove this fact later
in the course.) Since E is a linear operator, we conclude

E(X) = E(Y1 + · · ·+ YN) = E(Y1) + · · ·+ E(YN) = p + · · ·+ p = Np.

(We will also need to be careful about the precise probability spaces on which each random
variable is defined in order to justify the calculation E(X) = Np.) Note that, once justified,
this calculation is much easier than attempting to compute

E(X) =
N∑

k=0

k ·
(

N

k

)
pk(1− p)N−k.

Example. Recall that X is a Geometric random variable if

P{X = j} = (1− α)αj, j = 0, 1, 2, . . .

for some 0 ≤ α < 1. Compute E(X).

Solution. Note that if α = 0, then P{X = 0} = 1 in which case E(X) = 0. Therefore,
assume that 0 < α < 1. We find

E(X) =
∞∑

j=0

j(1− α)αj = (1− α)
∞∑

j=0

jαj = (1− α)
∞∑

j=1

jαj = α(1− α)
∞∑

j=1

jαj−1.

Notice that

jαj−1 =
d

dα
αj
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and so
∞∑

j=1

jαj−1 =
∞∑

j=1

d

dα
αj =

d

dα

∞∑
j=1

αj.

The last equality relies on the assumption that the sum and derivative can be interchanged.
(They can be, although we will not address this point here.) Also notice that

∞∑
j=1

αj =
∞∑

j=0

αj − 1 =
1

1− α
− 1 =

α

1− α

since it is a geometric series. Thus, we conclude

E(X) = α(1− α) · d

dα

α

1− α
= α(1− α) · 1

(1− α)2
=

α

1− α
.

Exercise. If X is a Geometric random variable, compute E(X2).

Remark. Note that Jacod and Protter also use

P{X = j} = α(1− α)j, j = 0, 1, 2, . . .

for some 0 ≤ α < 1 as the parametrization of a Geometric random variable. In this case, we
would find

E(X) =
1− α

α
.
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Lecture #9: A Non-Measurable Set

Reference. Today’s notes and §1.2 of [2]

We will begin our discussion of probability measures and random variables on uncountable
spaces with the construction of a non-measurable set. What does this mean?

Consider the uncountable sample space Ω = [0, 1]. Our goal is to construct the uniform
probability measure P : A → [0, 1] defined for all events A in some appropriate σ-algebra A
of subsets of Ω.

As we discussed earlier, 2Ω, the power set of Ω, is always a σ-algebra. The problem that
we will encounter is that this σ-algebra will be too big! In particular, we will be able to
construct sets A ∈ 2Ω such that P{A} cannot be defined in a consistent way.

We begin by recalling the definition of probability as given in Lecture #4.

Definition. Let Ω be a sample space and let A be a σ-algebra of subsets of Ω. A set function
P : A → [0, 1] is called a probability measure on A if

(1) P{Ω} = 1, and

(2) if A1, A2, . . . ∈ A are pairwise disjoint, then

P

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai}.

Suppose that P is (our candidate for) the uniform probability measure on ([0, 1], 2[0,1]). This
means that if a < b then

P{[a, b]} = P{(a, b)} = P{[a, b)} = P{(a, b]} = b− a.

In other words, the probability of any interval is just its length. In particular,

P{a} = 0 for every 0 ≤ a ≤ 1.

Furthermore, if 0 ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ 1, then

P

{
n⋃

i=1

|ai, bi|

}
=

∞∑
i=1

P{|ai, bi|} =
∞∑
i=1

(bi − ai)

where |a, b| means that either end could be open or closed. Although this is the statement
of countable additivity it should make sense to you intuitively. For instance, the probability
that you fall in the interval [0, 1/4] is 1/4, the probability that you fall in the interval
[1/3, 1/2] is 1/6, and the probability that you fall in either the interval [0, 1/4] or [1/3, 1/2]
should be 1/4 + 1/6 = 5/12. That is,

P{[0, 1/4] ∪ [1/3, 1/2]} = P{[0, 1/4]}+ P{[1/3, 1/2]} =
1

4
+

1

6
=

5

12
.
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Remark. The reason that we don’t allow uncountable additivity is the following. Begin by
writing

[0, 1] =
⋃

ω∈[0,1]

{ω}.

We therefore have

1 = P{[0, 1]} = P

 ⋃
ω∈[0,1]

{ω}

 .

If uncountable additivity were allowed, we would have

P

 ⋃
ω∈[0,1]

{ω}

 =
∑

ω∈[0,1]

P{ω} =
∑

ω∈[0,1]

0.

This would force
1 =

∑
ω∈[0,1]

0

and we really don’t want an uncountable sum of 0s to be 1!

If P is to be the uniform probability, then it should be unaffected by shifting. In particular,
it should only depend on the length of the interval and not the endpoints themselves. For
instance,

P{[0, 1/4]} = P{[3/4, 1]} = P{[1/6, 5/12]} =
1

4
.

We can write this (allowing for “wrapping around” as)

P{[0, 1/4]⊕ r} = P{[r, 1/4 + r]} =
1

4
for every r.

A A⊕ r

0 1 0 1
⊕r

Thus, it is reasonable to assume that

P{A⊕ r} = P{A}

where
A⊕ r = {a + r : a ∈ A, a + r ≤ 1} ∪ {a + r − 1 : a ∈ A, a + r > 1}.

To prove that no uniform probability measure exists for every A ∈ 2[0,1] we will derive a
contradiction. Suppose that there exists such as P .

Define an equivalence relation x ∼ y if y − x ∈ Q. For instance,

1

2
∼ 1

4
,

1

9
∼ 1

27
,

1

9
∼ 1

4
,

1

3
6∼ 1

π
,

1

e
6∼ 1

π
.
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This equivalence relationship partitions [0, 1] into a disjoint union of equivalence classes
(with two elements of the same class differing by a rational, but elements of different classes
differing by an irrational).

Let Q1 = [0, 1]∩Q, and note that there are uncountably many equivalence classes. Formally,
we can write this disjoint union as

[0, 1] = Q1 ∪

 ⋃
x∈[0,1]\Q1

{(Q1 + x) ∩ [0, 1]}

 .

Q1 Q1 + 1
π Q1 + 1

e Q1 + 1√
2

1
4

1
4 + 1√

2
1
4 + 1

e
1
4 + 1

π

1
8

1
8 + 1

π
1
8 + 1

e

1
8 + 1√

2 ETC.

Let H be the subset of [0, 1] consisting of precisely one element from each equivalence class.
(This step uses the Axiom of Choice.)

For definiteness, assume that 0 6∈ H. Therefore,

(0, 1] =
⋃

r∈Q1,r 6=1

{H ⊕ r}

with {H ⊕ ri} ∩ {H ⊕ rj} = ∅ for all i 6= j. This implies

P{(0, 1]} = P

{ ⋃
r∈Q1,r 6=1

{H ⊕ r}

}
=

∑
r∈Q1,r 6=1

P{H ⊕ r} =
∑

r∈Q1,r 6=1

P{H}.

In other words,

1 =
∑

r∈Q1,r 6=1

P{H}.

This is a contradiction since a countable sum of a constant value must be either 0, +∞, or
−∞. It can never be 1. Thus, P{H} does not exist.

We can summarize our work with the following theorem.

Theorem. Consider Ω = [0, 1] with A = 2Ω. There does not exist a definition of P{A} for
every A ∈ A satisfying

• P{∅} = 0, P{Ω} = 1,

• 0 ≤ P{A} ≤ 1 for every A ∈ A,

• P{|a, b|} = b− a for all 0 ≤ a ≤ b ≤ 1, and
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• if A1, A2, . . . ∈ A are pairwise disjoint, then

P

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai}.

Remark. The fact that there exists a A ∈ 2[0,1] such that P{A} does not exist means that
the σ-algebra 2[0,1] is simply too big! Instead, the “correct” σ-algebra to use is B1, the Borel
sets of [0, 1]. Later we will construct the uniform probability space ([0, 1],B1, P ).
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Lecture #10: Construction of a Probability Measure

Reference. Chapter 6 pages 35–38

Suppose that Ω is a sample space. It Ω is finite or countable, then we can construct the
probability space (Ω, 2Ω, P ) without much trouble. However, it is not so easy if Ω is un-
countable.

Problem. A “typical” probability on Ω will have

P{ω} = pω = 0

for all ω ∈ Ω. Hence, pω will NOT characterize P .

Problem. If Ω is uncountable, then, even though 2Ω is a σ-algebra, it will often be too
large. Thus, we will not be able to define P{A} for every A ∈ 2Ω.

Solution. Our solution to both these problems is the following. We will consider an algebra
A0 with σ(A0) = A.

We will define a function P : A0 → [0, 1] (although P will not necessarily be a probability)
and extend P : A → [0, 1] in a unique way (so that P is now a probability).

Remark. When Ω = R, then the structure of R can simplify some things. We will see
examples of this in Chaper 7.

Definition. A class C of subsets of Ω is closed under finite intersections if for every n < ∞
and for every A1, . . . , An ∈ C,

n⋂
i=1

Ai ∈ C.

Example. If Ω = {a, b, c, d} and

C = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} ,

then C is not a σ-algebra (or even an algebra), but it is closed under finite intersections.

Definition. A class C of subsets of Ω is closed under increasing limits if for every collection
A1, A2, . . . ∈ C with A1 ⊂ A2 ⊂ · · · , then

∞⋃
i=1

Ai ∈ C.

A1A2A3
∞⋃

i=1

Ai
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Definition. A class C of subsets of Ω is closed under finite differences if for every A, B ∈ C
with A ⊂ B, then B \ A ∈ C.

A

B

Theorem (Monotone Class Theorem). Let C be a class of subsets of Ω. Suppose that C
contains Ω (that is, Ω ∈ C) and is closed under finite intersections. Let D be the smallest
class containing C which is closed under increasing limits and finite differences. Then,

D = σ(C).

Example. As in the previous example, suppose that Ω = {a, b, c, d} and let

C = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

so that C is closed under finite intersections. Furthermore, C is also closed under increasing
limits and finite differences as a simple calculation shows. Therefore, ifD denotes the smallest
class containing C which is closed under increasing limits and finite differences, then clearly
D = C itself. However, C is not a σ-algebra; the conclusion of the Monotone Class Theorem
suggests that D = σ(C) which would force C to be a σ-algebra. This is not a contradiction
since the hypothesis that Ω ∈ C is not met. Suppose that

C ′ = C ∪ Ω.

Then C ′ is still closed under finite intersections. However, it is no longer closed under finite
differences. As a calculation shows, the smallest σ-algebra containing C ′ is now σ(C ′) = 2Ω.

Proof. We begin by noting that the intersection of classes of sets closed under increasing
limits and finite differences is again a class of that type. Hence, if we take the intersection
of all such classes, then there will be a smallest class containing C which is closed under
increasing limits and by finite differences. Denote this class by D. Also note that a σ-algebra
is necessarily closed under increasing limits and by finite differences. Thus, we conclude that
D ⊆ σ(C). To complete the proof we will show the reverse containment, namely σ(C) ⊆ D.

For every set B ⊆ Ω, let

DB = {A ⊆ Ω : A ∈ D and A ∩B ∈ D}.

Since D is closed under increasing limits and finite differences, a calculation shows that DB

must also closed under increasing limits and finite differences.

Since C is closed under finite intersections, C ⊆ DB for every B ∈ C. That is, suppose that
B ∈ C is fixed and let C ∈ C be arbitrary. Since C is closed under finite intersections, we
must have B ∩ C ∈ C. Since C ⊆ D, we conclude that B ∩ C ∈ D verifying that C ∈ DB
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for every B ∈ C. Note that by definition we have DB ⊆ D for every B ∈ C and so we have
shown

C ⊆ DB ⊆ D

for every B ∈ C. Since DB is closed under increasing limits and finite differences, we conclude
that D, the smallest class containing C closed under increasing limits and finite differences,
must be contained in DB for every B ∈ C. That is, D ⊆ DB for every B ∈ C. Taken together,
we are forced to conclude that D = DB for every B ∈ C.

Now suppose that A ∈ D is arbitrary. We will show that C ⊆ DA. If B ∈ C is arbitrary,
then the previous paragraph implies that D = DB. Thus, we conclude that A ∈ DB which
implies that A ∩ B ∈ D. It now follows that B ∈ DA. This shows that C ⊆ DA for every
A ∈ D as required. Since DA ⊆ D for every A ∈ D by definition, we have shown

C ⊆ DA ⊆ D

for every A ∈ D. The fact that D is the smallest class containing C which is closed under
increasing limits and finite differences forces us, using the same argument as above, to
conclude that D = DA for every A ∈ D.

Since D = DA for all A ∈ D, we conclude that D is closed under finite intersections.
Furthermore, Ω ∈ D and D is closed by finite differences which implies that D is closed
under complementation. Since D is also closed by increasing limits, we conclude that D is
a σ-algebra, and it is clearly the smallest σ-algebra containing C. Thus, σ(C) ⊆ D and the
proof that D = σ(C) is complete.

Corollary. Let A be a σ-algebra, and let P , Q be two probabilities on (Ω,A). Suppose that
P , Q agree on a class C ⊆ A which is closed under finite intersections. If σ(C) = A, then
P = Q.

Proof. Since A is a σ-algebra we know that Ω ∈ A. Since P{Ω} = Q{Ω} = 1 we can assume
without loss of generality that Ω ⊆ C. Define

D = {A ∈ A : P{A} = Q{A}}

to be the class on which P and Q agree (and note that ∅ ∈ D and Ω ∈ D so that D is
non-empty). By the definition of probability and Theorem 2.3, we see that D is closed by
differences and increasing limits. By assumption, we also have C ⊆ D. Therefore, since
σ(C) = A, we have D = A by the Monotone Class Theorem.

10–3



Statistics 851 (Winter 2008) January 30, 2008
Prof. Michael Kozdron

Lecture #11: Null Sets

Reference. Chapter 6 pages 35–38

Definition. Let P be a probability on A. A null set (or a negligible set) for P is a subset
A ⊆ Ω such that there exists a B ∈ A with A ⊆ B and P{B} = 0.

Note. Suppose that B ∈ A with P{B} = 0. Let A ⊆ B as shown below.

A

B

If A ∈ A, then we can conclude that P{A} = 0. However, if A 6∈ A, then P{A} does not
make sense.

In either case, A is a null set. Thus, it is natural to define P{A} = 0 for all null sets.

Theorem. Suppose that (Ω,A, P ) is a probability space so that P is a probability on the
σ-algebra A. Let N denote the set of all null sets for P . Let

A′ = A ∪N = {A ∪N : A ∈ A, N ∈ N}.

Then A′ is a σ-algebra, called the P -completion of A, and is the smallest σ-algebra containing
A and N . Furthermore, P extends uniquely to a probability on A′ (also called P ) by setting

P{A ∪N} = P{A}

for A ∈ A, N ∈ N .

Notation. We say that “Property B” holds almost surely if

P{ω : Property B does not hold} = 0,

i.e., if {ω : Property B does not hold} is a null set.

Construction of Probabilities on R

Reference. Chapter 7 pages 39–44

Recall that by a probability space (Ω,A, P ) we mean a triple where Ω is the sample space,
A is a σ-algebra of subsets of Ω, and P : A → [0, 1] is a probability measure.
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A random variable is a special kind of function from Ω to R. Schematically, we write

X : Ω → R
ω 7→ X(ω)

If Ω is finite or countable, then ANY function X : Ω → R is a random variable.

However, if Ω is uncountable, then there are functions which are NOT random variables.

Example. Suppose that Ω = [0, 1] and H ⊂ Ω is the non-measurable set constructed in
Lecture #9. The function X : Ω → R defined by

X(ω) = 1H{ω}

is not a random variable. (This fact will be proved later.)

Also recall that if Ω is finite or countable, then we take A = 2Ω as our σ-algebra.

However, if Ω is uncountable, then the σ-algebra 2Ω is too big. Thus, we must use a σ-algebra
B ( 2Ω.

If Ω ⊆ R and is uncountable, say Ω = [0, 1] or Ω = R, then the “correct” σ-algebra to use is
the Borel σ-algebra B. To emphasize the Borel sets of Ω we write B(Ω).

Recall that the Borel σ-algebra is generated by the open sets so that B = σ(O). For instance,
B([0, 1]) = σ(O) where O denotes the set of open subsets of [0, 1].

Fact. By Theorem 2.1, we know that B is generated by intervals of the form (−∞, a] for
a ∈ Q.

Suppose that X : Ω → R is a random variable. (This is not yet defined.) We have already
seen that X induces a probability measure on (R,B) denoted by PX where

PX{B} = P{ω : X(ω) ∈ B} = P{X ∈ B} = P{X−1(B)} for every B ∈ B

is called the law of X. Hence, we see that X transforms the probability space (Ω,A, P ) into
the probability space (R,B, PX):

X : (Ω,A, P ) → (R,B, PX).

Since the law of a random variable is always a probability measure on (R,B) (not yet proved)
we have good reason to study probabilities on R. This motivates Chapter 7.

Definition. Suppose that P is a probability measure on (R,B). The distribution function
induced by P is the function F : R → [0, 1] defined by

F (x) = P{(−∞, x]} for all x ∈ R.

Note. Since

(−∞, x] =
∞⋂

n=1

(
−∞, x + 1

n

)
is the countable intersection of open sets, we see that (−∞, x] ∈ B for every x ∈ R. Thus,
P{(−∞, x]} makes sense.
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Question. We see that each different probability P gives rise to a distribution function F
(i.e., P  F ). Is the converse true? That is, does P uniquely characterize F and vice-versa?

The answer is yes—knowledge of F uniquely determines P as the following theorem shows.

Theorem. The distribution function F induced by P characterizes P .

Proof. (Sketch) Suppose that we know F (x) for every x ∈ R. We then know

P{(−∞, x]}

for every x ∈ R. In particular, we know

P{(−∞, a]}

for every a ∈ Q. Since
{(−∞, a] : a ∈ Q}

generates B(R), we know P{B} for every B ∈ B.

Question. Can we tell which functions F : R → [0, 1] are distribution functions?

Theorem. A function F : R → [0, 1] is the distribution function of a unique probability
measure P on (R,B) if and only if

(i) F is non-decreasing, i.e., x < y implies F (x) ≤ F (y),

(ii) F is right-continuous, i.e., F (y) → F (x) as y → x+,

lim
y→x+

F (y) = lim
y↓x

F (y) = F (x),

(iii) F (x) → 1 as x →∞, i.e.,
lim

x→∞
F (x) = 1,

(iv) F (x) → 0 as x → −∞, i.e.,
lim

x→−∞
F (x) = 0.

Example. Suppose that α ∈ R and let

F (x) =

{
1, if x ≥ α,

0, if x < α.

Since F satisfies all the conditions of the theorem, F must be a distribution function. The
corresponding probability measure is

P{B} =

{
1, if α ∈ B,

0, if α 6∈ B,

for every B ∈ B. We call P the Dirac point mass at α.
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Lecture #12: Random Variables

Reference. Chapter 8 pages 47–50

Suppose that (Ω,A, P ) is a probability space and let X : Ω → R given by ω 7→ X(ω) be a
function.

Definition. We say that the function X : Ω → R is a random variable (or a measurable
function) if X−1(B) ∈ A for every B ∈ B where B denotes the Borel sets of R.

Remark. We use the phrases random variable and measurable function synonymously.
“Random variable” is preferred by probabilists while “measurable function” is preferred
by analysts.

Note. The motivation for the definition of random variable is the following. We want to be
able to compute

P{ω : X(ω) ∈ B} = P{X ∈ B} = P{X−1(B)}

for every B ∈ B. Therefore, we must have X−1(B) ∈ A in order for P{X−1(B)} to make
sense.

Remark. If Ω is either finite or countable, then every function X : (Ω, 2Ω) → (R,B) is
measurable. If Ω is uncountable, then the trouble begins!

Example. Suppose that (Ω,A, P ) is a probability space and let H 6∈ A so that H is not an
event. We saw an example of such a non-measurable H in Lecture #9. Define the function
X : Ω → R by setting

X(ω) = 1H{ω} =

{
1, if ω ∈ H,

0, if ω 6∈ H.

To prove that the function X is not a random variable, we must show that there exists a
Borel set B ∈ B for which X−1(B) 6∈ A. Let B = {1} which is clearly a closed set and
therefore Borel. We find

X−1({1}) = {ω : X(ω) = 1} = {ω : ω ∈ H} = H.

However, by assumption, H 6∈ A so that X−1({1}) 6∈ A. Thus, X is not a random variable.

Remark. Note that in order for the previous example to work we must have A ( 2Ω. In
the case of a discrete or countable Ω our standard choice of A = 2Ω makes such an example
impossible. It is, however, possible to construct a probability space on a discrete space Ω in
such a way that A 6= 2Ω. For instance, let Ω = {a, b, c, d} and take A = {∅, {a, b}, {c, d}, Ω}.
Set P{a, b} = P{c, d} = 1/2. If H = {a}, then H is not an event and X(ω) = 1H{ω} is not
a random variable. However, this example is both silly and contrived!
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Definition. If X : Ω → R is a random variable, then the law (or distribution) of X is the
probability measure on (R,B) given by

PX{B} = P{ω : X(ω) ∈ B} = P{X ∈ B} = P{X−1(B)}

for every B ∈ B.

Although we have referred to the fact that PX is a probability on (R,B), we have not yet
proved it!

Theorem. The law of a random variable X : (Ω,A, P ) → (R,B) is a probability measure
on (R,B).

Proof. In order to prove this result, we must verify the conditions of Definition 2.3 are met.
We begin by noting that B is, by definition, a σ-algebra on R. Since ∅ ∈ B, we have

PX{∅} = P{ω : X(ω) ∈ ∅} = P{∅} = 0

using the fact that ∅ ∈ A and P is a probability on (Ω,A). Suppose that B1, B2, . . . ∈ B is
a sequence of pairwise, disjoint sets. Therefore,

PX

{
∞⋃
i=1

Bi

}
= P

{
ω : X(ω) ∈

∞⋃
i=1

Bi

}
= P

{
ω : ω ∈

∞⋃
i=1

X−1(Bi)

}
= P

{
ω : ω ∈

∞⋃
i=1

Ai

}
where Ai = X−1(Bi). Since X is a random variable, we know that Ai ∈ A for each i =
1, 2, . . .. Moreover, A1, A2, . . . are pairwise disjoint. Thus, using the fact that A1, A2, . . . ∈ A
are pairwise disjoint and P is a probability on (Ω,A) gives

PX

{
∞⋃
i=1

Bi

}
= P

{
∞⋃
i=1

Ai

}
=

∞∑
i=1

P{Ai} =
∞∑
i=1

P{X−1(Bi)} =
∞∑
i=1

PX{Bi}

as required.

Since PX is a probability measure on (R,B) we can discuss the corresponding distribution
function.

Definition. If X : Ω → R is a random variable, then the distribution function of X, written
FX : R → [0, 1], is defined by

FX(x) = PX{(−∞, x]} = P{ω : X(ω) ≤ x} = P{X ≤ x}

for every x ∈ R.

