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Lecture #17: Expectation of a Simple Random Variable

Recall that a simple random variable is one that takes on finitely many values.

Definition. Let (Ω,F ,P) be a probability space. A random variable X : Ω → R is called
simple if it can be written as

X =
n�

i=1

ai1Ai

where ai ∈ R, Ai ∈ F for i = 1, 2, . . . , n. We define the expectation of X to be

E(X) =
n�

i=1

aiP {Ai} .

Example 17.1. Consider the probability space (Ω,B1,P) where Ω = [0, 1], B1 denotes the
Borel sets of [0, 1], and P is the uniform probability on Ω. Suppose that the random variable
X : Ω → R is defined by

X(ω) =
4�

i=1

ai1Ai(ω)

where a1 = 4, a2 = 2, a3 = 1, a4 = −1, and

A1 = [0, 12), A2 = [14 ,
3
4), A3 = (12 ,

7
8 ], A4 = [78 , 1].

Show that there exist finitely many real constants c1, . . . , cn and disjoint sets C1, . . . , Cn ∈ B1

such that

X =
n�

i=1

ci1Ci .

Solution. We find

X(ω) =






4, if 0 ≤ ω < 1/4,

6, if 1/4 ≤ ω < 1/2,

2, if ω = 1/2,

3, if 1/2 < ω < 3/4,

1, if 3/4 ≤ ω < 7/8,

0, if ω = 7/8,

−1, if 7/8 < ω ≤ 1,

so that

X =
7�

i=1

ci1Ci

where c1 = 4, c2 = 6, c3 = 2, c4 = 3, c5 = 1, c6 = 0, c7 = −1 and

C1 = [0, 14), C2 = [14 ,
1
2), C3 = {1

2}, C4 = (12 ,
3
4), C5 = [34 ,

7
8), C6 = {7

8}, C7 = (78 , 1].
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Proposition 17.2. If X and Y are simple random variables, then

E(αX + βY ) = αE(X) + βE(Y )

for every α, β ∈ R.

Proof. Suppose that X and Y are simple random variables with

X =
n�

i=1

ai1Ai and Y =
m�

j=1

bj1Bj

where A1, . . . , An ∈ F and B1, . . . , Bm ∈ F each partition Ω. Since

αX = α
n�

i=1

ai1Ai =
n�

i=1

(αai)1Ai

we conclude by definition that

E(αX) =
n�

i=1

(αai)P {Ai} = α
n�

i=1

aiP {Ai} = αE(X).

The proof of the theorem will be completed by showing E(X + Y ) = E(X) + E(Y ). Notice
that

{Ai ∩ Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
consists of pairwise disjoint events whose union is Ω and

X + Y =
n�

i=1

m�

j=1

(ai + bj)1Ai∩Bj .

Therefore, by definition,

E(X + Y ) =
n�

i=1

m�

j=1

(ai + bj)P {Ai ∩Bj}

=
n�

i=1

m�

j=1

aiP {Ai ∩Bj}+
n�

i=1

m�

j=1

bjP {Ai ∩Bj}

=
n�

i=1

aiP {Ai}+
m�

j=1

bjP {Bj}

and the proof is complete.

Fact. If X and Y are simple random variables with X ≤ Y , then

E(X) ≤ E(Y ).

Exercise 17.3. Prove the previous fact.
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Having already defined E(X) for simple random variables, our goal now is to construct E(X)
in general. To that end, suppose that X is a positive random variable. That is, X(ω) ≥ 0
for all ω ∈ Ω. (We will need to allow X(ω) ∈ [0,+∞] for some consistency.)

Definition. If X is a positive random variable, define the expectation of X to be

E(X) = sup{E(Y ) : Y is simple and 0 ≤ Y ≤ X}.

That is, we approximate positive random variables by simple random variables. Of course,
this leads to the question of whether or not this is possible.

Fact. For every random variable X ≥ 0, there exists a sequence (Xn) of positive, simple
random variables with Xn ↑ X (that is, Xn increases to X).

An example of such a sequence is given by

Xn(ω) =

�
k

2n , if k

2n ≤ X(ω) < k+1
2n and 0 ≤ k ≤ n2n − 1,

n, if X(ω) ≥ n.

(Draw a picture.)

Fact. If X ≥ 0 and (Xn) is a sequence of simple random variables with Xn ↑ X, then
E(Xn) ↑ E(X).

We will prove these facts next lecture.

Now suppose that X is any random variable. Write

X+ = max{X, 0} and X− = −min{X, 0}

for the positive part and the negative part of X, respectively.

Note that X+ ≥ 0 and X− ≥ 0 so that the positive part and negative part of X are both
positive random variables and

X = X+ −X− and |X| = X+ +X−.