Remark. By Theorem 7.1, distribution functions characterize probabilities on R. That is,
knowledge of one gives knowledge of the other:

X (random variable)! PX (law of X)! FX (distribution function of X)

Remark. In Jacod and Protter, things are proved in a bit more generality. A function
X : (E, E) → (F,F) is called measurable if X−1(B) ∈ E for every B ∈ F . A space E and
a σ-algebra E of subsets of E together are often called a measurable space. Technically, it is
only when we introduce probability measures onto (E, E) do measurable functions become
random variables.
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Summary of Important Objects

At this point, we have introduced all of the objects that are most important to modern
probability. It is worth memorizing each of the definitions.

• Ω, the sample space of outcomes ω ∈ Ω,

• A, a σ-algebra of subsets of Ω (Definition 2.1),

• P , a set function from A to [0, 1] (Definition 2.3),

• (Ω,A) is called a measurable space and (Ω,A, P ) is called a probability space,

• the real numbers R together with the Borel sets B is a measurable space (Theorem 2.1),

• X : Ω → R is a random variable (Definition 8.1),

• PX is the law of X (page 50),

• FX is the distribution function of X (Definition 7.1),

• (R,B, PX) is a probability space (Theorem 8.5).

It is important to know when a function of a random variable is again a random variable.
The following theorem gives the answer.

Theorem. Let X : Ω → R be a random variable and let f : R → R be measurable. If the
function f ◦X : Ω → R is defined by

f ◦X(ω) = f(X(ω)),

then f ◦X is a random variable.

Proof. To show that f ◦X is a random variable, we must show that

(f ◦X)−1(B) ∈ A

for every B ∈ B. Since f : R → R is measurable, we know that

f−1(B) ∈ B

for every B ∈ B. Since X : (Ω,A) → (R,B) is a random variable, we know that

X−1(B) ∈ A

for every B ∈ B. Since f−1(B) ∈ B, it must be the case that X−1(f−1(B)) ∈ A. Since

(f ◦X)−1(B) = X−1(f−1(B))

the proof is complete.
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The next theorem extends the example we considered at the beginning of this lecture.

Theorem. Suppose that (Ω,A, P ) is a probability space and A ⊆ Ω. The function 1A : Ω →
R given by

1A{ω} =

{
1, if ω ∈ A,

0, if ω 6∈ A,

is a random variable if and only if A ∈ A.

Proof. For B ⊆ R, we find

(1A)−1(B) =


∅, if 0 6∈ B, 1 6∈ B,

A, if 0 6∈ B, 1 ∈ B,

Ac, if 0 ∈ B, 1 6∈ B,

Ω, if 0 ∈ B, 1 ∈ B.

Thus, (1A)−1(B) ∈ A if and only if B ∈ B.
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Lecture #13: Random Variables

Reference. Chapter 8 pages 47–50

Theorem. Suppose that X : Ω → R is a function. X is a random variable if and only if
X−1(O) ∈ A for every open set O ∈ O.

Proof. We being by recalling that the Borel sets are the σ-algebra generated by the open
sets. That is, B = σ(O) where O = {open sets}. If X is a random variable, then since an
open set is necessarily a Borel set we have the forward implication X−1(O) ∈ A for every
open set O ∈ O. To show that converse, suppose that X−1(O) ∈ A for every open set
O ∈ O. We must now show that X−1(B) ∈ A for every Borel set B ∈ B. We leave it as an
exercise to verify that that the following set relations hold:

X−1

(⋃
n

Bn

)
=
⋃
n

X−1(Bn), X−1

(⋂
n

Bn

)
=
⋂
n

X−1(Bn), and X−1(Bc) =
[
X−1(B)

]c
.

Our strategy for the proof is the following. Let F = {B ∈ B : X−1(B) ∈ A}. We will
show that F = B. On the one hand, F ⊆ B by definition. On the other hand, since X−1

commutes with unions, intersections, and complements, we see that F is a σ-algebra. By
assumption O ⊆ F which implies that σ(O) ⊆ F since F is a σ-algebra. Since σ(O) = B
we conclude B ⊆ F . Thus, we have shown

B ⊆ F ⊆ B

which implies that B = F . In other words,

X−1(B) ⊆ σ(X−1(O)) ⊆ A

meaning that X−1(B) ∈ A for every B ∈ B.

Theorem. Suppose that X : Ω → R and Xn : Ω → R, n = 1, 2, . . . are functions.

(a) X is a random variable if and only if {X ≤ a} = X−1((−∞, a]) ∈ A for every a ∈ R
if and only if {X < a} ∈ A for every a ∈ R.

(b) If Xn, n = 1, 2, . . ., are each random variables, then

sup
n

Xn, inf
n

Xn, lim sup
n→∞

Xn, lim inf
n→∞

Xn

are also random variables.

(c) If Xn, n = 1, 2, . . ., are each random variables and Xn → X pointwise, then X is a
random variable.
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Proof. (a) By Theorem 2.1, we know that

σ({(−∞, a] : a ∈ R}) = B

and so the result follows from the previous theorem. Recall that we write

(−∞, a) =
∞⋃

n=1

(
−∞, a− 1

n

]
.

(b) Since Xn is a random variable, we see that {Xn ≤ a} = {Xn(ω) ∈ (−∞, a]} ∈ A for
each n. By definition, {

sup
n

Xn ≤ a

}
=
⋂
n

{Xn ≤ a} ∈ A

and {
inf
n

Xn < a
}

=
⋃
n

{Xn < a} ∈ A

so that both of these are random variables by (a). Since

lim sup
n→∞

Xn = inf
n

sup
m≥n

Xm,

if we define
Yn = sup

m≥n
Xm,

then Yn is a random variable so that
inf
n

Yn

is also a random variable. The proof that

lim inf
n→∞

Xn = sup
n

inf
m≥n

Xm

is a random variable is similar.

(c) If Xn → X pointwise, then

X = lim
n→∞

Xn = lim inf
n→∞

Xn = lim sup
n→∞

Xn

is a random variable by (b).
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Density Functions

Reference. Chapter 7 pages 42–44

Suppose that f : R → [0,∞) is non-negative and Riemann-integrable with∫ ∞

−∞
f(x) dx = 1.

Define the function F : R → [0, 1] by setting

F (x) =

∫ x

−∞
f(y) dy.

It then follows that F is non-decreasing, F is right-continuous, F (x) → 1 as x → ∞, and
F (x) → 0 as x → −∞. In other words, F is a distribution function. (Check these facts!)
We call f the density (function) associated to F .

Remark. It is not true that every distribution admits a density. For instance, there is no
density associated with the Dirac point mass at α. However, many “famous” distributions
admit densities.

Example. The uniform distribution on (a, b) has density

f(x) =

{
1

b−a
, if a < x < b,

0, otherwise.

Example. The exponential distribution with parameter β > 0 has density

f(x) =

{
βe−βx, if x > 0,

0, otherwise.

Example. The normal distribution with parameters σ > 0, µ ∈ R, has density

f(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, x ∈ R.

Note. See pages 43–44 for other examples of densities.

Remark. Suppose X : Ω → R is a random variable. As we have already seen, PX , the law
of X, is a probability measure on (R,B). Hence, we say that X has density function fX if
fX is the density associated with FX , the distribution function of X.

Example. Consider the probability space (Ω,A, P ) where Ω = [0, 1], A = B([0, 1]), and P
is the uniform probability on [0, 1]. Let X : Ω → R be defined by

X(ω) =

{
1, if ω ∈ Q ∩ [0, 1],

0, otherwise.
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Note that X is the indicator function of the rational numbers in [0, 1]. As we have already
seen, X is a random variable if and only if Q ∩ [0.1] ∈ A. Is it? We write Q1 = Q ∩ [0, 1] so
that

Q1 =
⋂

ω∈Q1

{ω}

expresses Q1 as a countable union of disjoint closed sets. Thus, Q1 is a Borel set so that
Q1 ∈ A is measurable and X = 1Q1 is a random variable. Let the function Y : Ω → R be
defined by Y (ω) = ωX(ω). Is Y a random variable?

Here are some other questions to keep us thinking.

• What “type” of random variable is X? What about Y ?

• What is PX? What is P Y ?

• Does PX have a distribution function FX? What about P Y ?

• Do either FX or FY admit a density?

• What is E(X), E(X2), E(Y ), or E(Y 2)?
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Lecture #14: Some General Function Theory

Suppose that f : X → Y is a function. We are implicitly assuming that f is defined for all
x ∈ X. We call X the domain of f and call Y the codomain of f .

The range of f is the set

f(X) = {y ∈ Y : f(x) = y for some x ∈ X}.

Note that f(X) ⊆ Y. If f(X) = Y, then we say that f is onto Y.

Let B ⊆ Y. We define f−1(B) by

f−1(B) = {x ∈ X : f(x) = y for some y ∈ B} = {f ∈ B} = {x : f(x) ∈ B}.

We call X a topological space if there is a notion of open subsets of X. The Borel σ-algebra
on X, written B(X), is the σ-algebra generated by the open sets of X.

Let X and Y be topological spaces. A function f : X → Y is called continuous if for every
open set V ⊆ Y, the set U = f−1(V ) ⊆ X is open.

A function f : X → Y is called measurable if for every measurable set B ∈ B(Y), the set
f−1(B) ∈ B(X) is a measurable set.

The proof of the first theorem proved in Lecture #13 can be generalized without any difficulty
to yield the following result.

Theorem. Suppose that (X,B(X)) and (Y,B(Y)) are topological measure spaces. The func-
tion f : X → Y is measurable if and only if f−1(O) ∈ B(X) for every open set O ∈ B(Y).

The next theorem tells us that continuous functions are necessarily measurable functions.

Theorem. Suppose that (X,B(X)) and (Y,B(Y)) are topological measure spaces. If f :
X → Y is continuous, then f is measurable.

Proof. By definition, f : X → Y is continuous if and only if f−1(O) ⊆ X is an open set
for every open set O ⊆ Y. Since an open set is necessarily a Borel set, we conclude that
f−1(O) ∈ B(X) for every open set O ∈ B(Y). However, it now follows immediately from
the previous theorem that f : X → Y is measurable.

The following theorem is a generalization of a theorem proved in Lecture #12 and shows
that the composition of measurable functions is measurable.

Theorem. Suppose that (W,F), (X,G), and (Y,H) are measurable spaces, and let f :
(W,F) → (X,G) and g : (X,G) → (Y,H) be measurable. Then the function h = g ◦ f is a
measurable function from (W,F) to (Y,H).
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Proof. Suppose that H ∈ H. Since g is measurable, we have g−1(H) ∈ G. Since f is
measurable, we have f−1(g−1(H)) ∈ F . Since

h−1(H) = (g ◦ f)−1(H) = f−1(g−1(H)) ∈ F

the proof is complete.

Recall that from Theorem 2.1 the Borel sets of R are generated by intervals of the form
(−∞, a] for a ∈ Q. Exactly the same proof shows that the Borel sets of Rn, written Bn =
B(Rn) are generated by quadrants of the form

n∏
i=1

(−∞, ai], a1, . . . , an ∈ Q.

Theorem. Let (Ω,A, P ) be a probability space and suppose that Xi : Ω → R is a random
variable for each i = 1, . . . , n. Suppose further that f : (Rn,Bn) → (R,B) is measurable.
Then the function f(X1, . . . , Xn) : Ω → R is measurable.

Proof. Define the (vector-valued) function X : Ω → Rn by setting X(ω) = (X1(ω), . . . , Xn(ω)).
Since

X−1

(
n∏

i=1

(−∞, ai]

)
=

n⋂
i=1

X−1
i ((−∞, ai]) =

n⋂
i=1

{Xi ≤ ai} ∈ A

we conclude that X : Ω → Rn is measurable. We often call X a random vector. Since
X : Ω → Rn is measurable and f : Rn → R is measurable, we immediately conclude from
the previous theorem f ◦X = f(X1, . . . , Xn) : Ω → R is measurable.

Corollary. If X and Y are random variables, then so too are X +Y , XY , X/Y for Y 6= 0,
X ∧ Y , and X ∨ Y .

Expectation

Reference. Chapter 9 pages 51–60

Suppose that (Ω,A, P ) is a probability space and let X : (Ω,A) → (R,B) be a random
variable. Recall that this means that X−1(B) ∈ A for every B ∈ B. Our goal in this lecture
is the following.

Goal. To define E(X) for every random variable X.

Definition. A random variable X : Ω → R is called simple if it can be written as

X =
n∑

i=1

ai1Ai

where ai ∈ R, Ai ∈ A for i = 1, 2, . . . , n.
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Note that if a random variable is simple, then it takes on a finite number of values. As the
next proposition shows, the converse is also true.

Proposition. If X : Ω → R is a random variable that takes on finitely many values, then
X is simple.

Proof. Suppose X is a random variable and takes on finitely many values labelled a1, . . . , an.
Let

Ai = {X = ai} = {ω : X(ω) = ai}, i = 1, . . . , n.

Since X is a random variable, Ai = X−1({ai}), and {ai} is a Borel set, we conclude that
Ai ∈ A for each i = 1, . . . , n. Furthermore, we can represent X as

X =
n∑

i=1

ai1Ai

which proves that X is simple.

Thus, saying that X is a simple random variable means that the range of X is finite.

Remark. Recall that the function X = 1A is measurable if and only if A ∈ A. Also recall
that the composition and sum of measurable functions is again measurable. Therefore, we
see that

X =
n∑

i=1

ai1Ai

is measurable if and only if Ai ∈ A for each i = 1, . . . , n.

Definition. If X is a simple random variable, then the expectation (or expected value) of X
is defined to be

E(X) =
n∑

i=1

aiP{Ai}.

Remark. By definition, a simple random variable is necessarily discrete. However, the
converse is not true. For instance, if Y is a Poisson(λ) random variable, then

P{Y = k} > 0 for every k = 0, 1, 2, . . .

so that Y is a discrete random variable which is not simple.

Example. Consider the probability space (Ω,A, P ) where Ω = [0, 1], A = B(Ω) are the
Borel sets in [0, 1], and P is the uniform probability measure on [0, 1]. Let Q1 = [0, 1] ∩ Q
and consider the random variable X = 1Q1 which is given by

X(ω) =

{
1, if ω ∈ [0, 1] ∩Q,

0, if ω 6∈ [0, 1] ∩Q.

Since the only two possible values of X are 0 and 1, we conclude that X is simple. Therefore,
if we let a1 = 1 and a2 = 0 so that A1 = Q1 and A2 = [0, 1] \Q1, then

E(X) = a1P{A1}+ a2P{A2} = P{Q1} = 0

since P{Q1} = 0.
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A slight extension of this example is given by the following exercise.

Exercise. Suppose that (Ω,A, P ) is the same probability space as in the previous example.
Let A ⊂ Ω be countable and define the function X : Ω → R by setting X(ω) = 1A(ω). Prove
that A ∈ A with P{A} = 0 so that X is a random variable with E(X) = 0.

Example. Suppose that (Ω,A, P ) is the same probability space and X is the same random
variable as in the previous example. Define the function Y : Ω → R by setting Y (ω) = 0 for
all ω ∈ Ω. Therefore, Y is a simple random variable with E(Y ) = 0. Notice that both E(X)
and E(Y ) equal 0. However, X 6= Y since, for instance, X(1/2) = 1 but Y (1/2) = 0. The
set where X and Y differ is

{X 6= Y } = {ω : X(ω) 6= Y (ω)} = {ω : X(ω) = 1, Y (ω) = 0} = {ω : ω ∈ [0, 1] ∩Q}.

However, P{ω : ω ∈ [0, 1] ∩Q} = 0 so that

P{X 6= Y } = 0.

In other words, {X 6= Y } is a null set so that X = Y almost surely. If we now define the
function Z : Ω → R by setting

Z(ω) =

{
1, if ω ∈ [0, 1/2],

−1, if ω 6∈ [0, 1/2],

then Z is a simple random variable with E(Z) = 0. However, P{Z 6= Y } = 1 since
{Z 6= Y } = Ω and P{Z 6= X} = 1 since P{Z = X} = P{[0, 1/2] ∩Q} ≤ P{[0, 1] ∩Q} = 0.
Therefore, neither {X 6= Z} nor {Y 6= Z} is a null set.
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Lecture #15: Expectation of a Simple Random Variable

Reference. Chapter 9 pages 51–60

Recall that a simple random variable is one that takes on finitely many values.

Definition. A random variable X : Ω → R is called simple if it can be written as

X =
n∑

i=1

ai1Ai

where ai ∈ R, Ai ∈ A for i = 1, 2, . . . , n.

Example. Consider the probability space (Ω,A, P ) where Ω = [0, 1], A = B(Ω), and P is
the uniform probability on Ω. Suppose that the random variable X : Ω → R is defined by

X(ω) =
4∑

i=1

ai1Ai
(ω)

where a1 = 4, a2 = 2, a3 = 1, a4 = −1, and

A1 = [0, 1
2
), A2 = [1

4
, 3

4
), A3 = (1

2
, 7

8
], A4 = (7

8
, 1].

Show that there exist finitely many real constants c1, . . . , cn and disjoint sets C1, . . . , Cn ∈ A
such that

X =
n∑

i=1

ci1Ci
.

Solution. We find

X(ω) =



4, if 0 ≤ ω < 1/4,

6, if 1/4 ≤ ω < 1/2,

2, if ω = 1/2,

3, if 1/2 < ω < 3/4,

1, if 3/4 ≤ ω < 7/8,

0, if ω = 7/8,

−1, if 7/8 < ω ≤ 1,

so that

X =
7∑

i=1

ci1Ci

where c1 = 4, c2 = 6, c3 = 2, c4 = 3, c5 = 1, c6 = 0, c7 = −1 and

C1 = [0, 1
4
), C2 = [1

4
, 1

2
), C3 = {1

2
}, C4 = (1

2
, 3

4
), C5 = [3

4
, 7

8
), C6 = {7

8
}, C7 = (7

8
, 1].
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Proposition. If X and Y are simple random variables, then

E(αX + βY ) = αE(X) + βE(Y )

for every α, β ∈ R.

Proof. Suppose that X and Y are simple random variables with

X =
n∑

i=1

ai1Ai
and Y =

m∑
j=1

bj1Bj

where A1, . . . , An ∈ A and B1, . . . , Bm ∈ A each partition Ω. Since

αX = α

n∑
i=1

ai1Ai
=

n∑
i=1

(αai)1Ai

we conclude by definition that

E(αX) =
n∑

i=1

(αai)P{Ai} = α
n∑

i=1

aiP{Ai} = αE(X).

The proof of the theorem will be completed by showing E(X + Y ) = E(X) + E(Y ). Notice
that

{Ai ∩Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

consists of pairwise disjoint events whose union is Ω and

X + Y =
n∑

i=1

m∑
j=1

(ai + bj)1Ai∩Bj
.

Therefore, by definition,

E(X + Y ) =
n∑

i=1

m∑
j=1

(ai + bj)P{Ai ∩Bj}

=
n∑

i=1

m∑
j=1

aiP{Ai ∩Bj}+
n∑

i=1

m∑
j=1

bjP{Ai ∩Bj}

=
n∑

i=1

aiP{Ai}+
m∑

j=1

bjP{Bj}

and the proof is complete.

Fact. If X and Y are simple random variables with X ≤ Y , then

E(X) ≤ E(Y ).

Exercise. Prove the previous fact.
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Goal. To construct E(X) for any random variable.

We have already defined E(X) for simple random variables.

Suppose that X is a positive random variable. That is, X(ω) ≥ 0 for all ω ∈ Ω. (We will
need to allow X(ω) ∈ [0, +∞] for some consistency.)

Definition. If X is a positive random variable, define the expectation of X to be

E(X) = sup{E(Y ) : Y is simple and 0 ≤ Y ≤ X}.

That is, we approximate positive random variables by simple random variables. Of course,
this leads to the question of whether or not this is possible.

Fact. For every random variable X ≥ 0, there exists a sequence (Xn) of positive, simple
random variables with Xn ↑ X (that is, Xn increases to X).

An example of such a sequence is given by

Xn(ω) =

{
k
2n , if k

2n ≤ X(ω) < k+1
2n and 0 ≤ k ≤ n2n − 1,

n, if X(ω) ≥ n.

(Draw a picture.)

Fact. If X ≥ 0 and (Xn) is a sequence of simple random variables with Xn ↑ X, then
E(Xn) ↑ E(X).

Now suppose that X is any random variable. Write

X+ = max{X, 0} and X− = −min{X, 0}

for the positive part and the negative part of X, respectively.

Note that X+ ≥ 0 and X− ≥ 0 so that the positive part and negative part of X are both
positive random variables and

X = X+ −X− and |X| = X+ + X−.

Definition. A random variable X is called integrable (or has finite expectation) if both
E(X+) and E(X−) are finite. In this case we define E(X) to be

E(X) = E(X+)− E(X−).

Definition. If one of E(X+) or E(X−) is infinite, then we can still define E(X) by setting

E(X) =

{
+∞, if E(X+) = +∞ and E(X−) < ∞,

−∞, if E(X+) < ∞ and E(X−) = +∞.

However, X is not integrable in this case.

Definition. If both E(X+) = +∞ and E(X−) = +∞, then E(X) does not exist.
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Summary of Constructing E(X) for General Random Variables

The outline of how to construct E(X) is sometimes called the “standard machine” and follows
these steps.

(1) Step 1: define E(X) for simple random variables,

(2) Step 2: define E(X) for positive random variables,

(3) Step 3: define E(X) for general random variables.

Of course, we still have to prove that all of the facts given above are true.
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Lecture #16: Integration and Expectation

Reference. Chapter 9 pages 51–60

Definition. If X is a positive random variable, then we define

E(X) = sup{E(Y ) : Y is simple and 0 ≤ Y ≤ X}.

If X is any random variable, then we can write X = X+ −X− where both X+ and X− are
positive random variables. Provided that both E(X+) and E(X−) are finite, we define E(X)
to be

E(X) = E(X+)− E(X−)

and we say that X is integrable (or has finite expectation).

Remark. If X : (Ω,A, P ) → (R,B, PX) is a random variable, then we sometimes write

E(X) =

∫
Ω

X dP =

∫
Ω

X(ω) dP (ω) =

∫
Ω

X(ω) P (dω).

That is, the expectation of a random variable is the Lebesgue integral of X. We will say
more about this later.

Definition. Let L1(Ω,A, P ) be the set of real-valued random variables on (Ω,A, P ) with
finite expectation. That is,

L1(Ω,A, P ) = {X : (Ω,A, P ) → (R,B) : X is a random variable with E(X) < ∞}.

We will often write L1 for L1(Ω,A, P ) and suppress the dependence on the underlying
probability space.

Theorem. Suppose that (Ω,A, P ) is a probability space, and let X1, X2, . . ., X, and Y all
be real-valued random variables on (Ω,A, P ).

(a) L1 is a vector space and expectation is a linear map on L1. Furthermore, expectation
is positive. That is, if X, Y ∈ L1 with 0 ≤ X ≤ Y , then 0 ≤ E(X) ≤ E(Y ).

(b) X ∈ L1 if and only if |X| ∈ L1, in which case we have

|E(X)| ≤ E(|X|).

(c) If X = Y almost surely (i.e., if P{ω : X(ω) = Y (ω)} = 1), then E(X) = E(Y ).

(d) (Monotone Convergence Theorem) If the random variables Xn ≥ 0 for all n and Xn ↑
X (i.e., Xn → X and Xn ≤ Xn+1), then

lim
n→∞

E(Xn) = E
(

lim
n→∞

Xn

)
= E(X).

(We allow E(X) = +∞ if necessary.)
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(e) (Fatou’s Lemma) If the random variables Xn all satisfy Xn ≥ Y almost surely for some
Y ∈ L1 and for all n, then

E
(
lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn). (∗)

In particular, (∗) holds if Xn ≥ 0 for all n.

(f) (Lebesgue’s Dominated Convergence Theorem) If the random variables Xn → X, and
if for some Y ∈ L1 we have |Xn| ≤ Y almost surely for all n, then Xn ∈ L1, X ∈ L1,
and

lim
n→∞

E(Xn) = E(X).

Remark. This theorem contains ALL of the central results of Lebesgue integration theory.

Theorem. Let Xn be a sequence of random variables.

(a) If Xn ≥ 0 for all n, then

E

(
∞∑

n=1

Xn

)
=

∞∑
n=1

E(Xn) (∗)

with both sides simultaneously being either finite or infinite.

(b) If
∞∑

n=1

E(Xn) < ∞,

then
∞∑

n=1

Xn

converges almost surely to some random variable Y ∈ L1. In other words,

∞∑
n=1

Xn

is integrable with

E

(
∞∑

n=1

Xn

)
=

∞∑
n=1

E(Xn).

Thus, (∗) holds with both sides being finite.

Notation. Since X = Y almost surely implies E(X) = E(Y ), we can consider “almost sure
equality” as an equivalence relation; that is,

X ∼ Y if X = Y almost surely.

Let L1 denote L1 modulo almost sure equality.
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Notation. Let

Lp = {random variables X : |X|p ∈ L1}, 1 ≤ p < ∞,

and let Lp denote Lp modulo almost sure equality.

Theorem. (a) (Cauchy-Schwartz Inequality) If X, Y ∈ L2, then XY ∈ L1 and

|E(XY )| ≤
√

E(X2)E(Y 2).

(b) L2 ⊂ L1 and X ∈ L2 implies
[E(X)]2 ≤ E(X2).

(c) L2 is a linear space. That is, if X, Y ∈ L2 and α, β ∈ R, then αX + βY ∈ L2. In
fact, as we will see in Chapter 22, L2 is a Hilbert space.

Remark. Although L2 is a Hilbert space, L2 is not. This is the reason that we consider
random variables up to equality almost surely.

Theorem. Let X : (Ω,A, P ) → (R,B) be a random variable.

(a) (Markov’s Inequality) If X ∈ L1, then

P{|X| ≥ a} ≤ E(|X|)
a

for every a > 0.

(b) (Chebychev’s Inequality) If X ∈ L2, then

P{|X| ≥ a} ≤ E(X2)

a2

for every a > 0.

Theorem (Expectation Rule). Let X : (Ω,A, P ) → (R,B) be a random variable, and let
h : (R,B) → (R,B) be measurable.

(a) The random variable h(X) ∈ L1(Ω,A, P ) if and only if h ∈ L1(R,B, PX).

(b) If h ≥ 0, or if either condition in (a) holds, then

E(h(X)) =

∫
Ω

h(X(ω)) P (dω) Lebesgue integral (definition)

=

∫
R

h(x) PX(dx) Riemann-Stieltjes integral (theorem).

(c) If X has a density f , and either E(|h(X)|) < ∞ or h ≥ 0, then

E(h(X)) =

∫
R

h(x)f(x) dx Riemann integral (theorem).

Remark. Parts (b) and (c) explain how to perform a “change-of-variables.”
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Statistics 851 (Winter 2008)
Interchanging Limits and Integration

The following example shows that you cannot carelessly interchange limits!

Example. Suppose that fn(x) → f(x). When does∫
f(x) dx =

∫ (
lim

n→∞
fn(x)

)
dx = lim

n→∞

∫
fn(x) dx?

Let fn(x) = nx(1− x2)n, 0 ≤ x ≤ 1, for n = 1, 2, . . . so that

• fn(0) = 0 for all n,

• fn(1) = 1 for all n,

• fn(x) → 0 for all 0 < x < 1.

That is,
lim

n→∞
fn(x) = 0 for all 0 ≤ x ≤ 1

and so ∫ 1

0

(
lim

n→∞
fn(x)

)
dx =

∫ 1

0

0 dx = 0

However, ∫ 1

0

fn(x) dx =

∫ 1

0

nx(1− x2)n dx =
n

2n + 2

so that

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

n

2n + 2
=

1

2
.
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Lecture #17: Comparison of Lebesgue and Riemann Integrals

Reference. Today’s notes!

The purpose of today’s lecture is to compare the Lebesgue integral with the Riemann integral.

In order to illustrate the differences between the two, we will not use probability notation,
but instead use calculus notation.

Consider the probability space (Ω,A, P ) where Ω = [0, 1], A denotes the Borel sets of [0, 1],
and P denotes the uniform probability on [0, 1]. Let X : Ω → R be a random variable and
consider the expectation of X given by∫

Ω

X(ω) P (dω). (∗)

The uniform probability measure on [0, 1] is sometimes called Lebesgue measure and is de-
noted by µ. Instead of using ω ∈ [0, 1] we will use x ∈ [0, 1], and instead of writing
X : [0, 1] → R for a random variable we will write h : [0, 1] → R for a measurable function.
Therefore, in our new language, (∗) is equivalent to∫

[0,1]

h(x) µ(dx) =

∫ 1

0

h(x) µ(dx)

which we call the Lebesgue integral of h.

By using this notation, we immediately see the analogy with∫ 1

0

h(x) dx,

the Riemann integral of h.

If we translate back to the language of probability, the Riemann integral of the random
variable X would be written as ∫

Ω

X(ω) dω.

Example. Suppose that h(x) = 1Q1(x) is the indicator function of the rational numbers in
[0, 1]. That is,

h(x) =

{
1, if x ∈ [0, 1] ∩Q,

0, if x 6∈ [0, 1] ∩Q.

Note that h is a simple function; that is, we can write

h(x) =
2∑

i=1

ai1Ai
(x)
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where a1 = 1, a2 = 0, A1 = [0, 1] ∩ Q, and A2 = [0, 1] ∩ Qc. By definition, the Lebesgue
integral of h is∫ 1

0

h(x) µ(dx) =
2∑

i=1

aiµ(Ai) = 1 · µ(A1) + 0 · µ(A2) = µ(A1) = 0

since A1 is a countable set.

Suppose that we now try to compute the Riemann integral∫ 1

0

h(x) dx.

If h has an antiderivative, then we can use the Fundamental Theorem of Calculus. The
trouble is that h is discontinuous everywhere and so h cannot possibly have an antiderivative.
Therefore, in order to compute the Riemann integral we must resort to using the definition.

Definition. Suppose that P = {0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1} is a partition of
[0, 1], and let ∆xi = xi+1−xi for i = 0, 1, . . . , N − 1. The function h : [0, 1] → R is Riemann
integrable if

lim
N→∞

N−1∑
i=0

h(x∗i )∆xi

exists for all choices of partitions P and x∗i ∈ [xi, xi+1]. If so, we write∫ 1

0

h(x) dx = lim
N→∞

N−1∑
i=0

h(x∗i )∆xi

for the common value of this limit.

Example (continued). We will make our first attempt to compute∫ 1

0

h(x) dx.

Let

P =

{
0,

1

N
,

2

N
, . . . ,

N − 1

N
, 1

}
so that

∆xi =
1

N
.

For i = 0, 1, . . . , N − 1, let

x∗i =
i

N
+

1

2N

and note that x∗i is always rational. Therefore, by the definition of h we have

h(x∗i ) = 1
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and so
N−1∑
i=0

h(x∗i )∆xi =
N−1∑
i=0

1 · 1

N
= 1

which implies that

lim
N→∞

N−1∑
i=0

h(x∗i )∆xi = 1.

Thus, we might be tempted to say ∫ 1

0

h(x) dx = 1. (∗∗)

However, this is true only if the limit exists for all choices of partitions and x∗i .

We now make our second attempt to compute the integral. For i = 0, 1, . . . , N − 1, let

x∗i =
i

N
+

1

πN

and note that x∗i is always irrational. Therefore, by the definition of h we have

h(x∗i ) = 0

and so
N−1∑
i=0

h(x∗i )∆xi =
N−1∑
i=0

0 · 1

N
= 0

which implies that

lim
N→∞

N−1∑
i=0

h(x∗i )∆xi = 0.

This would force ∫ 1

0

h(x) dx = 0

which contradicts (∗∗) above.

Thus, we are forced to conclude that the Riemann integral∫ 1

0

h(x) dx

does not exist.

Remark. The lesson here is that there exist simple functions whose Riemann integrals do
not exist, but whose Lebesgue integrals do exist. The lesson for probabilists is that we
define the expectation of a random variable as a Lebesgue integral so that expectations will
be defined for a wider class of random variables.
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Lecture #18: An Example of a Random Variable with a
Non-Borel Range

Suppose that (Ω,A, P ) is a probability space and let X : Ω → R be a random variable.

Recall that the notation X : Ω → R means that the domain of X is Ω and the co-domain
of X is R. The function X is necessarily defined for every ω ∈ Ω. However, there is no
requirement that X be onto R. We write X(Ω) for the range of R so that X(Ω) ⊆ R.

Also recall that the condition for the function X : Ω → R to be a random variable is that
the inverse image of a Borel set be an event. That is, we must have X−1(B) ∈ A for every
B ∈ B.

The question might now be asked why we need to consider “inverse images” of Borel sets.
Why is not enough to consider “images” of events in A under X?

Notice that we necessarily must have X−1(R) = Ω for every real-valued function X : Ω → R.
In particular, this is true whether or not X is measurable.

However, it need not be the case that X(Ω) = R. Again, it is the case that the range of X
is all of R if and only if X is onto R.

Example. For instance, suppose that Ω = [0, 1] and consider the two functions X : Ω → R
and Y : Ω → R given by

X(ω) = ω

and

Y (ω) =


0, if ω = 0,

− 1
4ω

, if 0 < ω < 1
4
,

1
2−4ω

, if 1
4
≤ ω < 1

2
,

4ω − 3, if 1
2
≤ ω ≤ 1.

It is not hard to show that both X and Y are random variables with respect to the uniform
probability measure on (Ω,B(Ω)). However, X(Ω) = [0, 1] ( R while Y (Ω) = R.

As we have already noted, it is necessarily the case that the range of X satisfies X(Ω) ⊆ R.
Hence, it is natural to ask whether or not X(Ω) ∈ B.

However, as the following example shows, it need not be the case that X(Ω) ∈ B even if X
is a random variable.

Example. Suppose that H ⊂ [0, 1] is a non-measurable set and let q ∈ H be a given point.
Recall from Lecture #9 that the construction of H and the identification of q requires the
Axiom of Choice.

Let Ω = H and let A = 2Ω be the power set of Ω. For A ∈ A, let

P{A} =

{
1, if q ∈ A,

0, if q 6∈ A,
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so that P is, in fact, a probability measure on A. Define the function X : Ω → R by
setting X(ω) = ω. If B ∈ B is a Borel set, then X−1(B) ⊂ Ω so that we necessarily have
X−1(B) ∈ A. In other words, X is a random variable. However, it is clearly the case that
X(Ω) = H so that X(Ω) 6∈ B.

We end by proving a related result; namely, the fact that if X : (Ω,A) → (R,B) is a random
variable, then X−1(B) is a σ-algebra.

Proposition. If F = X−1(B) = {X−1(B) : for some B ∈ B}, then F is a σ-algebra.

Proof. In order to prove that F is a σ-algebra, we need to verify that the three conditions
in the definition are met.

(i) Since B is a σ-algebra, we know that ∅ ∈ B. However, it then follows that ∅ = X−1(∅) ∈ F .

(ii) Suppose that A ∈ F so that A = X−1(B) for some B ∈ B. However, Ac = [X−1(B)]c =
X−1(Bc). Since B is a σ-algebra, we know that Bc ∈ B and so Ac ∈ F . In particular,
combining this with (i) implies that Ω = ∅c ∈ F .

(iii) Suppose that A1, A2, . . . ∈ F so that Ai = X−1(Bi), i = 1, 2, . . ., for some B1, B2, . . . ∈ B.
However,

∞⋃
i=1

Ai =
∞⋃
i=1

X−1(Bi) = X−1

(
∞⋃
i=1

Bi

)
.

Since B is a σ-algebra, we know that

∞⋃
i=1

Bi ∈ B

and so
∞⋃
i=1

Ai ∈ F .

Thus, F is, in fact, a σ-algebra.

The σ-algebra given in the previous proposition is important enough to have its own name.

Definition. Suppose that X : (Ω,A) → (R,B) is a random variable. The σ-algebra gener-
ated by X is defined to be σ(X) = X−1(B).

Remark. Notice that the previous proposition never actually used the fact that X is a
random variable. This result is true for any function X : Ω → (R,B).

Remark. In Exercise 9.1 you are asked to show that if X : (Ω,A) → (R,B) is a random
variable, then it is also measurable as a function from (Ω, σ(X)) → (R,B). In this case, we
have σ(X) ⊆ A.

However, if X : Ω → R is any function, then, although X is necessarily measurable as a
function from (Ω, σ(X)) → (R,B), it is no longer true that σ(X) ⊆ A.
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Lecture #19: Construction of Expectation

Reference. Chapter 9, pages 51–60

Goal. To define

E(X) =

∫
Ω

X dP =

∫
ω

X(ω)P (dω)

for all random variables X : Ω → R.

Our strategy will be as follows. We will

(1) define E(X) for simple random variables,

(2) define E(X) for positive random variables,

(3) define E(X) for general random variables.

This strategy is sometimes called the “standard machine” and is the outline that we will
follow to prove most results about expectation of random variables.

Step 1: Simple Random Variables

Let (Ω,A, P ) be a probability space. Suppose that X : Ω → R is a simple random variable
so that

X(ω) =
m∑

j=1

aj1Aj
(ω)

where a1, . . . , am ∈ R and A1, . . . , Am ∈ A. We define the expectation of X to be

E(X) =
m∑

j=1

ajP{Aj}.

Step 2: Positive Random Variables

Suppose that X is a positive random variable. That is, X(ω) ≥ 0 for all ω ∈ Ω. (We will
need to allow X(ω) ∈ [0, +∞] for some consistency.) We are also assuming at this step that
X is not a simple random variable.

Definition. If X is a positive random variable, define the expectation of X to be

E(X) = sup{E(Y ) : Y is simple and 0 ≤ Y ≤ X}. (∗)

Proposition 1. For every random variable X ≥ 0, there exists a sequence (Xn) of positive,
simple random variables with Xn ↑ X (that is, Xn increases to X).
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Proof. Let X ≥ 0 be given and define the sequence

Xn(ω) =

{
k
2n , if k

2n ≤ X(ω) < k+1
2n and 0 ≤ k ≤ n2n − 1,

n, if X(ω) ≥ n.

Then it follows that Xn ≤ Xn+1 for every n = 1, 2, 3, . . . and Xn → X which completes the
proof.

Proposition 2. If X ≥ 0 and (Xn) is a sequence of simple random variables with Xn ↑ X,
then E(Xn) ↑ E(X). That is, if Xn ≤ Xn+1 and

lim
n→∞

Xn = X,

then

lim
n→∞

∫
Xn dP ↑

∫ (
lim

n→∞
Xn

)
dP =

∫
X dP.

Proof. Suppose that X ≥ 0 is a random variable and let (Xn) be a sequence of simple
random variables with Xn ≥ 0 and Xn ↑ X. Observe that since the Xn are increasing, we
have E(Xn) ≤ E(Xn+1). Therefore, E(Xn) increases to some limit a ∈ [0,∞]; that is,

E(Xn) ↑ a

for some 0 ≤ a ≤ ∞. (If E(Xn) is an unbounded sequence, then a = ∞. However, if E(Xn)
is a bounded sequence, then a < ∞ follows from the fact that increasing, bounded sequences
have unique limits.) Therefore, it follows from (∗), the definition of E(X), that a ≤ E(X).

We will now show a ≥ E(X). As a result of (∗), we only need to show that if Y is a simple
random variable with 0 ≤ Y ≤ X, then E(Y ) ≤ a. To this end, let Y be simple and write

Y =
m∑

k=1

ak1{Y = ak}.

That is, take Ak = {ω : Y (ω) = ak}. Let 0 < ε ≤ 1 and define

Yn,ε = (1− ε)Y 1{(1−ε)Y≤Xn}.

Note that Yn,ε = (1− ε)ak on the set

{(1− ε)Y ≤ Xn} ∩ Ak = Ak,n,ε

and that Yn,ε = 0 on the set {(1− ε)Y > Xn}. Clearly Yn,ε ≤ Xn and so

E(Yn,ε) = (1− ε)
m∑

k=1

akP{Ak,n,ε} ≤ E(Xn).

Therefore, since
Y ≤ X = lim

n→∞
Xn
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we see that
(1− ε)Y < lim

n→∞
Xn

as soon as Y > 0. (This requires that X is not identically 0.) Hence,

Ak,n,ε → Ak

as n →∞. By Theorem 2.4 we conclude that

P{Ak,n,ε} → P{Ak}
so that

E(Yn,ε) = (1− ε)
m∑

k=1

akP{Ak,n,ε} → (1− ε)
m∑

k=1

akP{Ak} = (1− ε)E(Y ) ≤ a.

That is,
E(Yn,ε) ≤ E(Xn)

and
E(Yn,ε) → (1− ε)E(Y ) and E(Xn) → a

so that
(1− ε)E(Y ) ≤ a

(which follows since everything is increasing). Let ε > 0 so that

E(Y ) ≤ a.

By (∗),
sup{E(Y )} ≤ a

which implies that
E(X) ≤ a.

Combined with our earlier result that a ≤ E(X) we conclude E(X) = a and the proof is
complete.

Step 3: General Random Variables

Now suppose that X is any random variable. Write

X+ = max{X, 0} and X− = −min{X, 0}
for the positive part and the negative part of X, respectively. Note that X+ ≥ 0 and
X− ≥ 0 so that the positive part and negative part of X are both positive random variables
and X = X+ −X−.

Definition. A random variable X is called integrable (or has finite expectation) if both
E(X+) and E(X−) are finite. In this case we define E(X) to be

E(X) = E(X+)− E(X−).

Remark. Having proved this result, we see that the standard machine is really not that hard
to implement. In fact, it is usually enough to prove a result for simple random variables and
then extend that result to positive random variables using the result of Step 2. Step 3 for
general random variables usually follows by definition.
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Lecture #20: Independence

Reference. Chapter 10, pages 65–67

Let (Ω,A, P ) be a probability space. Recall that events A ∈ A and B ∈ A are independent
if

P{A ∩B} = P{A} · P{B}.

We can extend this idea to collections of events as follows.

Definition. Two sub-σ-algebras A1 ⊆ A and A2 ⊆ A are independent if

P{A1 ∩ A2} = P{A1} · P{A2}

for every A1 ∈ A1 and A2 ∈ A2.

Furthermore, a collection (Ai), i ∈ I, of sub-σ-algebras of A is independent if for every finite
subset J of I, we have

P

{⋂
i∈J

Ai

}
=
∏
i∈J

P{Ai}

for all Ai ∈ Ai.

We can now discuss independent random variables.

Recall. Suppose that (E, E) is a measurable space. The function X : (Ω,A) → (E, E) is
called measurable if X−1(B) ∈ A for every B ∈ E . Usually we take (E, E) = (R,B) and call
X a random variable.

Now, as shown in Lecture #18,

X−1(E) = {A ∈ A : X(A) = B for some B ∈ E}

is a σ-algebra with X−1(E) ⊆ A.

This sub-σ-algebra is so important that it gets its own name and notation.

Notation. We write σ(X) to denote the σ-algebra generated by X. In other words, σ(X) =
X−1(E).

Definition. Suppose that (E, E) and (F,F) are measurable spaces, and let X : (Ω,A) →
(E, E) and Y : (Ω,A) → (F,F) be random variables. We say that X and Y are indpendent
if σ(X) and σ(Y ) are independent σ-algebras.

Notice that both σ(X) and σ(Y ) are sub-σ-algebras of A even though X and Y might have
different target spaces.
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Theorem. The random variables X and Y are independent if and only if

P{X ∈ A, Y ∈ B} = P{X ∈ A} · P{Y ∈ B}

for all A ∈ E and B ∈ F .

Proof. This follows from the definition of σ(X) since X−1(E) is exactly the σ-algebra gener-
ated by events of the form {X ∈ A} for A ∈ E . That is,

σ(X) = σ(X ∈ A, A ∈ E) and σ(Y ) = σ(Y ∈ B, B ∈ F)

and so the theorem follows.

Corollary. The random variables X and Y are independent if and only if

PX,Y {A, B} = PX{A} · P Y {B}

where PX,Y denotes the joint law of X and Y .

Corollary. The random variables X and Y are independent if and only if

FX,Y (x, y) = FX(x) · FY (y)

where FX,Y denotes the joint distribution function of X and Y .

Corollary. If the random variables X and Y have densities fX and fY , respectively, and
joint density fX,Y , then X and Y are independent if and only if

fX,Y (x, y) = fX(x) · fY (y).

Remark. We still need to define the terms joint law, joint distribution function, and joint
density function. This will require the notion of product spaces.

Theorem. If X and Y are independent random variables, and if f and g are measurable
functions, then f ◦X and g ◦ Y are independent random variables.

Proof. Given f and g we have

(f ◦X)−1(E) = X−1(f−1(E)) ⊆ X−1(E)

and
(g ◦ Y )−1(F) = Y −1(g−1(F)) ⊆ Y −1(F).

If X and Y are independent, then X−1(E) and Y −1(F) are independent so that X−1(f−1(E))
and Y −1(g−1(F)) are independent. That is,

σ(f ◦X) and σ(g ◦ Y )

are independent and the proof is complete.
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Theorem. If X and Y are independent random variables, then

E(f(X)g(Y )) = E(f(X)) · E(g(Y )) (∗)

for every pair of bounded, measurable functions f , g, or positive, measurable functions f , g.

Remark. If X and Y are jointly continuous random variables, then this result is easily
proved as in STAT 351:∫ ∞

−∞

∫ ∞

−∞
f(x)g(y)fX,Y (x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
f(x)g(y)fX(x)fY (y) dx dy

=

∫ ∞

−∞
f(x)fX(x) dx ·

∫ ∞

−∞
g(y)fY (y) dy.