Definition. A random variable X is called integrable (or has finite expectation) if both
E(X+) and E(X−) are finite. In this case we define E(X) to be

E(X) = E(X+)− E(X−).
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Lecture #18: Construction of Expectation

Recall that our goal is to define E(X) for all random variables X : Ω → R. We outlined the
construction last lecture. Here is the summary of our strategy.

Summary of Strategy for Constructing E(X) for General Random Variables

We will

(1) define E(X) for simple random variables,

(2) define E(X) for positive random variables,

(3) define E(X) for general random variables.

This strategy is sometimes called the “standard machine” and is the outline that we will
follow to prove most results about expectation of random variables.

Step 1: Simple Random Variables

Let (Ω,F ,P) be a probability space. Suppose that X : Ω → R is a simple random variable
so that

X(ω) =
m�

j=1

aj1Aj(ω)

where a1, . . . , am ∈ R and A1, . . . , Am ∈ F . We define the expectation of X to be

E(X) =
m�

j=1

ajP {Aj} .

Step 2: Positive Random Variables

Suppose that X is a positive random variable. That is, X(ω) ≥ 0 for all ω ∈ Ω. (We will
need to allow X(ω) ∈ [0,+∞] for some consistency.) We are also assuming at this step that
X is not a simple random variable.

Definition. If X is a positive random variable, define the expectation of X to be

E(X) = sup{E(Y ) : Y is simple and 0 ≤ Y ≤ X}. (18.1)

Proposition 18.1. For every random variable X ≥ 0, there exists a sequence (Xn) of
positive, simple random variables with Xn ↑ X (that is, Xn increases to X).
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Proof. Let X ≥ 0 be given and define the sequence (Xn) by

Xn(ω) =

�
k

2n , if k

2n ≤ X(ω) < k+1
2n and 0 ≤ k ≤ n2n − 1,

n, if X(ω) ≥ n.

Then it follows that Xn ≤ Xn+1 for every n = 1, 2, 3, . . . and Xn → X which completes the
proof.

Proposition 18.2. If X ≥ 0 and (Xn) is a sequence of simple random variables with Xn ↑ X,
then E(Xn) ↑ E(X). That is, if Xn ≤ Xn+1 and

lim
n→∞

Xn = X,

then E(Xn+1) ≤ E(Xn) and
lim
n→∞

E(Xn) = E(X).

Proof. Suppose that X ≥ 0 is a random variable and let (Xn) be a sequence of simple
random variables with Xn ≥ 0 and Xn ↑ X. Observe that since the Xn are increasing, we
have E(Xn) ≤ E(Xn+1). Therefore, E(Xn) increases to some limit a ∈ [0,∞]; that is,

E(Xn) ↑ a

for some 0 ≤ a ≤ ∞. (If E(Xn) is an unbounded sequence, then a = ∞. However, if E(Xn)
is a bounded sequence, then a < ∞ follows from the fact that increasing, bounded sequences
have unique limits.) Therefore, it follows from (18.1), the definition of E(X), that a ≤ E(X).

We will now show a ≥ E(X). As a result of (18.1), we only need to show that if Y is a
simple random variable with 0 ≤ Y ≤ X, then E(Y ) ≤ a. That is, by definition, E(X) =
sup{E(Y ) : Y is simple with 0 ≤ Y ≤ X} and so if Y is an arbitrary simple random variable
satisfying 0 ≤ Y ≤ X and E(Y ) ≤ a, then the definition of supremum implies E(X) ≤ a.
To this end, let Y be simple and write

Y =
m�

k=1

ak1{Y = ak}.

That is, take Ak = {ω : Y (ω) = ak}. Let 0 < � ≤ 1 and define

Yn,� = (1− �)Y 1{(1−�)Y≤Xn}.

Note that Yn,� = (1− �)ak on the set

{(1− �)Y ≤ Xn} ∩ Ak = Ak,n,�

and that Yn,� = 0 on the set {(1− �)Y > Xn}. Clearly Yn,� ≤ Xn and so

E(Yn,�) = (1− �)
m�

k=1

akP {Ak,n,�} ≤ E(Xn).
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We will now show that Ak,n,� increases to Ak. Since Xn ≤ Xn+1 and Xn ↑ X we conclude
that

{(1− �)Y ≤ Xn} ⊆ {(1− �)Y ≤ Xn+1} ⊆ {(1− �)Y ≤ X}
and therefore

Ak,n,� ⊆ Ak,n+1,� ⊆ {(1− �)Y ≤ X} ∩ Ak. (18.2)