Proof. In order to prove this result, we follow that standard machine. Suppose that X and
Y are random variables and that f and g are measurable functions. The first step is to show
that the result holds when f and g are simple functions. Suppose that f(x) = 1A(x) and
g(y) = 1B(y). Then,

E(f(X)g(Y )) = E(1A(X)1B(Y )) = E(1{X ∈ A, Y ∈ B})
= P{X ∈ A, Y ∈ B}
= P{X ∈ A} · P{Y ∈ B}
= E(1A(X)) · E(1B(Y ))

= E(f(X)) · E(g(Y )).

If

f(x) =
n∑

i=1

ai1Ai
(x) and g(y) =

m∑
j=1

bj1Bj
(y),

then the result (∗) holds by linearity.

The second step is to show that the result holds for positive functions. Thus, let f , g be
positive functions and assume that fn and gn are sequences of positive, simple functions with
fn ↑ f and gn ↑ g. Note that

fn(x) · gn(y) ↑ f(x) · g(y).

Therefore,

E(f(X) · g(Y )) = E
(

lim
n→∞

fn(X) · gn(Y )
)

= lim
n→∞

E(fn(X) · gn(Y )) by the Monotone Convergence Theorem

= lim
n→∞

[E(fn(X)) · E(gn(Y ))] by Step 1

= lim
n→∞

E(fn(X)) · lim
n→∞

E(gn(Y ))

= E
(

lim
n→∞

fn(X)
)
· E
(

lim
n→∞

gn(Y )
)

by the Monotone Convergence Theorem

= E(f(X)) · E(g(Y )).
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The third step is to conclude that if f , g are both bounded, then the result follows by writing

f = f+ − f− and g = g+ − g−

and using linearity.
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Lecture #21: Product Spaces

Reference. Chapter 10, pages 67–71

We begin with the following result which gives a characterization of independent σ-algebras
in terms of the probabilities of the events.

Theorem. Suppose that (Ω,A, P ) is a probability space. The σ-algebra A is independent of
itself if and only if P{A} ∈ {0, 1} for all A ∈ A.

Proof. Suppose that A is independent of itself. This implies that P{A∩B} = P{A} ·P{B}
for every A, B ∈ A. In particular, let A ∈ A so that Ac ∈ A. Therefore,

0 = P{∅} = P{A ∩ Ac} = P{A} · P{Ac}

which can only be satisfied if either P{A} = 0 or P{Ac} = 0. That is, we must have
P{A} ∈ {0, 1}.
Conversely, suppose that P{A} ∈ {0, 1} for all A ∈ A. If A, B ∈ A, then there are three
cases that need to be considered.

(i) Suppose that P{A} = P{B} = 0. Therefore, since

0 ≤ P{A ∩B} ≤ P{A} = 0

we conclude that
P{A ∩B} = P{A} · P{B} (= 0).

(ii) Suppose that P{A} = 0 and P{B} = 1. Therefore, since

0 ≤ P{A ∩B} ≤ P{A} = 0

we again conclude that
P{A ∩B} = P{A} · P{B} (= 0).

(Similarly, we reach the same conclusion if P{A} = 1 and P{B} = 0.)

(iii) Suppose that P{A} = P{B} = 1. Therefore,

0 ≤ P{(A ∩B)c} = P{Ac ∪Bc} ≤ P{Ac}+ P{Bc} = 0

which implies that P{A ∩B} = 1 and so

P{A ∩B} = P{A} · P{B} (= 1).

Thus we have demonstrated both implications, the theorem is proved.
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An equivalent formulation of the theorem is given by the contrapositive.

Theorem. The σ-algebra A is not independent of itself if and only if there exists an A ∈ A
with P{A} ∈ (0, 1).

Remark. Therefore, suppose that (Ω,A, P ) is a probability space and suppose that A1

and A2 are two sub-σ-algebras of A. It is possible to discuss the independence (or non-
independence) of A1 and A2 even if A1 = A2.

As indicated last class, it is necessary to talk about joint distributions. In order to do so,
however, we must define product spaces.

Let X : (Ω,A) → (E, E) be a random variable and let Y : (Ω,A) → (F,F) be a random
variable.

Definition. If E and F are sets, then we write

E × F = {(x, y) : x ∈ E, y ∈ F}

for their Cartesian product.

Consider the function Z : Ω → E × F given by

ω 7→ Z(ω) = (X(ω), Y (ω)).

It should seem “obvious” that Z is a random variable. However, in order to prove that
Z : Ω → E × F is, in fact, measurable, we need to have a σ-algebra on E × F .

If E and F are σ-algebras, then

E × F = {A ⊂ E × F : A = Λ× Γ, Λ ∈ E , Γ ∈ F}

is well-defined although it need not be a σ-algebra. Let

σ(E ,F) = E ⊗ F

denote the smallest σ-algebra containing both E and F .

Hence, (E×F, E⊗F) is also a measurable space, and this leads us to the following definition.

Definition. A function f : (E × F, E ⊗ F) → (R,B) is measurable if f−1(B) ∈ E ⊗ F for
every B ∈ B.

Suppose further that P1 is a probability on (E, E) and that P2 is a probability on (F,F). Is
it possible to define a probability P on (E × F, E ⊗ F) in a natural way?

Answer. YES!

Intuition. Let C ∈ E × F so that C = A × B. We should define the probability P{C} =
P1{A} · P2{B}. That is, we should define the probability of the product as the product of
the probabilities. The problem, however, is that E ×F need not equal E ⊗F . That is, there
are events C ∈ E ⊗F which are NOT of the form C = A×B for some A ∈ E , B ∈ F . How
should we define P for these sets? The answer will be given by the Fubini-Tonelli Theorem.
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Statistics 851 (Winter 2008)
Exercises on Independence

Suppose that (Ω,A, P ) is a probability space with Ω = {a, b, c, d, e} and A = 2Ω. Let X and
Y be the real-valued random variables defined by

X(ω) =

{
1, if ω ∈ {a, b},
0, if ω 6∈ {a, b},

Y (ω) =

{
2, if ω ∈ {a, c},
0, if ω 6∈ {a, c}.

(a) Give explicitly (by listing all the elements) the σ-algebras σ(X) and σ(Y ) generated
by X and Y , respectively.

(b) Find the σ-algebra σ(X, Y ) generated (jointly) by X and Y .

(c) If Z = X + Y , does σ(Z) = σ(X, Y )?

For real numbers α, β ≥ 0 with α + β ≤ 1/2, let P be the probability measure on A
determined by the relations

P ({a}) = P ({b}) = α, P ({c}) = P ({d}) = β, P ({e}) = 1− 2(α + β).

(d) Find all α, β for which σ(X) and σ(Y ) are independent. Simplify!

(e) Find all α, β for which X and Z = X + Y are independent.
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Exercises on Independence (Solutions)

Suppose that (Ω,A, P ) is a probability space with Ω = {a, b, c, d, e} and A = 2Ω. Let X and
Y be the real-valued random variables defined by

X(ω) =

{
1, if ω ∈ {a, b},
0, if ω 6∈ {a, b},

Y (ω) =

{
2, if ω ∈ {a, c},
0, if ω 6∈ {a, c}.

(a) Give explicitly (by listing all the elements) the σ-algebras σ(X) and σ(Y ) generated
by X and Y , respectively.

Suppose that B ∈ B so that

X−1(B) =


Ω, if 1 ∈ B, 0 ∈ B,

{a, b}, if 1 ∈ B, 0 6∈ B,

{c, d, e}, if 1 6∈ B, 0 ∈ B,

∅, if 1 6∈ B, 0 6∈ B.

Thus, the σ-algebra generated by X is σ(X) = {∅, Ω, {a, b}, {c, d, e}}. Similarly,

Y −1(B) =


Ω, if 2 ∈ B, 0 ∈ B,

{a, c}, if 2 ∈ B, 0 6∈ B,

{b, d, e}, if 2 6∈ B, 0 ∈ B,

∅, if 2 6∈ B, 0 6∈ B.

so that σ(Y ) = {∅, Ω, {a, c}, {b, d, e}}.

(b) Find the σ-algebra σ(X, Y ) generated (jointly) by X and Y .

By definition,

σ(X,Y ) = σ(σ(X), σ(Y )) = σ({a}, {b}, {c}, {d, e})
= {∅, Ω, {a}, {b}, {c}, {d, e}, {a, b}, {a, c}, {a, d, e}, {b, c}, {b, d, e}{c, d, e}, {a, b, c},

{a, b, d, e}, {a, c, d, e}, {b, c, d, e}} .

(c) If Z = X + Y , does σ(Z) = σ(X, Y )?

If Z = X + Y then

Z(ω) =


3, if ω = a

2, if ω = c

1, if ω = b

0, if ω ∈ {d, e}
so that

σ(Z) = σ({a}, {b}, {c}, {d, e}) = σ(X, Y ).



For real numbers α, β ≥ 0 with α + β ≤ 1/2, let P be the probability measure on A
determined by the relations

P ({a}) = P ({b}) = α, P ({c}) = P ({d}) = β, P ({e}) = 1− 2(α + β).

(d) Find all α, β for which σ(X) and σ(Y ) are independent. Simplify!

Recall that σ(X) and σ(Y ) are independent iff P (A ∩ B) = P (A)P (B) for every
A ∈ σ(X) and B ∈ σ(Y ). Notice that if either A or B are either ∅ or Ω, then
P (A∩B) = P (A)P (B). Thus, in order to show that σ(X) and σ(Y ) are independent,
we need to simultaneously satisfy the four equalities.

P ({a, b} ∩ {a, c}) = P ({a, b})P ({a, c}), P ({c, d, e} ∩ {a, c}) = P ({c, d, e})P ({a, c}),

P ({a, b}∩{b, d, e}) = P ({a, b})P ({b, d, e}), P ({c, d, e}∩{b, d, e}) = P ({c, d, e})P ({b, d, e}).
By the definition of P , we have

P ({a, b}) = 2α, P ({c, d, e}) = 1− 2α, P ({a, c}) = α + β, P ({b, d, e}) = 1− α− β

as well as

P ({a, b} ∩ {a, c}) = P ({a}) = α, P ({c, d, e} ∩ {a, c}) = P ({c}) = β,

P ({a, b} ∩ {b, d, e}) = P ({b}) = α, P ({c, d, e} ∩ {b, d, e}) = P ({d, e}) = 1− 2α− β.

Hence, our system of equations for α and β becomes

α = 2α(α + β)

β = (1− 2α)(α + β)

α = 2α(1− α− β)

1− 2α− β = (1− 2α)(1− α− β)

which has solution set{
(α, β) : 0 ≤ α ≤ 1

2
, 0 ≤ β ≤ 1

2
, α + β =

1

2

}
.

(e) Find all α, β for which X and Z = X + Y are independent.

In order for X and Z to be independent, we must have

P (X = i, Z = j) = P (X = i)P (Z = j)

for i = 0, 1, j = 0, 1, 2, 3. Notice, however, that

(X, Z) =


(1, 3), if ω ∈ {a},
(1, 1), if ω ∈ {b},
(0, 2), if ω ∈ {c},
(0, 0), if ω ∈ {d, e}.



These imply that

P ({a}) = P ({a, b})P ({a}), P ({b}) = P ({a, b})P ({b}),

P ({c}) = P ({c, d, e})P ({c}), P ({d, e}) = P ({c, d, e}P ({d, e})

which are simultaneously satisfied by either (α = 1/2, β = 0) or (α = 0, β = 0).
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Lecture #22: Product Spaces

Reference. Chapter 10, pages 67–71

Recall. We introduced the notion of the product space of two measurable spaces. Intu-
itively, the product space can be viewed as a model of independence. That is, suppose that
(Ω1,A1, P1) and (Ω2,A2, P2) are two probability spaces. Consider the space

Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}.

Although the product A1×A2 might seem like the natural choice for a σ-algebra on Ω1×Ω2,
it is not necessarily a σ-algebra. Hence, in order to turn Ω1 × Ω2 into a measurable space,
we consider

A1 ⊗A2 = σ(A1 ×A2)

which is the smallest σ-algebra containing A1 ×A2.

The question now is, “Can we define a probability measure on (Ω1×Ω2,A1⊗A2) in a natural
way?”

The answer is YES!

If A1 ∈ A1 and A2 ∈ A2, then C = A1 ×A2 ∈ A1 ×A2 and so we can define the probability
of C to be

P{C} = P{A1 × A2} = P1{A1} · P2{A2}.

This is the natural definition of P and is motivated by the definition of independence.

The trouble, however, is that A1 ×A2 need not equal A1 ⊗A2 and so we need to figure out
how to assign probability to events in A1 ⊗A2 \ A1 ×A2.

Example. Suppose that Ω1 = Ω2 = {a, b} = Ω and

A1 = A2 = 2Ω = {∅, {a}, {b}, Ω}.

Define the probabilities P1 and P2 by setting

P1{a} = P2{a} = p and P1{b} = P2{b} = 1− p

for some 0 < p < 1.

Consider the product Ω1 × Ω2 which is given by

Ω1 × Ω2 = {(a, a), (a, b), (b, a), (b, b)}

and consider the set C ⊂ Ω1 × Ω2 given by

C = {(a, a), (a, b), (b, b)}.
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Note that C is NOT of the form C = A1 ×A2. Therefore, we cannot assign a probability to
C by simply defining

P{C} = P1{A1} · P2{A2}

and so we need to be able to extend P1 × P2 to be a probability on all of A1 ⊗A2.

Finally, note that in this example, which models two independent tosses of a coin, we would
like to assign

P{C} = p2 + p(1− p) + (1− p)2 = 1− p + p2.

Exercise. Explicitly list all of the elements of A1 ×A2 and A1 ⊗A2. Give the probability
P1 × P2{C} for all C ∈ A1 ×A2. Define P{C} (in a consistent way) for all C ∈ A1 ⊗A2 \
A1 ×A2.

Random Vectors

We begin with the following result given in Exercise 10.1 which shows that (X1, X2) is a
random vector if and only if X1 and X2 are both random variables.

Theorem. Let (Ω,A, P ) be a probability space and suppose that X = (X1, X2) : Ω → E×F .
The function X : (Ω,A) → (E×F, E ⊗F) is measurable if and only if X1 : (Ω,A) → (E, E)
and X2 : (Ω,A) → (F,F) are measurable.

Proof. Suppose that both X1 : (Ω,A) → (E, E) and X2 : (Ω,A) → (F,F) are measurable.
Let A ∈ E , B ∈ F , so that X−1

1 (A) ∈ A and X−1
2 (B) ∈ A by the measurability of X1, X2,

respectively. Therefore,

X−1(A×B) = X−1
1 (A) ∩X−1

2 (B) ∈ A

so that X is measurable by the definition of the product σ-algebra E ⊗ F and Theorem 8.1
(since E ⊗ F is generated by E × F = {A×B : A ∈ E , B ∈ F}).
Conversely, suppose that X = (X1, X2) : Ω → E × F is measurable so that X−1(C) ∈ A for
every C ∈ E ⊗ F . In particular, X−1(C) ∈ A for every C ∈ E × F . If C ∈ E × F , then it is
necessarily of the form A×B for some A ∈ E and some B ∈ F , and so

X−1(C) = X−1(A×B) = X−1
1 (A) ∩X−1

2 (B) ∈ A. (∗)

In order to show that X1 : (Ω,A) → (E, E) is measurable, we must show X−1
1 (A) ∈ A for

all A ∈ E . To do this, we simply make a judicious choice of B in (∗). Choosing B = F gives

A 3 X−1
1 (A) ∩X−1

2 (F ) = X−1
1 (A) ∩ Ω = X−1

1 (A).

Similarly, to show X2 : (Ω,A) → (F,F) is measurable we choose A = E in (∗). This gives

A 3 X−1
1 (E) ∩X−1

2 (B) = Ω ∩X−1
2 (B) = X−1

2 (B).

Taken together, the proof is complete.
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Sections of a measurable function

Suppose that f : (E × F, E ⊗ F) → (R,B) given by

(x, y) 7→ f(x, y) = z

is measurable.

Fix x ∈ E and let fx : F → R be given by

fx(y) = f(x, y).

In other words, we start with a measurable function of two variables, say f(x, y), and view
it as a function of y only for fixed x. Sometimes we will also write

fx(·) = f(x, ·) or y 7→ f(x, y).

Similarly, fix y ∈ F and let fy : E → R be given by

fy(x) = f(x, y).

That is, fy(·) = f(·, y) or x 7→ f(x, y).

We call fx and fy the sections of f .

Remark. There is a similarity between the sections of a measurable function and the
marginal densities of a random vector. Suppose that (X, Y ) is a random vector with joint
density function f(x, y). The sections of f are the functions fx(y) and fy(x) obtained simply
by viewing f(x, y) as a function of a single variable. The marginal densities, however, are
obtained by “integrating out” the other variable. That is,

fX(x) =

∫ ∞

−∞
f(x, y) dy

is the marginal density function of X and

fY (y) =

∫ ∞

−∞
f(x, y) dx

is the marginal density function of Y .

Theorem. If f : (E × F, E ⊗ F) → (R,B) is measurable, then the section fx : F → R is
F-measurable and the section fy : E → R is E-measurable.

Remark. The converse is false in general.

Proof. We will apply the standard machine and show that fx is F -measurable. (The proof
that fy is E-measurable is identical.)

Let f(x, y) = 1C(x, y) for C ∈ E ⊗ F and let

H = {C ∈ E ⊗ F : y 7→ 1C(x, y) is F -measurable for each fixed x ∈ E}.
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Note that H is a σ-algebra with H ⊆ E ⊗ F . Furthermore, H ⊇ E × F which implies that

H ⊇ σ(E × F).

That is,
H = E ⊗ F .

Therefore, the result holds if f is an indicator function, and therefore holds if

f(x, y) =
n∑

i=1

ci1Ci
(x, y)

where c1, . . . , cn ∈ R and C1, . . . , Cn ∈ E ⊗ F by linearity (Theorem 8.4).

Now suppose that f ≥ 0 is a positive function and let (fn) be a sequence of positive, simple
functions with fn ↑ f . If x ∈ E is fixed and

gn(y) = fn(x, y),

then gn is F -measurable by the first part. We now let

fx(y) = lim
n→∞

gn(y) = lim
n→∞

fn(x, y)

which is F -measurable since the limit of measurable functions is measurable (Theorem 8.4).

Finally, for general functions f , we consider f = f+− f− which expresses f as the difference
of measurable functions and is therefore itself measurable. (This is also part of Theorem 8.4).

Theorem (Fubini-Tonelli). (a) Let R{A×B} = P{A} ·Q{B} for A ∈ E, B ∈ F . Then R
extends uniquely to a probability on (E × F, E ⊗ F) which we denote by P ⊗Q.

(b) Suppose that f : E × F → R. If f is either (i) E ⊗ F-measurable and positive, or (ii)
E ⊗ F-measurable and integrable with respect to P ⊗Q, then

• the function x 7→
∫

f(x, y)Q(dy) is E-measurable,

• the function y 7→
∫

f(x, y)P (dx) is F-measurable, and

• ∫
f d(P ⊗Q) =

∫
f(x, y)P ⊗Q(dx, dy)

=

∫ ∫
f(x, y)Q(dy)P (dx)

=

∫ ∫
f(x, y)P (dx)Q(dy).

Remark. Compare (a) with Theorem 6.4. We define R in the “natural” way and extend it
to null sets. Part (b) says that we can evaluate a double integral in either order provided
that f is (i) measurable and positive, or (ii) measurable and integrable.

Remark. We will omit the proof. Part (a) uses the Monotone Class Theorem while part
(b) uses the standard machine.
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Lecture #23: The Fubini-Tonelli Theorem

Reference. Chapter 10, pages 67–71

We begin by recalling the Fubini-Tonelli Theorem which gives us conditions under which we
can interchange the order of Lebesgue integration:∫ ∫

f(x, y)Q(dy)P (dx) =

∫ ∫
f(x, y)P (dx)Q(dy). (∗)

Formally, suppose that (E, E , P ) and (F,F , Q) are measure spaces and consider the product
space (E × F, E ⊗ F , P ⊗Q). Let f : E × F → R be a function.

The theorem states that equality holds in (∗) if f is either (i) E⊗F -measurable and positive,
or (ii) E ⊗ F -measurable and integrable with respect to P ⊗Q.

We also recall the following theorem which tells us that joint measurability of f(x, y) implies
measurability of the sections fx(y) and fy(x).

Theorem. If f : (E × F, E ⊗ F) → (R,B) is measurable, then for fixed x ∈ E the section
fx : F → R given by fx(y) = f(x, y) is F-measurable, and for fixed y ∈ F the section
fy : E → R given by fx(y) = f(x, y) is E-measurable.

Recall. If f is continuous, then f is measurable. (In fact, if f is continuous almost surely,
then f is measurable.)

Example. Suppose that E = [0, 2], E = B(E), P is the uniform probability on E, and
suppose further than F = [0, 1], F = B(F ), Q is the uniform probability on F .

Consider the function

f(x, y) =

{
xy(x2−y2)
(x2+y2)3

, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

It is clear that f is E ⊗ F -measurable since the only possible point of discontinuity is at
(0, 0).

Fix x ∈ [0, 2] and consider the section fx(y). For instance, if x = 1, then

fx=1(y) =
y(1− y2)

(1 + y2)3
for y ∈ [0, 1].

Clearly fx=1(y) is continuous (and hence measurable) for y ∈ [0, 1] = F . Or, for instance,
suppose that x = 0. Then fx=0(y) = 0 for y ∈ [0, 1]. In general, for fixed x ∈ (0, 2],

fx(y) =
xy(x2 − y2)

(x2 + y2)3
, y ∈ [0, 1],
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is continuous for y ∈ F and hence is F -measurable.

Fix y ∈ [0, 1] and consider the section fy(x). For instance, if y = 1/2, then

fy=1/2(x) =
x(x2 − 1/4)

2(x2 + 1/4)3
for x ∈ [0, 2]

is continuous in x and so fy=1/2(x) is E-measurable. Or, for instance, suppose that y = 0.
Then fy=0(x) = 0 for x ∈ [0, 2]. In general, for fixed y ∈ (0, 1],

fy(x) =
xy(x2 − y2)

(x2 + y2)3
, x ∈ [0, 2],

is continuous for x ∈ E and hence is E-measurable.

We now calculate∫
F

f(x, y)Q(dy) =

∫ 1

0

f(x, y)Q(dy) =

∫ 1

0

f(x, y) dy =
x

2(x2 + 1)2

which follows since Q is the uniform probability on [0, 1]. Hence,∫
E

∫
F

f(x, y)Q(dy)P (dx) =

∫
E

x

2(x2 + 1)2
P (dx) =

∫ 2

0

x

2(x2 + 1)2
· 1

2
dx = −1

8

(
1

x2 + 1

) ∣∣∣∣2
0

=
1

10

which follows since P is the uniform probability on [0, 2].

On the other hand, ∫
E

f(x, y)P (dx) =

∫ 2

0

f(x, y) · 1

2
dx = − y

2(4 + y2)2

and so∫
F

∫
E

f(x, y)P (dx)Q(dy) =

∫
F

− y

2(4 + y2)2
Q(dy) = −

∫ 1

0

y

2(4 + y2)2
dy =

1

2

(
1

4 + y2

) ∣∣∣∣1
0

= − 1

40
.

The reason that ∫ ∫
f(x, y)Q(dy)P (dx) 6=

∫ ∫
f(x, y)P (dx)Q(dy)

has to do with f itself. Notice that

f(2t, t) =
6

125t2
and f(t, 2t) = − 6

125t2
.

In order for Fubini-Tonelli to work, it must be the case that f is either
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(i) E ⊗ F -measurable and positive, or

(ii) E ⊗ F -measurable and P ⊗Q-integrable.

Since we have shown that the order of integration does matter for f(x, y), we can conclude
that f violates both (i) and (ii). In particular, f is neither positive nor P ⊗Q-integrable. As
we noted above f is E⊗F -measurable and so this example also shows that joint measurability
alone is not sufficient for integrability.

Tail Events

Reference. Chapter 10, pages 71–72

Let (Ω,A, P ) be a probability space and let An be a sequence of events in A. Define

lim sup
n→∞

An =
∞⋂

n=1

⋃
m≥n

Am = lim
n→∞

∞⋃
m=n

Am

which can be interpreted probabilistically as

{An occur infinitely often} = {An i.o.}.

Theorem (Borel-Cantelli). Let An be a sequence of events in (Ω,A, P ).

(a) If
∞∑

n=1

P{An} < ∞,

then P{An i.o.} = 0.

(b) If P{An i.o.} = 0 and An are mutually independent, then

∞∑
n=1

P{An} < ∞.

Remark. An equivalent formulation of (b) is: “If An are mutually independent and if

∞∑
n=1

P{An} = ∞,

then P{An i.o.} = 1.”

Suppose that Xn are all random variables defined on (Ω,A, P ). Define the σ-algebras Bn =
σ(Xn) and

Cn = σ(Xn, Xn+1, Xn+2, . . .) = σ

(⋃
p≥n

Bp

)
.

Let

C∞ =
∞⋂

n=1

Cn.
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Definition. By Exercise 2.2, we have that C∞ is a σ-algebra which we call the tail σ-algebra
(associated to the sequence X1, X2, . . .).

Theorem (Kolmogorov’s Zero-One Law). If Xn are independent random variables and C ∈
C∞, then either P{C} = 0 or P{C} = 1.
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Lecture #24: The Borel-Cantelli Lemma

Reference. Chapter 10, pages 71–72

Let (Ω,A, P ) be a probability space and let An be a sequence of events in A. Define

lim sup
n→∞

An =
∞⋂

n=1

⋃
m≥n

Am = lim
n→∞

∞⋃
m=n

Am

which can be interpreted probabilistically as

{An occur infinitely often} = {An i.o.}.

Theorem (Borel-Cantelli). Let An be a sequence of events in (Ω,A, P ).

(a) If
∞∑

n=1

P{An} < ∞,

then P{An i.o.} = 0.

(b) If P{An i.o.} = 0 and An are mutually independent, then

∞∑
n=1

P{An} < ∞.

Proof. (a) Suppose that an = P{An} = E(1An). By Theorem 9.2,

∞∑
n=1

P{An} =
∞∑

n=1

an < ∞

implies
∞∑

n=1

1An < ∞ a.s.

However,
∞∑

n=1

1An(ω) = ∞

if and only if

ω ∈
∞⋂

n=1

⋃
m≥n

Am = lim sup
n→∞

An.
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Together these give
∞∑

n=1

P{An} < ∞ ⇒ P{An i.o.} = 0.

(b) Suppose that An are mutually independent. Then

P{lim sup
n→∞

An} = P

{
∞⋂

n=1

⋃
m≥n

Am

}

= lim
n→∞

lim
k→∞

P

{
k⋃

m=n

Am

}
by Theorem 2.4

= lim
n→∞

lim
k→∞

[
1− P

{
k⋂

m=n

Ac
m

}]
by DeMorgan’s law

= 1− lim
n→∞

lim
k→∞

k∏
m=n

[1− P {Am}] by independence

= 1− lim
n→∞

lim
k→∞

k∏
m=n

(1− am).

By hypothesis,
P{lim sup

n→∞
An} = 0

so that

lim
n→∞

lim
k→∞

k∏
m=n

(1− am) = 1.

Taking logarithms gives

lim
n→∞

lim
k→∞

k∑
m=n

log(1− am) = 0

which implies that

lim
n→∞

∞∑
m=n

log(1− am) = 0

and so we conclude that
∞∑

m=1

log(1− am)

converges. However,
| log(1− x)| ≥ x for 0 < x < 1

and so
∞∑

m=1

| log(1− am)| ≥
∞∑

m=1

am
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which implies that
∞∑

m=1

am =
∞∑

m=1

P{Am} < ∞

as required.

Remark. An equivalent formulation of (b) is: “If An are mutually independent and if

∞∑
n=1

P{An} = ∞,

then P{An i.o.} = 1.”

Example. Suppose that Ω = [0, 1] and P is the uniform probability measure on [0, 1]. For
n = 1, 2, . . ., let

An =
[
0, 1

n

]
and note that ⋃

m≥n

Am =
⋃

m≥n

[
0, 1

m

]
=
[
0, 1

n

]
.

Therefore,

{An i.o.} =
∞⋂

n=1

⋃
m≥n

Am =
∞⋂

n=1

[
0, 1

n

]
= {0}

which implies that
P{An i.o.} = P{0} = 0.

We will now show that the An are not independent. Note that

P{An} = P
{[

0, 1
n

]}
=

1

n
.

Consider A2 and A3. We find

P{A2 ∩ A3} = P
{[

0, 1
2

]
∩
[
0, 1

3

]}
= P

{[
0, 1

3

]}
=

1

3

although

P{A2} · P{A3} =
1

2
· 1

3
=

1

6
.

In general, if k < j, then Ak∩Aj = Ak. It is curious to note, however, that A1 is independent
of Aj, j > 1, since

P{A1 ∩ Aj} = P{Aj} =
1

j

and

P{A1} · P{Aj} = 1 · 1

j
=

1

j
.
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Nonetheless, {An, n = 1, 2, . . .} is not an independent sequence of events. Finally, we note
that

∞∑
n=1

P{An} =
∞∑

n=1

1

n
= ∞

and so this gives a “counter-example” to part (b) of the Borel-Cantelli Lemma. In other
words,

P{An i.o.} = 0 and An NOT independent does NOT imply
∞∑

n=1

P{An} < ∞.

Example. Let Ω and P be as in the previous example and for n = 1, 2, . . ., let

An =
[
0, 1

n2

]
.

As before, P{An i.o.} = 0 and An are not independent. However, in this example we have

∞∑
n=1

P{An} =
∞∑

n=1

1

n2
< ∞.

Thus, we conclude that P{An i.o.} = 0 gives no information about

∞∑
n=1

P{An}

in general.

Theorem (Kolmogorov’s Zero-One Law). Suppose that {Xn, n = 1, 2, 3, . . .} are independent
random variables and C∞ is the tail σ-algebra generated by X1, X2, . . .. If C ∈ C∞, then either
P{C} = 0 or P{C} = 1.

Proof. Let Bn = σ(Xn) and Cn = σ(Xn, Xn+1, Xn+2, . . .) so that C∞ = ∩nCn. Define Dn =
σ(X1, . . . , Xn−1) so that Cn and Dn are independent σ-algebras (since the Xn are independent
random variables). Thus, if A ∈ Cn and B ∈ Dn, then

P{A ∩B} = P{A} · P{B}. (∗)

If A ∈ C∞, then (∗) holds for all B ∈ ∪nDn.

Hence, by the Monotone Class Theorem, (∗) holds for all A ∈ C∞ and B ∈ σ (∪nDn). But

C∞ ( σ

(
∞⋃

n=1

Dn

)
so that (∗) holds for A = B ∈ C∞. Therefore,

P{A} = P{A ∩ A} = P{A} · P{A}

which implies that P{A} = P{A}2. This can be satisfied only if P{A} = 0 or P{A} = 1.
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Lecture #25: Midterm Review

In preparation for the midterm next class, we will consider the following exercises.

Exercise. Suppose that X and Y are random variables with X = Y almost surely. Prove
E(X) = E(Y ).

Exercise. Suppose that Ω = {1, 2, 3, . . .}. Let A denote the collection of subsets A ⊆ Ω
such that the limit

lim
n→∞

#(A ∩ {1, . . . , n})
n

exists. For A ∈ A, define

P (A) = lim
n→∞

#(A ∩ {1, . . . , n})
n

.

Prove that (Ω,A, P ) is not a probability space.
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Lecture #26: Convergence Almost Surely and Convergence in
Probability

Reference. Chapter 17, pages 141–147

Suppose that Xn, n = 1, 2, 3, . . ., and X are random variables defined on a common proba-
bility space (Ω,A, P ).

We say that the sequence Xn converges pointwise to X if

lim
n→∞

Xn(ω) = X(ω) for every ω ∈ Ω.

In other words, Xn converges pointwise to X if

{ω : Xn(ω) → X(ω)} = Ω.

It turns out that convergence pointwise is useless for probability because there are often
“impossible events” for which Xn(ω) 6→ X(ω).

A much more useful notion is that of almost sure convergence. We say that Xn converges
almost surely to X if

lim
n→∞

Xn(ω) = X(ω) for almost every ω ∈ Ω.

In other words, Xn converges almost surely to X if

P{ω : Xn(ω) → X(ω)} = 1.

Note that almost sure convergence allows for there to exist some ω for which Xn(ω) 6→ X(ω).
However, these ω belong to a null set and so they are “impossible.”

Example. Flip a fair coin repeatedly. Let Xn = 1 if the nth flip is heads and 0 otherwise
so that

P{Xn = 1} = P{Xn = 0} =
1

2
.

We would like to say that the long run average of heads approaches 1/2. That is,{
ω : lim

n→∞

X1(ω) + · · ·+ Xn(ω)

n
=

1

2

}
= Ω.

But, if we let ω0 = (T, T, T, T, . . .), then Xj(ω0) = 0 for all j so that

X1(ω0) + · · ·+ Xn(ω0)

n
=

0 + · · ·+ 0

n
= 0

which implies

lim
n→∞

X1(ω0) + · · ·+ Xn(ω0)

n
= 0 6= 1

2
.

26–1



This shows that {
ω : lim

n→∞

X1(ω) + · · ·+ Xn(ω)

n
=

1

2

}
6= Ω.

However, we will prove as a consequence of the Strong Law of Large Numbers that

P

{
ω : lim

n→∞

X1(ω) + · · ·+ Xn(ω)

n
=

1

2

}
= 1.

In other words, the long run average of heads approaches 1/2 almost surely.

Example. Suppose that X1, X2, . . . are independent random variables with

P{Xn = 1} =
1

n
and P{Xn = 0} = 1− 1

n
.

If we imagine Xn as the indicator of the event that heads is flipped on the nth toss of a coin,
then we see that as n increases, the probability of heads goes to 0. Thus, we are tempted to
say that

lim
n→∞

Xn = 0 or, in other words, Xn → 0 a.s.

However, this is not true. To see this, let An be the event that the nth flip is heads so that
P{An} = 1/n and let Xn = 1An . Since the An are independent with

∞∑
n=1

P{An} =
∞∑

n=1

1

n
= ∞,

we conclude from part (b) of the Borel-Cantelli Lemma that

P{An i.o.} = 1.

In other words, “we will see heads appear infinitely often” and so

P

{
ω : lim sup

n→∞
Xn(ω) = 1

}
= 1. (∗)

Since Ac
n is the event that the nth flip is tails, and since the Ac

n are also independent and
satisfy

∞∑
n=1

P{Ac
n} =

∞∑
n=1

n− 1

n
= ∞,

we conclude from part (b) of the Borel-Cantelli Lemma that

P{Ac
n i.o.} = 1.

In other words, “we will see tails appear infinitely often” and so

P
{

ω : lim inf
n→∞

Xn(ω) = 0
}

= 1. (∗∗)

In particular, (∗) and (∗∗) show that

P
{

ω : lim
n→∞

Xn(ω) does not exist
}

= 1

which implies that Xn does not converge almost surely to 0 (or to anything else).
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This example seems troublesome since Xn should really go to zero! Fortunately, there is
another notion of convergence that can help us out here.

Definition. Suppose that Xn, n = 1, 2, . . ., and X are random variables defined on a com-
mon probability space (Ω,A, P ). We say that Xn converges in probability to X if

lim
n→∞

P {ω : |Xn(ω)−X(ω)| > ε} = 0 for every ε > 0.

Remark. One of the standard ways to show convergence in probability is to use Markov’s
inequality which states that

P{|Y | > a} ≤ E|Y |
a

for every a > 0 (assuming Y ∈ L1).

Example (continued). We see that

E|Xn| = E(Xn) = 1 · P{Xn = 1}+ 0 · P{Xn = 0} =
1

n
.

Therefore, if ε > 0, then

P{|Xn − 0| > ε} ≤ E|Xn|
ε

=
1

nε

and so

lim
n→∞

P{|Xn − 0| > ε} ≤ lim
n→∞

1

nε
= 0.

Thus, Xn → 0 in probability.

Example. Consider the probability space (Ω,A, P ) where Ω = [0, 1] with the σ-algebra
A equal to the Borel sets in [0, 1] and P is the uniform probability measure on [0, 1]. For
n = 1, 2, . . ., define the random variable

Xn(ω) = n1/21(0, 1
n

](ω).

Show that Xn converges in probability.

Solution. Note that if Xn converges in probability, then it must be to 0. We find

E|Xn| = E(Xn) = n1/2P
{(

0, 1
n

]}
= n1/2 · 1

n
=

1√
n

.

Therefore, if ε > 0, then

P{|Xn − 0| > ε} ≤ E|Xn|
ε

=
1

ε
√

n

and so

lim
n→∞

P{|Xn − 0| > ε} ≤ lim
n→∞

1

ε
√

n
= 0.

Thus, Xn → 0 in probability.
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Lecture #27: Convergence of Random Variables

Reference. Chapter 17, pages 141–147

Suppose that Xn, n = 1, 2, 3, . . ., and X are random variables defined on a common proba-
bility space (Ω,A, P ).

Definition. We say that Xn converges almost surely to X if

P{ω : Xn(ω) → X(ω)} = 1.

In other words, Xn → X a.s. if

N = {ω : Xn(ω) 6→ X(ω)}

is a null set. Note that

{ω : Xn(ω) → X(ω)} =

{
ω :
⋂
ε>0

∞⋃
n=1

∞⋂
m=n

|Xm(ω)−X(ω)| ≤ ε

}
which says that Xn → X almost surely iff “for every ε > 0 there exists an n such that
|Xm(ω)−X(ω)| ≤ ε for all m ≥ n.” Taking complements gives

N = {ω : Xn(ω) 6→ X(ω)} =

{
ω :
⋃
ε>0

∞⋂
n=1

∞⋃
m=n

|Xm(ω)−X(ω)| > ε

}
.

Definition. We say that Xn converges in probability to X if

lim
n→∞

P {ω : |Xn(ω)−X(ω)| > ε} = 0 for every ε > 0.

Recall. We saw an example last lecture of a sequence of random variables Xn which con-
verged to 0 in probability but not almost surely. The following theorem shows that conver-
gence almost surely always implies convergence in probability.

Theorem. If Xn → X almost surely, then Xn → X in probability.

Proof. Suppose that Xn → X almost surely so that

P

{
ω :
⋃
ε>0

∞⋂
n=1

∞⋃
m=n

|Xm(ω)−X(ω)| > ε

}
= 0

which is equivalent to saying that Xn → X almost surely if for every ε > 0,

P

{
ω :

∞⋂
n=1

∞⋃
m=n

|Xm(ω)−X(ω)| > ε

}
= 0.
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Let Am = {|Xm −X| > ε} and let

Bn =
⋃

m≥n

Am

so that Xn → X almost surely iff for every ε > 0,

P

{
∞⋂

n=1

∞⋃
m=n

|Xm −X| > ε

}
= P

{
∞⋂

n=1

∞⋃
m=n

Am

}
= P

{
∞⋂

n=1

Bn

}
= 0.

Note that Bn is a decreasing sequence (Bn ⊇ Bn+1) so that by Theorem 2.3,

P

{
∞⋂

n=1

Bn

}
= lim

n→∞
P{Bn} = lim

n→∞
P

{⋃
m≥n

Am

}
= 0.

In other words, we see that Xn → X almost surely iff for every ε > 0,

lim
n→∞

P{|Xm −X| > ε for some m ≥ n} = 0.

Thus, it is now clear that almost sure convergence is stronger than convergence in probability.
That is,

lim
n→∞

P {ω : |Xn(ω)−X(ω)| > ε} ≤ lim
n→∞

P{|Xm −X| > ε for some m ≥ n}

which shows that if Xn → X almost surely, then Xn → X in probability.

Another useful convergence concept is that of convergence in Lp.

Definition. Let 1 ≤ p < ∞. We say that Xn converges in Lp to X if |Xn| ∈ Lp, |X| ∈ Lp,
and

lim
n→∞

E(|Xn −X|p) = 0.

Theorem. If Xn → X in Lp for any p ∈ [1,∞), then Xn → X in probability.

Proof. Assume that |Xn| ∈ Lp, |X| ∈ Lp, and E(|Xn −X|p) → 0. For any ε > 0, notice that

|Xn −X|p ≥ εp1{|Xn−X|>ε}.

Taking expectations (i.e., Markov’s inequality) gives

E(|Xn −X|p) ≥ εpP{|Xn −X| > ε}.

Therefore, for every ε > 0.

lim
n→∞

P{|Xn −X| > ε} ≤ 1

εp
lim

n→∞
E(|Xn −X|p) = 0

so that Xn → X in probability.
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Example. Consider the probability space (Ω,A, P ) where Ω = [0, 1] with the σ-algebra
A equal to the Borel sets in [0, 1] and P is the uniform probability measure on [0, 1]. For
n = 1, 2, . . ., define the random variable

Xn(ω) = n1/21(0, 1
n

](ω).

Last class we showed that Xn → 0 in probability. We now show that Xn does not converge
in Lp for p ≥ 2.

Solution. For fixed n, we see that

E(|Xn|p) = E(Xp
n) = np/2 · 1

n
= np/2−1 < ∞,

and so we conclude that |Xn| ∈ Lp for all p ≥ 1. However,

lim
n→∞

E(|Xn − 0|p) = 0 if and only if
p

2
− 1 < 0

which implies that Xn 6→ 0 in Lp for p ≥ 2.

Remark. You will see an example on the homework which shows that Xn → 0 in probability
does not imply Xn → 0 in Lp for any p ≥ 1.

Definition. We say that Xn converges completely to X if for every ε > 0,

∞∑
n=1

P{|Xn −X| > ε} < ∞.

Theorem. If Xn → X completely, then Xn → X almost surely.

Proof. Suppose that Xn → X completely so that

∞∑
n=1

P{|Xn −X| > ε} < ∞.

If we let An = {|Xn −X| > ε}, then part (a) of the Borel-Cantelli lemma implies that

P{An i.o.} = 0

which means that Xn → X almost surely.

Summary of Modes of Convergence

Suppose that Xn, n = 1, 2, . . ., X are random variables defined on a common probability
space (Ω,A, P ). The facts about convergence are:

Xn → X completely ⇒ Xn → X almost surely
⇓

Xn → X in probability
⇑

Xn → X in Lp

with no other implications holding in general.
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Remark. We have proved all of the implications. Furthermore, we have shown that all of the
implications are strict except for complete and almost sure convergence. Since Exercise 10.13
on page 73 shows that if X1, X2, . . . are independent, then Xn → X completely is equivalent
to Xn → X almost surely, we see that it will be a little involved to construct a sequence of
random variables which converge almost surely but not completely.
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Lecture #28: Convergence of Random Variables

Reference. Chapter 17, pages 141–147

Recall. Suppose that Xn, n = 1, 2, . . ., and X are random variables defined on a common
probability space (Ω,A, P ). The facts about convergence are:

Xn → X completely ⇒ Xn → X almost surely
⇓

Xn → X in probability
⇑

Xn → X in Lp

with no other implications holding in general.

We have already proved the three implications and have given examples to show that two
of the converse implications do not hold. All that remains is to provide an example to show
that convergence almost surely does not imply complete convergence. The following example
accomplishes this and is a slight modification of an example considered in Lecture #24.

Example. Suppose that Ω = [0, 1] and P is the uniform probability measure on [0, 1]. For
n = 1, 2, . . ., let

An =
[
0, 1

n

]
and note that ⋃

m≥n

Am =
⋃

m≥n

[
0, 1

m

]
=
[
0, 1

n

]
.

Therefore,

P{An i.o.} = P

{
∞⋂

n=1

⋃
m≥n

Am

}
= P

{
∞⋂

n=1

[
0, 1

n

]}
= P{0} = 0.

We now define the random variable Xn by setting

Xn(ω) = n · 1An(ω).

Suppose that ε > 0 is arbitrary (and also suppose that ε < 1 to make things clearer). It then
follows that

|Xn(ω)| > ε iff Xn(ω) = n iff ω ∈ An.

That is,
{|Xn| > ε i.o.} = {An i.o.}

and so
P{|Xn| > ε i.o.} = 0
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which implies that Xn → 0 almost surely. However, we see that

∞∑
n=1

P{|Xn| > ε} =
∞∑

n=1

P{An} =
∞∑

n=1

1

n
= ∞

so that Xn does not converge completely to 0.

Remark. If you are uncomfortable with assuming 0 < ε < 1 (although you should not be),
just note that if ε > 0 is fixed, say ε = K, then we only need to consider Xn, n > K,
since {An, n ≥ 1, i.o.} = {An, n > K, i.o.}. That is, a finite number of the An do not affect
whether or not An happens infinitely often.

Example. If we consider the random variable Xn = n1An as in the previous example, then
for each n = 1, 2, . . ., we have |Xn| ∈ Lp for every 1 ≤ p < ∞ since

E|Xn|p = npP{An} = np−1 < ∞.

However, if p = 1, then
lim

n→∞
E|Xn − 0| = lim

n→∞
1 = 1

which shows that Xn does not converge to 0 in L1. If p > 1, then

lim
n→∞

E|Xn − 0|p = lim
n→∞

np−1 = ∞

which shows that Xn does not converge to 0 in Lp, 1 < p < ∞. In particular, this example
shows that convergence almost surely does not necessarily imply convergence in Lp for any
1 ≤ p < ∞.

Theorem. Suppose f is continuous.

(a) If Xn → X almost surely, then f(Xn) → f(X) almost surely.

(b) If Xn → X in probability, then f(Xn) → f(X) in probability.

Proof. To prove (a), suppose that N is the null set on which Xn(ω) 6→ X(ω). For ω 6∈ N ,
we have

lim
n→∞

f(Xn(ω)) = f
(

lim
n→∞

Xn(ω)
)

= f(X(ω))

where the first equality follows from the fact that f is continuous. Since this is true for any
ω 6∈ N and P{N} = 0, it follows that f(Xn) → f(X) almost surely.