Since Y ≤ X by assumption, we know that the event {(1 − �)Y ≤ X} is equal to Ω.
Thus, (18.2) implies Ak,n,� ⊆ Ak for all n and so

∞�

n=1

Ak,n,� ⊆ Ak. (18.3)

Conversely, let ω ∈ Ak = {(1 − �)Y ≤ X} ∩ Ak = {ω : (1 − �)Y (ω) ≤ X(ω)} ∩ Ak so that
(1− �)ak ≤ X(ω). Since Y ≤ X, which is to say that

Y (ω) ≤ X(ω) = lim
n→∞

Xn(ω)

for all ω, we know that if ω ∈ Ak, then there is some N such that Y (ω) = ak ≤ Xn(ω)
whenever n > N . We therefore conclude that if ω ∈ Ak and n > N , then (1− �)ak < Xn(ω).
(This requires that X is not identically 0.) That is, ω ∈ Ak,n,� which proves that

∞�

n=1

Ak,n,� ⊇ Ak. (18.4)

In other words, it follows from (18.3) and (18.4) that Ak,n,� increases to Ak, so by the
continuity of probability theorem (Theorem 10.2), we conclude that

lim
n→∞

P {Ak,n,�} = P {Ak} .

Hence,

E(Yn,�) = (1− �)
m�

k=1

akP {Ak,n,�} → (1− �)
m�

k=1

akP {Ak} = (1− �)E(Y ) ≤ a.

That is,
E(Yn,�) ≤ E(Xn)

and
E(Yn,�) ↑ (1− �)E(Y ) and E(Xn) ↑ a

so that
(1− �)E(Y ) ≤ a

(which follows since everything is increasing). Since 0 < � ≤ 1 is arbitrary,

E(Y ) ≤ a

which, as noted earlier in the proof, is sufficient to conclude that

E(X) ≤ a.

Combined with our earlier result that a ≤ E(X) we conclude E(X) = a and the proof is
complete.
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Step 3: General Random Variables

Now suppose that X is any random variable. Write

X+ = max{X, 0} and X− = −min{X, 0}

for the positive part and the negative part of X, respectively. Note that X+ ≥ 0 and
X− ≥ 0 so that the positive part and negative part of X are both positive random variables
and X = X+ −X−.

Definition. A random variable X is called integrable (or has finite expectation) if both
E(X+) and E(X−) are finite. In this case we define E(X) to be

E(X) = E(X+)− E(X−).

Definition. If one of E(X+) or E(X−) is infinite, then we can still define E(X) by setting

E(X) =

�
+∞, if E(X+) = +∞ and E(X−) < ∞,

−∞, if E(X+) < ∞ and E(X−) = +∞.

However, X is not integrable in this case.

Definition. If both E(X+) = +∞ and E(X−) = +∞, then E(X) does not exist.

Remark. We see that the standard machine is really not that hard to implement. In fact, it
is usually enough to prove a result for simple random variables and then extend that result
to positive random variables using Propositions 18.1 and 18.2. The result for general random
variables usually then follows by definition.
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Lecture #19: Expectation and Integration

Definition. Let (Ω,F ,P) be a probability space, and let X : Ω → R be a random variable.
If X is a simple random variable, say

X(ω) =
n�

i=1

ai1Ai(ω)

for a1, . . . , an ∈ R and A1, . . . , An ∈ F , then we define

E(X) =
n�

i=1

aiP {Ai} .

If X is a positive random variable, then we define

E(X) = sup{E(Y ) : Y is simple and 0 ≤ Y ≤ X}.

If X is any random variable, then we can write X = X+ −X− where both X+ and X− are
positive random variables. Provided that both E(X+) and E(X−) are finite, we define E(X)
to be

E(X) = E(X+)− E(X−)

and we say that X is integrable (or has finite expectation).

Remark. If X : (Ω,F ,P) → (R,B) is a random variable, then we sometimes write

E(X) =

�

Ω

X dP =

�

Ω

X(ω) dP {ω} =

�

Ω

X(ω)P {dω} .

That is, the expectation of a random variable is the Lebesgue integral of X. We will say
more about this later.

Definition. Let L1(Ω,F ,P) be the set of real-valued random variables on (Ω,F ,P) with
finite expectation. That is,

L1(Ω,F ,P) = {X : (Ω,F ,P) → (R,B) : X is a random variable with E(X) < ∞}.

We will often write L1 for L1(Ω,F ,P) and suppress the dependence on the underlying
probability space.

Theorem 19.1. Suppose that (Ω,F ,P) is a probability space, and let X1, X2, . . ., X, and Y
all be real-valued random variables on (Ω,F ,P).