For the proof of (b), see page 147.

Converses to the Implications

We have already shown the “facts about convergence” by demonstrating that three implica-
tions hold with no others holding in general. We now prove a number of “almost”-converses;
that is, converse implications which hold under additional hypotheses.
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Theorem. If Xn → X almost surely and the Xn are independent, then Xn → X completely.

Proof. Assume that Xn → X almost surely and the Xn are independent. Let ε > 0 and let
An = {|Xn| > ε} so that the An are independent and

P{An i.o.} = 0.

Part (b) of the Borel-Cantelli lemma now applies and we conclude

∞∑
n=1

P{An} =
∞∑

n=1

P{|Xn| > ε} < ∞.

In other words, Xn → X completely.

Theorem. If Xn → X in probability, then there exists some subsequence nk such that
Xnk

→ X almost surely.

Proof. Let n0 = 0 and for every integer k ≥ 1 let

nk = inf

{
n > nk−1 : P

{
ω : |Xn(ω)−X(ω)| > 1

k

}
≤ 1

2k

}
.

For every ε > 0, we have 1
k

< ε eventually (i.e., for k > k0 where k0 = d1/εe). Hence, for
m > k0,

P

{
∞⋃

k=m

{ω : |Xnk
(ω)−X(ω)| > ε}

}
≤ P

{
∞⋃

k=m

{
ω : |Xnk

(ω)−X(ω)| > 1

k

}}

≤
∞∑

k=m

P

{
ω : |Xnk

(ω)−X(ω)| > 1

k

}
≤

∞∑
k=m

2−k

= 21−m → 0 as m →∞.

In other words, Xnk
→ X almost surely.

Theorem. If Xn → X in probability and there exists some Y ∈ Lp such that |Xn| ≤ Y for
all n, then |X| ∈ Lp and Xn → X in Lp.

Proof. If Y ∈ Lp and |Xn| ≤ Y , then E|Xn|p ≤ E(Y p) < ∞ so that |Xn| ∈ Lp as well. Let
ε > 0. Notice that for each n

P{|X| > Y + ε} ≤ P{|X| > |Xn|+ ε} = P{|X| − |Xn| > ε} ≤ P{|X −Xn| > ε}

and so
P{|X| > Y + ε} ≤ lim

n→∞
P{|X −Xn| > ε} = 0
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by the assumption that Xn → X in probability. Since ε > 0 is arbitrary, it follows that
(taking ε = 1/m)

P{|X| > Y } ≤ lim
m→∞

P

{
|X| > Y +

1

m

}
= 0

which implies that |X| ≤ Y almost surely. Hence, |X| ∈ Lp.

To show that Xn → X in Lp we will derive a contradiction. Suppose not. There must then
exist a subsequence nk with

E(|Xnk
−X|p) ≥ ε

for all k and for some ε > 0. Since Xn → X in probability, it trivially holds that Xnk
→ X

in probability. By the previous theorem, there exists a further subsequence nkj
such that

Xnkj
→ X almost surely as j → ∞. Since Xnkj

− X → 0 almost surely as j → ∞ and

|Xnkj
−X| ≤ 2Y we can apply the Dominated Convergence Theorem to conclude

E(|Xnkj
−X|p) → 0 as j →∞.

This contradicts the assumption that E(|Xnk
−X|p) ≥ ε.

Alternate proof that almost sure convergence implies convergence in probability

Lemma. Xn → X in probability if and only if

lim
n→∞

E
(

|Xn −X|
1 + |Xn −X|

)
= 0.

Proof. Suppose that Xn → X in probability so that for any ε > 0,

lim
n→∞

P{|Xn −X| > ε} = 0.

We now note that
|Xn −X| ≤ 1 + |Xn −X|

which implies that
|Xn −X|

1 + |Xn −X|
≤ 1

and so

|Xn −X|
1 + |Xn −X|

≤ |Xn −X|
1 + |Xn −X|

1{|Xn−X|>ε} + ε1{|Xn−X|≤ε} ≤ 1{|Xn−X|>ε} + ε.

Taking expectations gives

E
(

|Xn −X|
1 + |Xn −X|

)
≤ P{|Xn −X| > ε}+ ε

and so

lim
n→∞

E
(

|Xn −X|
1 + |Xn −X|

)
≤ lim

n→∞
P{|Xn −X| > ε}+ ε = 0 + ε = ε.
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Since ε > 0 was arbitrary, we have

lim
n→∞

E
(

|Xn −X|
1 + |Xn −X|

)
= 0.

Conversely, suppose that

lim
n→∞

E
(

|Xn −X|
1 + |Xn −X|

)
= 0

and let ε > 0 be given. We now note that

ε

1 + ε
1{|Xn−X|>ε} ≤

|Xn −X|
1 + |Xn −X|

1{|Xn−X|>ε} ≤
|Xn −X|

1 + |Xn −X|

which relied on the fact that x/(1 + x) is strictly increasing. Taking expectations and limits
yields

ε

1 + ε
lim

n→∞
P{|Xn −X| > ε} ≤ lim

n→∞
E
(

|Xn −X|
1 + |Xn −X|

)
= 0.

Since ε > 0 is given, we have

lim
n→∞

P{|Xn −X| > ε} = 0

and so Xn → X in probability.

Theorem. If Xn → X almost surely, then Xn → X in probability.

Proof. As noted in the proof of the lemma,

|Xn −X|
1 + |Xn −X|

≤ 1.

Since Xn → X almost surely, we see that

|Xn −X|
1 + |Xn −X|

→ 0

almost surely. We can now apply the Dominated Convergence Theorem to conclude

lim
n→∞

E
(

|Xn −X|
1 + |Xn −X|

)
= E

(
lim

n→∞

|Xn −X|
1 + |Xn −X|

)
= E(0) = 0.

By the lemma, Xn → X in probability.
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Lecture #29: Weak Convergence

Reference. Chapter 18, pages 151–163

There is a fifth mode of convergence of random variables which is radically different from
the four we studied previously. It is convergence in distribution which is also known as weak
convergence or convergence in law.

As the name suggests, it is the weakest of all modes of convergence. Whereas the other four
modes require that the random variables are all defined on the same probability space, weak
convergence concerns the laws of the random variables.

Recall that if X : (Ω,A, P ) → (R,B) is a random variable, then PX , the law of X, is given
by

PX(B) = P{X ∈ B} for every B ∈ B
and defines a probability measure on (R,B). That is, if X is a random variable, then
(R,B, PX) is a probability space.

Now suppose that X1, X2, X3, . . ., and X are all random variables. Except we now no longer
need to assume that they are all defined on a common probability space. Suppose that for
each n, the random variable Xn : (Ωn,An, Pn) → (R,B) and X : (Ω,A, P ) → (R,B).

The laws of each of these random variables induce a probability measure on (R,B), say PXn ,
n = 1, 2, 3, . . ., and PX .

Definition. We say that Xn converges weakly to X (or that Xn converges in distribution to
X or that Xn converges in law to X) if

lim
n→∞

∫
R

f(x)PXn(dx) =

∫
R

f(x)PX(dx)

for every bounded, continuous function f : R → R.

Remark. This definition is rather unintuitive; it is not very easy to understand what con-
vergence in distribution means. Fortunately, we will prove a number of characterizations of
weak convergence which will be, in general, much easier to handle.

Remark. The reason that this is called convergence in law should be clear. We are discussing
convergence of the laws of random variables. The reason that it is also called convergence
in distribution is the following. Since the law of a random variable is characterized by
its distribution function, it should seem clear that convergence of the laws of the random
variables is equivalent to convergence of the corresponding distribution functions. This is
indeed the case, although there is a technical matter that needs to be addressed. For now
we will be content with the following incorrect definition.

We say that Xn → X in distribution if

FXn(x) → FX(x) for every x ∈ R.
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Although this definition is not quite correct, it does explain why weak convergence is also
called convergence in distribution.

Remark. As we have already seen, there are differences in terminology between analysis
and probability for the same concept. The term weak convergence comes from two closely
related concepts in functional analysis known as weak-∗ convergence and vague convergence.

The first result shows that weak convergence is equivalently phrased in terms of expectations.

Theorem. Let Xn, n = 1, 2, 3, . . ., be random variables with laws PXn and let X be a random
variable with law PX . The random variables Xn → X weakly if and only if

lim
n→∞

E(f(Xn)) = E(f(X))

for every bounded, continuous function f : R → R.

Proof. By Theorem 9.5, if Xn has distribution PXn and X has distribution PX , then∫
R

f(x)PXn(dx) = E(f(Xn)) and

∫
R

f(x)PX(dx) = E(f(X)).

This equivalence establishes the theorem.

The contrapositive of this statement is sometimes useful for showing when random variables
do not converge weakly.

Corollary. If there exists some bounded, continuous function f : R → R such that

E(f(Xn)) 6→ E(f(X)),

then Xn 6→ X weakly.

Note. Since f(x) = x is NOT bounded, we cannot infer whether or not Xn → X weakly
from the convergence/non-convergence of E(Xn) to E(X).

Although the random variables Xn and X need not be defined on the same probability space
in order for weak convergence to make sense, if they are defined on a common probability
space, then convergence in probability implies convergence in distribution.

Fact. Suppose that Xn, n = 1, 2, . . ., and X are random variables defined on a common
probability space (Ω,A, P ). The facts about convergence are:

Xn → X completely ⇒ Xn → X almost surely
⇓

Xn → X in probability ⇒ Xn → X weakly
⇑

Xn → X in Lp

with no other implications holding in general.
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The following example shows just how weak convergence in distribution really is.

Example. Suppose that Ω = {a, b}, A = 2Ω, and P{a} = P{b} = 1/2. Define the random
variables Y and Z by setting

Y (a) = 1, Y (b) = 0, and Z = 1− Y

so that Z(a) = 0, Z(b) = 1. It is clear that P{Y = Z} = 0; that is, Y and Z are almost
surely unequal. However, Y and Z have the same distribution since

P{Y = 1} = P{Z = 0} = P{a} =
1

2
and P{Y = 0} = P{Z = 1} = P{b} =

1

2
.

In other words,
Y 6= Z (surely and almost surely) but P Y = PZ .

We can now extend this example to construct a sequence of random variables which converges
in distribution but does not converge in probability.

Example (continued). Suppose that the random variable X is defined by X(a) = 1,
X(b) = 0 independently of Y and Z so that PX = P Y = PZ . If n is odd, let Xn = Y ,
and if n is even, let Xn = Z. Since P Y = PZ = PX , it is clear that PXn → PX meaning
that Xn → X in distribution. (In fact, PXn = PX meaning that Xn = X in distribution.)
However, if ε > 0 and n is even, then

P{|Xn −X| > ε} = P{|Z −X| > ε} = P{Z = 1, X = 0}+ P{Z = 0, X = 1} =
1

2
.

Thus, it is not possible for Xn to converge in probability to X. Of course, this example
should make sense. By construction, since Z = 1 − Y , the observed sequence of Xn will
alternate between 1 and 0 or 0 and 1 (depending on whether a or b is first observed).

Example. One of the key theorems of probability and statistics is the Central Limit The-
orem. This theorem states that if Xn, n = 1, 2, 3, . . ., are independent and identically
distributed L2 random variables with common mean µ and common variance σ2, and Sn =
X1 + · · ·+ Xn, then

Sn − nµ

σ
√

n
→ Z as n →∞

weakly where Z is normally distributed with mean 0 and variance 1. In other words, the
Central Limit Theorem is a statement about convergence in distribution. As the previous
example shows, sometimes we can only achieve results about weak convergence and we must
be content in doing so.

Theorem. If Xn, n = 1, 2, 3, . . ., and X are all defined on a common probability space and
if Xn → X in probability, then Xn → X weakly.

Proof. Suppose that Xn → X in probability and let f be bounded and continuous. Since f
is continuous, Theorem 17.5 implies

f(Xn) → f(X) in probability
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and Theorem 17.4 implies
f(Xn) → f(X) in L1.

This means that
E(f(Xn)) → E(f(X))

which, by the previous theorem, is equivalent to Xn → X weakly.

Example. Let Ω = [0, 1] and let P be the uniform probability measure on Ω. Define the
random variables Xn by

Xn(ω) = n · 1[0, 1
n

](ω).

We showed last lecture that Xn → 0 in probability. Thus, Xn → 0 in distribution.

Example. Suppose that Xn, n = 1, 2, 3, . . ., has density function

fn(x) =
n

π(1 + n2x2)
, −∞ < x < ∞.

If Xn are all defined on the same probability space and ε > 0, then

P{|Xn| > ε} = 1−
∫ ε

−ε

fn(x) dx

= 1−
∫ ε

−ε

n

π(1 + n2x2)
dx

= 1− 2

π
arctan(nε)

→ 1− 2

π
· π

2
as n →∞.

In other words,
lim

n→∞
P{|Xn| > ε} = 0

so that Xn → 0 in probability. Thus, Xn → 0 in distribution. Note that this example does
not work if Xn are NOT defined on a common probability space.

Remark. Note that in the previous example, each of the random variables Xn had a density.
However, the limiting random variable X = 0 does not have a density. If x 6= 0, then

lim
n→∞

fn(x) = lim
n→∞

n

π(1 + n2x2)
= lim

n→∞

1

π/n + nπx2
= 0.

But, if x = 0, then

lim
n→∞

fn(x) = lim
n→∞

n

π
= ∞.

That is, the limiting “density function” satisfies

f(x) =

{
0, if x 6= 0,

∞, if x = 0.

which is not really a function at all. In fact, f is known as a generalized function or a
δ-function.
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The following theorem gives a sufficient condition for weak convergence in terms of density
functions, but as the previous example shows, it is not a necessary condition.

Theorem. Suppose that Xn, n = 1, 2, 3, . . ., and X are real-valued random variables and
have density functions fn, f , respectively. If fn → f pointwise, then Xn → X in distribution.

Proof. Since there might be some confusion about the use of f in the statement of weak
convergence, assume that g is bounded and continuous. In order to show that Xn → X
weakly, we must show that

lim
n→∞

∫
R

g(x)PXn(dx) =

∫
R

g(x)PX(dx).

Since Xn has density function fn(x), we can write∫
R

g(x)PXn(dx) =

∫
R

g(x)fn(x) dx.

Since fn → f pointwise, we would like to say that∫
R

g(x)fn(x) dx →
∫

R
g(x)f(x) dx. (∗)

Assuming (∗) is true, we use the fact that f(x) is the density function for X to conclude
that ∫

R
g(x)f(x) dx =

∫
R

g(x)PX(dx).

In other words, assuming (∗) holds,∫
R

g(x)PXn(dx) →
∫

R
g(x)PX(dx)

as required.

The problem now is to establish (∗). This is not as obvious as it may seem since pointwise
convergence does not necessarily allow us to interchange limits and integrals. We saw a
counterexample on a handout from February 11, 2008. However, this time the difference is
that fn, f are density functions and not arbitrary functions. To begin, note that if g : R → R
is bounded and continuous, then

g(x)fn(x) → g(x)f(x)

pointwise since fn(x) → f(x) pointwise. Let K = sup |g(x)| and define

h1(x) = g(x) + K and h2(x) = K − g(x).

Notice that both h1 and h2 are positive functions, and so h1fn and h2fn are also necessarily
positive functions. Furthermore, hi(x)fn(x) → hi(x)f(x), i = 1, 2, pointwise. We can now
apply Fatou’s lemma to conclude that

E(hi(X)) =

∫
R

hi(x)f(x) dx ≤ lim inf
n→∞

∫
R

hi(x)fn(x) dx = lim inf
n→∞

E(hi(Xn)). (∗∗)
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Now observe that

E(h1(Xn)) = E(g(Xn)) + K and E(h2(Xn)) = K − E(g(Xn))

as well as
E(h1(X)) = E(g(X)) + K and E(h2(X)) = K − E(g(X)).

From (∗∗) we see that

E(g(X)) + K = E(h1(X)) ≤ lim inf
n→∞

E(h1(Xn)) = lim inf
n→∞

[E(g(Xn)) + K]

and so
E(g(X)) ≤ lim inf

n→∞
E(g(Xn))

and
K − E(g(X)) = E(h2(X)) ≤ lim inf

n→∞
E(h2(Xn)) = lim inf

n→∞
[K − E(g(Xn))]

and so
−E(g(X)) ≤ lim inf

n→∞
[−E(g(Xn))].

Using the fact that lim inf[−an] = − lim sup an gives

E(g(X)) ≥ lim sup
n→∞

E(g(Xn)).

Combined we have shown that

lim sup
n→∞

E(g(Xn)) ≤ E(g(X)) ≤ lim inf
n→∞

E(g(Xn))

which implies that
lim

n→∞
E(g(Xn)) = E(g(X)).

This is exactly what is needed to establish (∗).

We end this lecture with an “almost”-converse.

Theorem. Suppose that Xn, n = 1, 2, 3, . . ., and X are all defined on a common probability
space. If Xn → X weakly and X is almost surely constant, then Xn → X in probability.

Proof. Suppose that X is almost surely equal to the constant a. The function

f(x) =
|x− a|

1 + |x− a|

is bounded and continuous. Since Xn → X weakly, we can use Theorem 18.1 to conclude
that E(f(Xn)) → E(f(X)) as n →∞. That is,

lim
n→∞

E(f(Xn)) = lim
n→∞

E
(

|Xn − a|
1 + |Xn − a|

)
= E(f(X)) = E(f(a)) = 0.

By Theorem 17.1, this implies that Xn → a in probability.
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Lecture #30: Weak Convergence

Reference. Chapter 18, pages 151–163

Last lecture we introduced the fifth mode of convergence, namely weak convergence or con-
vergence in distribution. As the name suggests, it is the weakest of the five modes. It has
the advantage, however, that unlike the other modes, random variables can converge in dis-
tribution even if those random variables are not defined on a common probability space. If
they happen to be defined on a common probability space, then we proved that convergence
in probability implies convergence in distribution.

Formally, suppose that X1, X2, X3, . . ., and X are all random variables. For each n, the
random variable Xn : (Ωn,An, Pn) → (R,B) and X : (Ω,A, P ) → (R,B).

Definition. We say that Xn converges weakly to X (or that Xn converges in distribution to
X or that Xn converges in law to X) if

lim
n→∞

∫
R

f(x)PXn(dx) =

∫
R

f(x)PX(dx)

for every bounded, continuous function f : R → R.

We also indicated last lecture that this definition is difficult to work with. Since the dis-
tribution function characterizes the law of a random variable, it seems reasonable that we
should be able to deduce weak convergence from convergence of distribution functions.

Theorem. The random variables Xn → X in distribution if and only if

lim
n→∞

FXn(x) = FX(x)

for all x ∈ D where
D = {x : FX(x−) = FX(x)}

denotes the continuity set of FX .

Proof. See pages 153–155 for a complete proof.

This theorem says that in order for random variables Xn to converge in distribution to X
it is necessary and sufficient for their distribution functions to converge for all those x at
which FX is continuous.

Example. Suppose that Xn, n = 1, 2, 3, . . ., has density function

fn(x) =
n

π(1 + n2x2)
, −∞ < x < ∞.
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We showed last lecture that if Xn are all defined on a common probability space, then
Xn → 0 in distribution. Notice that the distribution function of Xn is given by

FXn(x) = P{Xn ≤ x} =

∫ x

−∞
fn(u) du =

∫ x

−∞

n

π(1 + n2u2)
du =

1

2
+

1

π
arctan(nx)

while the distribution function of X = 0 is given by

FX(x) =

{
0, if x < 0,

1, if x ≥ 0.

Notice that if x = 0 is fixed, then

lim
n→∞

FXn(0) = lim
n→∞

[
1

2
+

1

π
arctan(0)

]
=

1

2

which does not equal FX(0). This does not contradict the convergence in distribution result
obtained last lecture since x = 0 is not in D, the continuity set of FX .

We do note that if x < 0 is fixed, then

lim
n→∞

FXn(x) = lim
n→∞

[
1

2
+

1

π
arctan(nx)

]
=

1

2
− 1

2
= 0

while if x > 0 is fixed, then

lim
n→∞

FXn(x) = lim
n→∞

[
1

2
+

1

π
arctan(nx)

]
=

1

2
+

1

2
= 1.

That is, FXn(x) → FX(x) for all x ∈ D and so we can conclude directly from the previous
theorem that Xn → 0 in distribution. (Recall that last class we showed that Xn → 0 in
probability which allowed us to conclude that Xn → 0 in distribution.)

Example. Suppose that Xn, n = 1, 2, 3, . . ., are defined by

P{Xn = n} = P{Xn = −n} =
1

2
.

The distribution function of Xn is given by

FXn(x) = P{Xn ≤ x} =


0, if x < −n,
1
2
, if −n ≤ x < n,

1, if x ≥ n.

Hence, if x ∈ R is fixed, then as n →∞, we have

lim
n→∞

FXn(x) =
1

2
.

Since F (x) = 1/2, −∞ < x < ∞, does not define a legitimate distribution function, we see
from the previous theorem that it is not possible for Xn to converge in distribution.
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Example. Suppose that Ωn = [−n, n], An = B(Ωn), and Pn is the uniform probability
measure on Ωn so that Pn has density function

fn(x) =
1

2n
· 1[−n,n](x).

Notice that as n gets larger, the height 1/2n gets smaller. In other words, as n increases, the
uniform distribution needs to spread itself thinner and thinner in order to remain legitimate.
Also notice that as n →∞, we have fn(x) → 0. If we now define the random variables Xn,
n = 1, 2, 3, . . ., by setting

Xn(ω) = ω for ω ∈ Ωn,

then it should be clear that Xn does not converge in distribution. Indeed, since Xn is the
uniform distribution on [−n, n], the “limiting distribution” should be uniform on (−∞,∞).
Since (−∞,∞) cannot support a uniform distribution, it makes sense that Xn does not
converge in distribution. Formally, we can use the previous theorem to prove that this is the
case. Notice that the distribution function of Xn is given by

FXn(x) = Pn{Xn ≤ x} =


0, if x < −n,
x+n
2n

, if −n ≤ x ≤ n,

1, if x > n.

Hence, if x ∈ R is fixed, then we find

lim
n→∞

FXn(x) = lim
n→∞

x + n

2n
=

1

2
.

Thus, the only possible limit is F (x) = 1/2 which is not a legitimate distribution function
and so we conclude that Xn does not converge in distribution.

Remark. Even though the random variables Xn in the previous examples do not converge
weakly, we see that the distribution functions still converge (albeit not to a distribution
function). As such, some authors say that Xn converges vaguely to the pseudo-distribution
function F (x) = 1/2. (And such authors then define vague convergence to be weaker than
weak convergence.)

Remark. There are two other technical theorems proved in Chapter 18. Theorem 18.6 is
a form of the Helly Selection Principle and Theorem 18.8 is a form of Slutsky’s Theorem
which is sometimes useful in statistics.

We end this lecture with a characterization of convergence in distribution for discrete random
variables.

Theorem. Suppose that Xn, n = 1, 2, 3, . . ., and X are random variables with at most
countably many values. It then follows that Xn → X in distribution if and only if

lim
n→∞

P{Xn = j} = P{X = j}

for every j in the state space of Xn, n = 1, 2, 3, . . ., and X.

Proof. See pages 161–162.
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Example. Suppose that λn, n = 1, 2, 3, . . ., is a sequence of positive real numbers converging
to λ > 0. If Xn has a Poisson(λn) distribution so that

P{Xn = j} =
λj

ne
−λn

j!
, j = 0, 1, 2, 3, . . . ,

then Xn → X in distribution where X has a Poisson(λ) distribution

P{X = j} =
λje−λ

j!
, j = 0, 1, 2, 3, . . . .

Example. Suppose that pn, n = 1, 2, 3, . . ., is a sequence of real numbers with 0 ≤ pn ≤ 1
converging to p ∈ [0, 1]. If N is fixed and Xn has a Binomial(N, pn) distribution so that

P{Xn = j} =

(
N

j

)
pj

n(1− pn)N−j, j = 0, 1, . . . , N,

then Xn → X in distribution where X has a Binomial(N, p) distribution

P{X = j} =

(
N

j

)
pj(1− p)N−j, j = 0, 1, . . . , N.
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Lecture #31: Characteristic Functions

Reference. Chapter 13, pages 103–109

In Chapter 13, things are proved for Rn-valued random variables. We only consider R-valued
random variables.

Notation. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors in Rn, then

x · y = 〈x, y〉 =
n∑

i=1

xiyi

denotes the dot product (or scalar product) of x and y. In the special case of R1, the dot
product

x · y = 〈x, y〉 = xy

reduces to usual multiplication.

Definition. If X is a random variable, then the characteristic function of X is given by

ϕX(u) = E(eiuX), u ∈ R.

Note that ϕX : R → C is given by u 7→ E(eiuX).

Recall. The imaginary unit i satisfies i2 = −1 and the complex numbers are the set

C = {z = x + iy : x ∈ R, y ∈ R}.

Thus, if z = x + iy ∈ C, we can identify z with the ordered pair (x, y) ∈ R2, and so we
sometimes say that C ∼= R2, i.e., that C and R2 are isomorphic.

If z = x+ iy ∈ C, then the imaginary part of z is =(z) = y and the real part of z is <(z) = x.
The complex conjugate of z is

z = x− iy

and the complex modulus (or absolute value) of z satisfies

|z|2 = zz = (x + iy)(x− iy) = x2 − i2y2 = x2 + y2.

The complex exponential is defined by

eiθ = cos(θ) + i sin(θ), θ ∈ R,

and satisfies
|eiθ|2 = | cos(θ) + i sin(θ)|2 = cos2(θ) + sin2(θ) = 1.

This previous result leads to the most important fact about characteristic functions, namely
that they always exist.
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Fact. If X is a random variable, then ϕX(u) exists for all u ∈ R.

Proof. Let u ∈ R so that

|ϕX(u)| = |E(eiuX)| ≤ E|eiuX | = E(1) = 1.

This proves the claim.

Fact. If X is a random variable, then ϕX(0) = 1.

Proof. By definition,
ϕX(0) = E(ei·0·X) = E(1) = 1

as required.

Remark. If you remember moment generating functions from undergraduate probability,
then you will see the similarity between characteristic functions and moment generating
functions. In fact, the moment generating function of X is given by

mX(t) = E(etX), t ∈ R.

Note that mX : R → R. The problem, however, is that moment generating functions do not
always exist.

Example. Suppose that X is exponentially distributed with parameter λ > 0 so that the
density of X is

f(x) = λe−λx, x > 0.

The moment generating function of X is

mX(t) = E(etX) =

∫ ∞

0

etx · λe−λx dx = λ

∫ ∞

0

exp {−x(λ− t)} dx =
λ

λ− t
.

Note that mX(t) is well-defined only if t < λ.

Remark. In undergraduate probability you were probably told the facts that

dk

dtk
mX(t)

∣∣∣∣
t=0

= E(Xk)

(i.e., the moment generating function generates moments) and that “the moment generating
function characterizes the random variable.” While the first fact is true provided the moment
generating function is well-defined, the second fact is not quite true. It is unfortunate that
moment generating functions are taught at all since the characteristic function is better at
accomplishing the tasks that the moment generating functions was designed for!

Theorem. If X : (Ω,A, P ) → (R,B) is a random variable with E(|X|k) < ∞ for some
k ∈ N, then ϕX has derivatives up to order k which are continuous and satisfy

dk

duk
ϕX(u) = ikE(XkeiuX).

In particular,
dk

duk
ϕX(u)

∣∣∣∣
u=0

= ikE(Xk).
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Theorem. The characteristic function characterizes the random variable. That is, if ϕX(u) =
ϕY (u) for all u ∈ R, then PX = P Y . (In other words, X and Y are equal in distribution.)

We will prove these important results later. For now, we mention a couple of examples where
we can explicitly calculate the characteristic function. In general, computing characteristic
functions is not as easy as computing moment generating functions since care needs to be
shown with complex integrals. The usual technique is to write the real and imaginary parts
separately.

Theorem. If X is a random variable with characteristic function ϕ(u) and Y = aX + b
with a, b ∈ R, then ϕY (u) = eiubϕX(au).

Proof. By definition,

ϕY (u) = E(eiuY ) = E(eiu(aX+b)) = eiubE(eiuaX) = eiubϕX(au)

and the result is proved.

Theorem. If X1, X2, . . . , Xn are independent random variables and

Sn = X1 + X2 + · · ·+ Xn,

then

ϕSn(u) =
n∏

i=1

ϕXi
(u).

Furthermore, if X1, X2, . . . , Xn are identically distributed, then

ϕSn(u) = [ϕX1(u)]n .

Proof. By definition,

ϕSn(u) = E(eiuSn) = E(eiu(X1+···+Xn)) = E(eiuX1 · · · eiuXn) = E(eiuX1) · · ·E(eiuXn) =
n∏

i=1

ϕXi
(u)

where the second-to-last equality follows from the fact that Xi are independent. If Xi are
also identically distributed, then ϕXi

(u) = ϕX1(u) for all i and so

ϕSn(u) = [ϕX1(u)]n

as required.

Example. Suppose that X is exponentially distributed with parameter λ > 0 so that the
density of X is

f(x) = λe−λx, x > 0.

The characteristic function of X is given by

ϕX(u) = E(eiuX) =

∫ ∞

0

eiux · λe−λx dx = λ

∫ ∞

0

exp {−λx + iux} dx.
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In order to evaluate this integral, we write

exp {−λx + iux} = e−λx cos(ux) + ie−λx sin(ux)

so that ∫ ∞

0

exp {−λx + iux} dx =

∫ ∞

0

e−λx cos(ux) dx + i

∫ ∞

0

e−λx sin(ux) dx.

Integration by parts shows that∫ ∞

0

e−λx cos(ux) dx =
1

λ2 + u2
e−λx [−λ cos(ux) + u sin(ux)]

∣∣∣∣∞
0

and ∫ ∞

0

e−λx sin(ux) dx =
1

λ2 + u2
e−λx [−λ sin(ux)− u cos(ux)]

∣∣∣∣∞
0

which combined give

ϕX(u) =
λ2

λ2 + u2
− i

λu

λ2 + u2
=

λ

λ− iu
.

Note that ϕX(u) exists for all u ∈ R.

Example. If X has a Bernoulli(p) distribution, then

ϕX(u) = E(eiuX) = eiu·1P{X = 1}+ eiu·0P{X = 0} = peiu + 1− p.

Example. If X has a Binomial(n, p) distribution, then

ϕX(u) = [peiu + 1− p]n.

Example. If X has a Uniform[−a, a] distribution, then

ϕX(u) =
sin(au)

au
.

Note that ϕX(0) = 1 as expected.
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Lecture #32: The Primary Limit Theorems

The Central Limit Theorem, along with the weak and strong laws of large numbers, are
primary results in the theory of probability and statistics. In fact, the Central Limit Theorem
has been called the Fundamental Theorem of Statistics.

The Weak and Strong Laws of Large Numbers

Reference. Chapter 20, pages 173–177

Suppose that X1, X2, . . . are independent and identically distributed random variables. The
random variable Xn defined by

Xn =
1

n

n∑
j=1

Xj =
X1 + · · ·+ Xn

n

is sometimes called the sample mean, and much of the theory of statistical inference is
concerned with the behaviour of the sample mean. In particular, confidence intervals and
hypothesis tests are often based on approximate and asymptotic results for the sample mean.
The mathematical basis for such results is the law of large numbers which asserts that the
sample mean Xn converges to the population mean. As we know, there are several modes
of convergence that one can consider. The weak law of large numbers provides convergence
in probability and the strong law of large numbers provides convergence almost surely.

Of course, convergence almost surely implies convergence in probability, and so the weak law
of large numbers follows immediately from the strong law of large numbers. However, the
proof serves as a nice warm-up example.

Theorem (Weak Law of Large Numbers). Suppose that X1, X2, . . . are independent and
identically distributed L2 random variables with common mean E(X1) = µ. If Xn denotes
the sample mean as above, then

Xn =
X1 + · · ·+ Xn

n
→ µ in probability

as n →∞.

Proof. Write σ2 for the common variance of X1, X2, . . ., and let Sn = X1 + · · · + Xn − nµ.
In order to prove that Xn → µ in probability, it suffices to show that

Sn

n
→ 0 in probability

as n →∞. Note that E(Sn) = 0 and since X1, X2, . . . are independent, we see that

E(S2
n) = Var(Sn) =

n∑
j=1

Var(Xj) = nσ2.
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Therefore, if ε > 0 is fixed, then Chebyshev’s inequality implies that

P{|Sn| > εn} ≤ E(S2
n)

n2ε2
=

σ2

nε2

and so we conclude that

lim
n→∞

P

{∣∣∣∣Sn

n

∣∣∣∣ > ε

}
≤ lim

n→∞

σ2

nε2
= 0.

That is, Xn → µ in probability as n →∞ and the proof is complete.

Note that in our proof of the weak law we derived

P{|Sn| > εn} ≤ σ2

nε2
.

Since complete convergence implies convergence almost surely, we see that we could establish
almost sure convergence if the previous expression were summable in n. Unfortunately, it is
not. However, if we relax the hypotheses slightly then we can derive the strong law of large
numbers via this technique.

Theorem (Strong Law of Large Numbers). Suppose that X1, X2, . . . are independent and
identically distributed L4 random variables with common mean E(X1) = µ. If Xn denotes
the sample mean as above, then

Xn =
X1 + · · ·+ Xn

n
→ µ almost surely

as n →∞.

Proof. As above, write σ2 for the common variance of the Xj and let

Sn = X1 + · · ·+ Xn − nµ.

It then follows from Markov’s inequality that

P{|Sn| > εn} ≤ E(S4
n)

n4ε4
.

Our goal now is to estimate E(S4
n) and show that the previous expression is summable in n.

Therefore, if we write Yi = Xi − µ, then

S4
n = (Y1 + Y2 + · · ·+ Yn)4

=
n∑

j=1

Y 4
j +

∑
i6=j

Y 3
i Yj +

∑
i6=j

Y 2
i Y 2

j +
∑

i6=j 6=k

Y 2
i YjYk +

∑
i6=j 6=k 6=`

YiYjYkY`.

Since Y1, Y2, . . . are independent with E(Y1) = 0, we see that

E

(∑
i6=j

Y 3
i Yj

)
=
∑
i6=j

E(Y 3
i Yj) =

∑
i6=j

E(Y 3
i )E(Yj) = 0
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as well as

E

(∑
i6=j 6=k

Y 2
i YjYk

)
=
∑

i6=j 6=k

E(Y 2
i )E(Yj)E(Yk) = 0

and

E

( ∑
i6=j 6=k 6=`

YiYjYkY`

)
=

∑
i6=j 6=k 6=`

E(Yi)E(Yj)E(Yk)E(Y`) = 0.

This gives

E(S4
n) =

n∑
j=1

E(Y 4
j ) +

∑
i6=j

E(Y 2
i )E(Y 2

j ).

Since Xj ∈ L4, we see that Yj ∈ L4 and Sn ∈ L4. Thus, if we write E(Y 4
j ) = M , then since

E(Y 2
j ) = σ2, we see that there exists some constant C such that

E(S4
n) = nM +

(
4

2

)
n(n− 1)

2
σ4 ≤ Cn2.

Note that we can take C = M + 3σ4 since

nM +

(
4

2

)
n(n− 1)

2
σ4 = nM + 3n2σ4 − 3nσ4 ≤ nM + 3n2σ4 ≤ n2(M + 3σ4).

Combined with the above, we see that

P{|Sn| > εn} ≤ E(S4
n)

n4ε4
≤ Cn2

n4ε4
=

C

ε4
· 1

n2

and so
∞∑

n=1

P{|Sn| > εn} ≤ C

ε4

∞∑
n=1

1

n2
< ∞.

In other words, Xn → µ completely as n →∞ and so we see that Xn → µ almost surely as
n →∞.

Remark. The weakest possible hypothesis for the strong law of the large numbers is to just
assume that X1, X2, . . . are independent and identically distributed with E|X1| < ∞. That
is, to assume that Xj ∈ L1. It turns out that the theorem is true under this hypothesis, but
the proof is much more detailed. We will return to this point later.

The Central Limit Theorem

Reference. Chapter 21, pages 181–185

Last lecture we defined characteristic functions and stated their most important properties.
If X : (Ω,A, P ) → (R,B) is a random variable, then the characteristic function of X is the
function ϕX : R → C given by

ϕX(u) = E(eiuX), u ∈ R.
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As shown last lecture, |ϕX(u)| ≤ 1 and so characteristic functions always exist. The two
most important facts about characteristic functions are the following.

• If E|X|k < ∞, then ϕX(u) has derivatives up to order k and

dk

duk
ϕX(u) = ikE(XkeiuX).

• If X and Y are random variables with ϕX(u) = ϕY (u) for all u, then PX = P Y so that
X and Y are equal in distribution.

There is one more extremely useful result which tells us when we can deduce convergence in
distribution from convergence of characteristic functions. This result is a special case of a
more general result due to Lévy.

Theorem (Lévy’s Continuity Theorem). Suppose that Xn, n = 1, 2, 3, . . ., is a sequence of
random variables with corresponding characteristic functions ϕn. Suppose further that

g(u) = lim
n→∞

ϕn(u) for all u ∈ R.

If g is continuous at 0, then g is the characteristic function of some random variables X
(that is, g = ϕX) and Xn → X weakly.

Having discussed convergence in distribution and characteristic functions, we are now in a
position to state and prove the Central Limit Theorem. We will defer the proofs of the two
previous facts to a later lecture in order to first prove the Central Limit Theorem since the
proof serves as a nice illustration of the ideas we have recently discussed.

Theorem. Suppose that X1, X2, . . . are independent and identically distributed L2 random
variables. If we write E(X1) = µ and Var(X1) = σ2 for their common mean and variance,
respectively, then as n →∞,

X1 + · · ·+ Xn − nµ

σ
√

n
→ Z

in distribution where Z is normally distributed with mean 0 and variance 1.

In order to prove this result, we need to use Exercise 14.4 which we state as a Lemma.

Lemma. If X is an L2 random variable with E(X) = 0 and Var(X) = σ2, then

ϕX(u) = 1− 1

2
σ2u2 + o(u2) as u → 0.

Recall. A function h(t) is said to be little-o of g(t), written h(t) = o(g(t)), if

lim
t→0+

h(t)

g(t)
= 0.
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Proof of the Central Limit Theorem. For each n = 1, 2, 3, . . ., let

Yn =
Xn − µ

σ

so that Y1, Y2, . . . , are independent and identically distributed with E(Y1) = 0 and Var(Y1) =
1. Furthermore, if we define Sn by

Sn =
Y1 + · · ·+ Yn√

n
,

then

Sn =
X1 + · · ·+ Xn − nµ

σ
√

n

and so the theorem will be proved if we can show Sn → Z in distribution. Using our results
from last lecture on the characteristic functions of linear transformations, we find

ϕSn(u) = E(eiuSn) = E(e
i u√

n
(Y1+···+Yn)

) = ϕY1(u/
√

n) · · ·ϕYn(u/
√

n) =
[
ϕY1(u/

√
n)
]n

.

Using the previous lemma, we find

ϕSn(u) =
[
ϕY1(u/

√
n)
]n

=

[
1− u2

2n
+ o(u2/n)

]n

and so taking the limit as n →∞ gives

lim
n→∞

ϕSn(u) = lim
n→∞

[
1− u2

2n
+ o(u2/n)

]n

= lim
n→∞

[
1− u2

2n

]n

= exp

{
−u2

2

}
by the definition of e as a limit. Thus, if g(u) = exp{−u2/2}, then g is clearly continuous at
0 and so g must be the characteristic function of some random variable. We now note that if
Z is a normal random variable with mean 0 and variance 1, then the characteristic function
of Z is ϕZ(u) = exp{−u2/2}. Thus, by Lévy’s continuity theorem, we see that Sn → Z in
distribution. In other words,

X1 + · · ·+ Xn − nµ

σ
√

n
→ Z

in distribution as n →∞ and the theorem is proved.
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Lecture #33: Further Results on Characteristic Functions

Reference. Chapter 13 pages 103–109; Chapter 14 pages 111–113

Last lecture we proved the Central Limit Theorem whose proof required an analysis of
characteristic functions. The purpose of this lecture is to prove several of the facts about
characteristic functions that we have been using.

The first result tells us that characteristic functions can be used to calculate moments. Recall
that if X is a random variable, then its characteristic function ϕX : R → C is defined by

ϕX(u) = E(eiuX).

Theorem. If X ∈ L1, then
d

du
ϕX(u) = iE(XeiuX).

Proof. Using the definition of derivative, we find

d

du
ϕX(u) =

d

du
E(eiuX) =

d

du

∫
R

eiuxPX(dx)

= lim
h→0

1

h

[∫
R

ei(u+h)xPX(dx)−
∫

R
eiuxPX(dx)

]
= lim

h→0

1

h

∫
R

eiux(eixh − 1)PX(dx)

= lim
h→0

∫
R

eiux

(
eixh − 1

h

)
PX(dx).

We would now like to interchange the integral and the limit. In order to do so, we will use
the Dominated Convergence Theorem. To begin, note that∣∣∣∣eiux

(
eixh − 1

h

)∣∣∣∣ ≤ ∣∣∣∣eixh − 1

h

∣∣∣∣ ≤ 2|ixh|
h

= 2|x|

using Taylor’s Theorem; that is, |eθ − 1| ≤ 2|θ|. (You are asked to prove this in Exer-
cise 15.14.) Also note that ∫

R
|x|PX(dx) = E(|X|) < ∞

by the assumption that X ∈ L1. We can now apply the Dominated Convergence Theorem
to conclude that

lim
h→0

∫
R

eiux

(
eixh − 1

h

)
PX(dx) =

∫
R

eiux lim
h→0

(
eixh − 1

h

)
PX(dx) = i

∫
R

xeiuxPX(dx)

and the proof is complete.
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It now follows immediately that if X ∈ Lk, then ϕX has derivatives up to order k which
satisfy

dk

duk
ϕX(u) = ikE(XkeiuX).

Theorem. If Xn → X in distribution, then ϕXn(u) → ϕX(u).

Proof. Since Xn → X in distribution, we know that∫
R

g(x)PXn(dx) →
∫

R
g(x)PX(dx)

for every bounded, continuous function g. In other words,

lim
n→∞

E(g(Xn)) = E(g(X))

for every such g. If we choose g(x) = eiux, then we see that g is continuous and satisfies
|g(x)| ≤ 1, and so

lim
n→∞

E(eiuXn) = E(eiuX).

Since ϕXn(u) = E(eiuXn) and ϕX(u) = E(eiuX), the result follows.

Remark. The object that we call the characteristic function, namely

ϕX(u) = E(eiuX) =

∫
R

eiuxPX(dx),

is known in functional analysis as the Fourier transform of the measure PX . It is sometimes
written as

P̂X(u) =

∫
R

eiuxPX(dx).

In particular, theorems about uniqueness of characteristic functions can be phrased in terms
of Fourier transforms and proved using results from functional analysis.

Theorem. If X, Y are random variables with ϕX(u) = ϕY (u) for all u, then PX = P Y .
That is, X and Y are equal in distribution.

Proof. The proof of this theorem requires the Stone-Weierstrass theorem and is given by
Theorem 14.1 on pages 111–112.

Example. Suppose that X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are independent. Determine

the distribution of X1 + X2.

Solution. This problem can be solved using characteristic functions. We know that the
characteristic function of a N (µ, σ2) random variable is given by

ϕ(u) = exp

{
iµu− σ2u2

2

}
.
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We also know that
ϕX1+X2(u) = ϕX1(u)ϕX2(u)

since X1 and X2 are independent. Therefore,

ϕX1+X2(u) = exp

{
iµ1u−

σ2
1u

2

2

}
exp

{
iµ2u−

σ2
2u

2

2

}
= exp

{
i(µ1 + µ2)u−

(σ2
1 + σ2

2)u
2

2

}
which implies that X1 + X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2).
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Lecture #34: Conditional Expectation

Reference. Chapter 23 pages 197–207

In order to motivate the definition and construction of conditional expectation, we will recall
the definition from undergraduate probability. Suppose that (X, Y ) are jointly distributed
continuous random variables with joint density function f(x, y). We define the conditional
density of Y given X = x by setting

fY |X=x(y) =
f(x, y)

fX(x)

where

fX(x) =

∫ ∞

−∞
f(x, y) dy

is the marginal density for X. The conditional expectation of Y given X = x is then defined
to be

E(Y |X = x) =

∫ ∞

−∞
yfY |X=x(y) dy =

∫∞
−∞ yf(x, y) dy

fX(x)
=

∫∞
−∞ yf(x, y) dy∫∞
−∞ f(x, y) dy

.

Example. Suppose that (X, Y ) are continuous random variables with joint density function

f(x, y) =

{
12xy, if 0 < y < 1 and 0 < x < y2 < 1,

0, otherwise.

We find

fX(x) =

∫ 1

√
x

12xy dy = 6x(1− x), 0 < x < 1,

so that

fY |X=x(y) =
f(x, y)

fX(x)
=

2y

1− x
,
√

x < y < 1.

Thus, if 0 < x < 1 is fixed, then the conditional expectation of Y given X = x is

E(Y |X = x) =

∫ 1

√
x

y · 2y

1− x
dy =

2− 2x3/2

3(1− x)
.

In general (and as seen in the previous example), the conditional expectation depends on
the value of X observed so that E(Y |X = x) can be regarded as a function of x. That is,
we will write

E(Y |X = x) = ϕ(x)

for some function ϕ. Furthermore, we see that if we view the conditional expectation not as
a function of the observed x but rather as a function of the random X, we have

E(Y |X) = ϕ(X).

Thus, the conditional expectation is really a random variable.
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Example (continued). We have

ϕ(x) =
2− 2x3/2

3(1− x)

and so

E(Y |X) = ϕ(X) =
2− 2X3/2

3(1−X)
.

And so motivated by our experience from undergraduate probability, we assert that the
conditional expectation has the following properties.

Claim. The conditional expectation E(Y |X) is a function of the random variable X and so
it too is a random variable. That is, E(Y |X) = ϕ(X) for some function of X.

Claim. The random variable E(Y |X) is measurable with respect to (the σ-algebra generated
by) X.

We now return to undergraduate probability to develop our next properties of conditional
expectation.

Example. Suppose that (X, Y ) are continuous random variables with joint density function
f(x, y). Consider the conditional expectation E(Y |X) = ϕ(X) defined by ϕ(x) = E(Y |X =
x). Since E(Y |X) is a random variable, we can calculate its expectation. That is,

E(E(Y |X)) = E(ϕ(X)) =

∫ ∞

−∞
ϕ(x)fX(x) dx =

∫ ∞

−∞
E(Y |X = x)fX(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
y fY |X=x(y) dyfX(x) dx =

∫ ∞

−∞

∫ ∞

−∞
y

f(x, y)

fX(x)
· fX(x) dy dx

=

∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dy dx =

∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dx dy

=

∫ ∞

−∞
y

[∫ ∞

−∞
f(x, y) dx

]
dy =

∫ ∞

−∞
yfY (y) dy = E(Y ).

We will now show that

• if g : R → R is a function, then E(g(X) Y |X) = g(X)E(Y |X) (taking out what is
known), and

• E(Y |X) = E(Y ) if X and Y are independent.

By definition, to verify the equality E(g(X) Y |X) = g(X)E(Y |X) means that we must verify
that E(g(X) Y |X = x) = g(x)E(Y |X = x). Therefore, we find

E(g(X) Y |X = x) =

∫ ∞

−∞
g(x)yfY |X=x(y) dy = g(x)

∫ ∞

−∞
yfY |X=x(y) dy = g(x)E(Y |X = x).
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If X and Y are independent, then

E(Y |X = x) =

∫ ∞

−∞
yfY |X=x(y) dy =

∫ ∞

−∞
y
f(x, y)

fX(x)
dy =

∫ ∞

−∞
y
fX(x)fY (y)

fX(x)
dy

=

∫ ∞

−∞
yfY (y) dy

= E(Y ).

Thus, we are led to two more assertions.

Claim. The conditional expectation E(Y |X) has expected value

E(E(Y |X)) = E(Y ).

Claim. If g : R → R is a measurable function, then

E(g(X) Y |X) = g(X)E(Y |X).

Hence, we are now ready to define the conditional expectation, and we state the fundamental
result which is originally due to Kolmogorov in 1933.

Theorem. Suppose that (Ω,A, P ) is a probability space, and let Y be a real-valued L1 random
variable. Let F be a sub-σ-algebra of A. There exists a random variable Z such that

(i) Z is F-measurable, i.e., Z : (Ω,F , P ) → (R,B),

(ii) E(|Z|) < ∞, i.e.,
∫

Ω
|Z| dP < ∞, and

(iii) for every set A ∈ F , we have

E(Z1A) = E(Y 1A).

Moreover, Z is almost surely unique. That is, if Z̃ is another random variable with these
properties, then P{Z̃ = Z} = 1. We call Z (a version of) the conditional expectation of Y
given F and write

Z = E(Y |F).

Remark. This definition is given for any sub-σ-algebra of A. In particular, if X is another
random variable on (Ω,A, P ), then σ(X) ⊆ A and so it makes sense to discuss

E(Y |σ(X)) =: E(Y |X).

Thus, our notation is consistent with undergraduate usage.

We end with one more result from undergraduate probability.

Example. Suppose that (X, Y ) are continuous random variables with joint density f(x, y).
If A is an event of the form A = {a ≤ X ≤ b}, then E(E(Y |X)1A) = E(Y 1A).
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Solution. Since E(Y |X) is σ(X)-measurable, we can write E(Y |X) = ϕ(X) for some func-
tion ϕ. Thus, by the definition of expectation,

E(E(Y |X)1A) = E(ϕ(X)1A) =

∫ ∞

−∞
ϕ(x)1A(x) fX(x) dx =

∫ b

a

ϕ(x) fX(x) dx.

However, by the definition of conditional expectation as above,

ϕ(x) = E(Y |X = x) =

∫∞
−∞ yf(x, y) dy

fX(x)
.

Substituting in gives

E(E(Y |X)1A) =

∫ b

a

ϕ(x) fX(x) dx =

∫ b

a

(∫∞
−∞ yf(x, y) dy

fX(x)

)
fX(x) dx

=

∫ b

a

∫ ∞

−∞
yf(x, y) dy dx (∗)

On the other hand,

E(Y 1A) =

∫ ∞

−∞
y1A(x)fY (y) dy =

∫ ∞

−∞

∫ ∞

−∞
y1A(x)f(x, y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
y1A(x)f(x, y) dy dx

=

∫ ∞

−∞
1A(x)

∫ ∞

−∞
yf(x, y) dy dx

=

∫ b

a

∫ ∞

−∞
yf(x, y) dy dx. (∗∗)

Thus, comparing (∗) and (∗∗) we conclude that

E(E(Y |X)1A) = E(Y 1A)

as required.

34–4



Statistics 851 (Winter 2008) April 11, 2008
Prof. Michael Kozdron

Lecture #35: Conditional Expectation

Reference. Chapter 23 pages 197–207

Recall that last lecture we introduced the concept of conditional expectation and stated the
fundamental result originally due to Kolmogorov in 1933.

Theorem (Definition of Conditional Expectation). Suppose that (Ω,A, P ) is a probability
space, and let Y be a real-valued L1 random variable. Let F be a sub-σ-algebra of A. There
exists a random variable Z such that

(i) Z is F-measurable, i.e., Z : (Ω,F , P ) → (R,B),

(ii) E(|Z|) < ∞, i.e.,
∫

Ω
|Z| dP < ∞, and

(iii) for every set A ∈ F , we have

E(Z1A) = E(Y 1A).

Moreover, Z is almost surely unique. That is, if Z̃ is another random variable with these
properties, then P{Z̃ = Z} = 1. We call Z (a version of) the conditional expectation of Y
given F and write

Z = E(Y |F).

The proof that the conditional expectation is almost surely unique is relatively straightfor-
ward.

Theorem. Suppose that (Ω,A, P ) is a probability space and Y : (Ω,A, P ) → (R,B) is an L1

random variable. Let F be a sub-σ-algebra of A. If Z and Z̃ are versions of the conditional
expectation E(Y |F), then P (Z = Z̃) = 1. That is, the conditional expectation E(Y |F) is
almost surely unique.

Proof. Let Z and Z̃ be versions of E(Y |F). Therefore, Z, Z̃ ∈ L1(Ω,F , P ) and

E((Z − Z̃)1A) = 0 for every A ∈ F .

Suppose that Z and Z̃ are not almost surely equal and assume (without loss of generality)
that we have

P{Z > Z̃} > 0.

Since
{Z > Z̃ + n−1} ↑ {Z > Z̃}

we see that there exists an n such that

P{Z > Z̃ + n−1} > 0.
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However, Z and Z̃ are both F measurable and so it follows that {Z > Z̃ + n−1} ∈ F .
However, if we choose A = {Z > Z̃ + n−1} then

E((Z − Z̃)1A) = E((Z − Z̃)1{Z>Z̃+n−1}) ≥ n−1P{Z > Z̃ + n−1} > 0.

This contradicts the fact that E((Z − Z̃)1A) = 0 for every A ∈ F , and so we are forced to
conclude that Z = Z̃ almost surely.

The proof that the conditional expectation exists is a little more involved and requires the
results from Chapter 22 on L2 and Hilbert spaces. We will not discuss this material in
STAT 851 but rather assume it as given and accept that the conditional expectation exists.

We will now prove a number of results which give the most important properties of condi-
tional expectation. In particular, these show that conditional expectations often behave like
usual expectations.

Theorem. If Z = E(Y |F), then E(Z) = E(Y ).

Proof. This follows from (iii) by noting that Ω ∈ F since F is a σ-algebra. That is,

E(Z) = E(Z1Ω) = E(Y 1Ω) = E(Y )

and the proof is complete.

Theorem. If the random variable Y is F-measurable, then E(Y |F) = Y almost surely.

Proof. This follows immediately from the definition of conditional expectation.

Theorem (Linearity of Conditional Expectation). If Z1 is a version of E(Y1|F) and Z2 is
a version of E(Y2|F), then αZ1 + βZ2 is a version of E(αY1 + βY2|F). Informally, this says
that if Z1 = E(Y1|F) and Z2 = E(Y2|F), then

αZ1 + βZ2 = E(αY1 + βY2|F)

almost surely.

Proof. This result is also immediate from the definition of conditional expectation.

The proof of the next theorem is similar to the proof above of the almost sure uniqueness of
conditional expectation.

Theorem (Monotonicity of Conditional Expecation). If Y ≥ 0 almost surely, then E(Y |F) ≥
0 almost surely.

Proof. Let Z be a version of E(Y |F). Assume that Z is not almost surely greater than or
equal to 0 so that P{Z < 0} > 0. Thus, there exists some n such that

P{Z < −n−1} > 0.

If we set A = {Z < −n−1}, then A ∈ F so that

0 ≤ E(Y 1A) = E(Z1A) < −n−1P{A} < 0.

This is a contradiction and so we are forced to conclude that Z ≥ 0 almost surely.
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Corollary. If Y ≥ X almost surely, then E(Y |F) ≥ E(X|F) almost surely.

Theorem (Tower Property of Conditional Expectation). If G is a sub-σ-algebra of F , then

E( E(Y |F) | G) = E(Y |G)

almost surely.

Proof. This result, too, is essentially immediate from the definition of conditional expecta-
tion.

Theorem (“Taking out what is known”). If X is F-measurable and bounded, then

E(XY |F) = XE(Y |F)

almost surely.

Proof. This can be proved using the standard machine applied to X. It is left as an exercise.

Finally, we state without proof the analogues of the main results about interchanging limits
and expectations. Since conditional expectations are random variables, these are statements
about almost sure limits.

Theorem (Monotone Convergence). If Yn ≥ 0 for all n and Yn ↑ Y , then

lim
n→∞

E(Yn|F) = E(Y |F)

almost surely.

Theorem (Fatou’s Lemma). If Yn ≥ 0 for all n, then

E
(
lim inf
n→∞

Yn | F
)
≤ lim inf

n→∞
E(Yn|F)

almost surely.

Theorem (Dominated Convergence). Suppose X ∈ L1 and |Yn(ω)| ≤ X(ω) for all n. If
Yn → Y almost surely, then

lim
n→∞

E(Yn|F) = E(Y |F)

almost surely.

Example. Suppose that the random variable Y has a binomial distribution with parameters
p ∈ (0, 1) and n ∈ N. It is well-known that E(Y ) = pn. On the other hand, suppose that the
parameter N is a random integer. For instance, assume that N has a Poisson distribution
with parameter λ > 0. We now find that the conditional expectation E(Y |N) = pN . Since
N has mean E(N) = λ, we conclude that

E(Y ) = E(E(Y |N)) = E(pN) = pE(N) = pλ.
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We leave it as an exercise to show that

E(N |Y ) = Y + (1− p)λ.

Note that

E(N) = E(E(N |Y )) = E(Y + (1− p)λ) = E(Y ) + (1− p)λ = pλ + (1− p)λ = λ

as expected.
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Lecture #36: Introduction to Martingales

Reference. Chapter 24 pages 211–216

Suppose that (Ω,A, P ) is a probability space. An increasing sequence of sub-σ-algebras
F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ A is often called a filtration.

Example. If X0, X1, X2, . . . is a sequence of random variables on (Ω,A, P ) and we let Fj =
σ(X0, X1, . . . , Xj), then {Fn, n = 0, 1, 2, . . .} is a filtration often called the natural filtration.

Definition. A sequence X0, X1, X2, . . . of random variables is said to be a martingale with
respect to the filtration {Fn} if for every n = 0, 1, 2, . . .,

(i) E|Xn| < ∞,

(ii) Xn is Fn-measurable, and

(iii) E(Xn+1|Fn) = Xn.

Remark. If the filtration used is the natural one, then we sometimes write the third condi-
tion as

E(Xn+1|X0, X1, . . . , Xn) = Xn

instead.

Remark. The first two conditions in the definition of martingale are technically important.
However, it is really the third condition which “defines” a martingale.

Theorem. If {Xn, n = 1, 2, . . .} is a martingale, then E(Xn) = E(X0) for every n =
0, 1, 2, . . ..

Proof. Since
E(Xn+1) = E(E(Xn+1|Fn)) = E(Xn),

we can use induction to conclude that

E(Xn+1) = E(Xn) = E(Xn−1) = · · · = E(X0)

as required.

Example. Suppose that Y1, Y2, . . . are independent, identically distributed random variables
with P{Y1 = 1} = P{Y = −1} = 1/2. Let X0 = 0, and for n = 1, 2, . . ., define Xn =
Y1 + Y2 + · · · + Yn. The sequence {Xn, n = 0, 1, 2, . . .} is called a (simple, symmetric)
random walk (starting at 0). Random walks are the quintessential example of a discrete time
stochastic process, and are the subject of much current research. We begin by computing
E(Xn) and Var(Xn). Note that

(Y1 + Y2 + · · ·+ Yn)2 = Y 2
1 + Y 2

2 + · · ·+ Y 2
n +

∑
i6=j

YiYj.
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Since E(Y1) = 0 and Var(Y1) = E(Y 2
1 ) = 1, we find

E(Xn) = E(Y1 + Y2 + · · ·+ Yn) = E(Y1) + E(Y2) + · · ·+ E(Yn) = 0

and

Var(Xn) = E(X2
n) = E(Y1 + Y2 + · · ·+ Yn)2 = E(Y 2

1 ) + E(Y 2
2 ) + · · ·+ E(Y 2

n ) +
∑
i6=j

E(YiYj)

= 1 + 1 + · · ·+ 1 + 0

= n

since E(YiYj) = E(Yi)E(Yj) when i 6= j because of the assumed independence of Y1, Y2, . . ..

We now show that the random walk {Xn, n = 0, 1, 2, . . .} is a martingale with respect to the
natural filtration. To see that {Xn} satisfies the first two conditions, note that Xn ∈ L2 and
so we necessarily have Xn ∈ L1 for each n. Furthermore, Xn is by definition measurable
with respect to Fn = σ(X0, X1, . . . , Xn). As for the third condition, notice that

E(Xn+1|Fn) = E(Yn+1 + Xn|Fn)

= E(Yn+1|Fn) + E(Xn|Fn).

Since Yn+1 is independent of X1, X2, . . . , Xn we conclude that

E(Yn+1|Fn) = E(Yn+1) = 0.

If we condition on X1, X2, . . . , Xn then Xn is known and so

E(Xn|Fn) = Xn.

Combined we conclude

E(Xn+1|Fn) = E(Yn+1|Fn) + E(Xn|Fn) = 0 + Xn = Xn

which proves that {Xn, n = 0, 1, 2, . . .} is a martingale.

Next we show that {X2
n − n, n = 0, 1, 2, . . .} is also a martingale with respect to the natural

filtration. In other words, if we let Mn = X2
n−n, then we must show that E(Mn+1|Fn) = Mn.

Clearly Mn is Fn-measurable and satisfies

E|Mn| ≤ E(X2
n) + n = 2n < ∞.

As for the third condition, notice that

E(X2
n+1|Fn) = E((Yn+1 + Xn)2|Fn)

= E(Y 2
n+1|Fn) + 2E(Yn+1Xn|Fn) + E(X2

n|Fn).

However,

• E(Y 2
n+1|Fn) = E(Y 2

n+1) = 1,
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• E(Yn+1Xn|Fn) = XnE(Yn+1|Fn) = XnE(Yn+1) = 0, and

• E(X2
n|Fn) = X2

n

from which we conclude that
E(X2

n+1|Fn) = X2
n + 1.

Therefore,

E(Mn+1|Fn) = E(X2
n+1 − (n + 1)|Fn)

= E(X2
n+1|Fn)− (n + 1)

= X2
n + 1− (n + 1)

= X2
n − n

= Mn

and so we conclude that {Mn, n = 0, 1, 2, . . .} = {X2
n − n, n = 0, 1, 2, . . .} is a martingale.

Gambler’s Ruin for Random Walk

Suppose that {Xn, n = 0, 1, 2, . . .} is a martingale. As shown above,

E(Xn) = E(Xn−1) = · · · = E(X1) = E(X0)

which, in other words, says that a martingale has stable expectation. The fact that

E(Xn) = E(X0) (∗)

is extremely useful as the following example shows.

Example. Suppose that {Sn, n = 0, 1, 2, . . .} is a simple random walk starting from 0. As we
have already shown, both {Sn, n = 0, 1, 2, . . .} and {S2

n − n, n = 0, 1, 2, . . .} are martingales.
Hence,

E(S2
n − n) = E(S2

0 − 0) = 0 and so E(S2
n) = n.

Suppose now that T is a stopping time. The question of whether or not we obtain an
expression like (∗) by replacing n with T is very deep.

Example. Suppose that {Sn, n = 0, 1, 2, . . .} is a simple random walk starting from 0. Let
T denote the first time that the simple random walk reaches 1. Since Sn is a martingale, we
know that

E(Sn) = E(S0) = 0.

However, by definition, ST = 1 and so

E(ST ) = 1 6= E(S0).

In order to obtain E(XT ) = E(X0), we need more structure on T . The following result
provides such a structure.
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Theorem (Doob’s Optional Stopping Theorem). Suppose that {Xn, n = 0, 1, 2, . . .} is a
martingale with the property that there exists a K < ∞ with |Xn| < K for all n. (That
is, suppose that {Xn, n = 0, 1, . . .} is uniformly bounded.) If T is a stopping time with
P{T < ∞} = 1, then

E(XT ) = E(X0).

Example. Suppose that {Sn, n = 0, 1, 2, . . .} is a simple random walk except that it starts
at S0 = x. Let T denote the first time that the SRW reaches level N or 0. Note that
|Sn| ≤ N for all n and that this stopping time T satisfies P{T < ∞} = 1. Therefore, by the
optional stopping theorem,

E(ST ) = E(S0) = x.

However, we can calculate

E(ST ) = 0 · P{ST = 0}+ N · P{ST = N}.

This implies

N · P{ST = N} = x or P{ST = N} =
x

N
and so

P{ST = 0} = 1− x

N
=

N − x

N
.

Suppose that Y1, Y2, . . . are independent and identically distributed random variables with
P{Y1 = 1} = p, P{Y1 = −1} = 1− p for some 0 < p < 1/2.

Define the biased random walk {Sn, n = 0, 1, 2, . . .} by setting S0 = 0 and

Sn = Y1 + · · ·+ Yn =
n∑

j=1

Yj

for n = 1, 2, 3, . . ..

Unlike the simple random walk, the biased random walk is NOT a martingale. Notice that

E(Sn+1|Fn) = E(Sn + Yn+1|Fn) = E(Sn|Fn) + E(Yn+1|Fn) = Sn + E(Yn+1)

where the last equality follows by “taking out what is known” and using the fact that Yn+1

is independent of Sn. However,

E(Yn+1) = 1 · P{Yn+1 = 1}+ (−1) · P{Y1 = −1} = p− (1− p) = 2p− 1

so that
E(Sn+1|Fn) = Sn + (2p− 1).

However, if we define {Xn, n = 0, 1, 2, . . .} by setting Xn = Sn − n(2p − 1), then {Xn, n =
0, 1, 2, . . .} is a martingale.

Exercise. Show that {Zn, n = 0, 1, 2, . . .} defined by setting

Zn =

(
1− p

p

)Sn

is a martingale.

36–4



Now, suppose that we are playing a casino game. Obviously, the game is designed to be in
the house’s favour, and so we can assume that the probability you win on a given play of the
game is p where 0 < p < 1/2. Furthermore, if we assume that the game pays even money
on each play and that the plays are independent, then we can model our “fortune” after n
plays by {Sn, n = 0, 1, 2, . . .} where S0 represents our initial fortune.

Example. Consider the standard North American roulette game that has 38 numbers of
which 18 are black, 18 are red, and 2 are green. A bet on “black” pays even money. That
is, a bet of $1 on black pays $1 plus your original $1 if black does, in fact, appear. However,
the probability that you win on a bet of “black” is p = 18/38 ≈ 0.4737.

Example. The casino game of craps includes a number of sophisticated bets. One simple
bet that pays even money is the “pass line bet.” The probability that you win on a “pass
line bet” is p = 244/495 ≈ 0.4899.

Let’s suppose that we enter the casino with $x and that we decide to stop playing either
when we go broke or when we win $N (whichever happens first).

Hence, our “fortune process” is {Sn, n = 0, 1, 2, . . .} where S0 = x.

If we define the stopping time T = min{n : Sn = 0 or N}, then since both the martingales
{Xn, n = 0, 1, 2, . . .} and {Zn, n = 0, 1, 2, . . .} are uniformly bounded, we can apply the
optional sampling theorem.

Thus, E(X0) = E(XT ) implies x = E(XT ) = E(ST − T (2p− 1)) and so

E(T ) =
E(ST )− x

2p− 1

since E(X0) = E(S0) = x. However, we cannot calculate E(ST ) directly. That is, although

E(ST ) = 0 · P{ST = 0}+ N · P{ST = N},

we do not have any information about ST .

Fortunately, we can use the martingale {Zn, n = 0, 1, 2, . . .} to figure out E(ST ). Applying
the optional stopping theorem implies E(Z0) = E(ZT ) and so(

1− p

p

)x

= E

((
1− p

p

)ST

)
.

Now,

E

((
1− p

p

)ST

)
=

(
1− p

p

)0

P{ST = 0}+

(
1− p

p

)N

P{ST = N}

= P{ST = 0}+

(
1− p

p

)N

(1− P{ST = 0})
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implying that (
1− p

p

)x

= P{ST = 0}+

(
1− p

p

)N

(1− P{ST = 0}).

Solving for P{ST = 0} gives

P{ST = 0} =

(
1−p

p

)x

−
(

1−p
p

)N

1−
(

1−p
p

)N
.

We therefore find that

P{ST = N} = 1−

(
1−p

p

)x

−
(

1−p
p

)N

1−
(

1−p
p

)N
=

1−
(

1−p
p

)x

1−
(

1−p
p

)N

which implies that

E(T ) =
NP{ST = N} − x

2p− 1
=

1

2p− 1

N −N
(

1−p
p

)x

1−
(

1−p
p

)N
− x

 .

Example. Suppose that p = 18/38, x = 10 and N = 20. Substituting into the above
formulæ gives

P{ST = 0} =
10 000 000 000

13 486 784 401
≈ 0.7415

and

E(T ) =
1 237 510 963 810

13 486 784 401
≈ 91.76.
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