(a) L1 is a vector space and expectation is a linear map on L1. Furthermore, expectation
is positive. That is, if X, Y ∈ L1 with 0 ≤ X ≤ Y , then 0 ≤ E(X) ≤ E(Y ).
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(b) X ∈ L1 if and only if |X| ∈ L1, in which case we have

|E(X)| ≤ E(|X|).

(c) If X = Y almost surely (i.e., if P {ω : X(ω) = Y (ω)} = 1), then E(X) = E(Y ).

(d) (Monotone Convergence Theorem) If the random variables Xn ≥ 0 for all n and Xn ↑
X (i.e., Xn → X and Xn ≤ Xn+1), then

lim
n→∞

E(Xn) = E
�
lim
n→∞

Xn

�
= E(X).

(We allow E(X) = +∞ if necessary.)

(e) (Fatou’s Lemma) If the random variables Xn all satisfy Xn ≥ Y almost surely for some
Y ∈ L1 and for all n, then

E
�
lim inf
n→∞

Xn

�
≤ lim inf

n→∞
E(Xn). (19.1)

In particular, (19.1) holds if Xn ≥ 0 for all n.

(f) (Lebesgue’s Dominated Convergence Theorem) If the random variables Xn → X, and
if for some Y ∈ L1 we have |Xn| ≤ Y almost surely for all n, then Xn ∈ L1, X ∈ L1,
and

lim
n→∞

E(Xn) = E(X).

Remark. This theorem contains ALL of the central results of Lebesgue integration theory.

Theorem 19.2. Let Xn be a sequence of random variables.

(a) If Xn ≥ 0 for all n, then

E
� ∞�

n=1

Xn

�
=

∞�

n=1

E(Xn) (19.2)

with both sides simultaneously being either finite or infinite.

(b) If
∞�

n=1

E(|Xn|) < ∞,

then
∞�

n=1

Xn

converges almost surely to some random variable Y ∈ L1. In other words,

∞�

n=1

Xn
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is integrable with

E
� ∞�

n=1

Xn

�
=

∞�

n=1

E(Xn).

Thus, (19.2) holds with both sides being finite.

Notation. For 1 ≤ p < ∞, let Lp = {random variables X : Ω → R such that |X|p ∈ L1}.

Theorem 19.3 (Cauchy-Schwartz Inequality). If X, Y ∈ L2, then XY ∈ L1 and

|E(XY )| ≤
�
E(X2)E(Y 2).

Theorem 19.4. Let X : (Ω,F ,P) → (R,B) be a random variable.

(a) (Markov’s Inequality) If X ∈ L1, then

P {|X| ≥ a} ≤ E(|X|)
a

for every a > 0.

(b) (Chebychev’s Inequality) If X ∈ L2, then

P {|X| ≥ a} ≤ E(X2)

a2

for every a > 0.
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Lecture #20: Proofs of the Main Expectation Theorems

Our goal for today is to start proving all of the important results for expectation that were
stated last lecture. Note that the proofs generally follow the so-called standard machine;
that is, we first prove the result for simple random variables, then extend it to non-negative
random variables, and finally extend it to general random variables. The key results for
implementing this strategy are Proposition 18.1 and Proposition 18.2.

Theorem 20.1. Let (Ω,F ,P) be a probability space. If L1 denotes the space of integrable
random variables, namely

L1 = {random variables X such that E(X) < ∞},

then L1 is a vector space and expectation is a linear operator on L1. Moreover, expectation is
monotone in the sense that if X and Y are random variables with 0 ≤ X ≤ Y and Y ∈ L1,
then X ∈ L1 and 0 ≤ E(X) ≤ E(Y ).

Proof. Suppose that X ≥ 0 and Y ≥ 0 are non-negative random variables, and let α ∈
[0,∞). We know that there exist sequences Xn and Yn of non-negative simple random
variables such that (i) Xn ↑ X and E(Xn) ↑ E(X), and (ii) Yn ↑ Y and E(Yn) ↑ E(Y ).
Therefore, αXn is a sequence of non-negative simple random variables with (αXn) ↑ (αX)
and E(αXn) ↑ E(αXn). Moreover, Xn + Yn is a sequence of non-negative simple random
variables with (Xn + Yn) ↑ (X + Y ) and E(Xn + Yn) ↑ E(X + Y ). However, we know that
expectation is linear on simple random variables so that

E(αXn) = αE(Xn) and E(Xn + Yn) = E(Xn) + E(Yn).

Thus, we find

E(αXn) = αE(Xn)
↓ ↓

E(αX) αE(X)
and

E(Xn + Yn) = E(Xn) + E(Yn)
↓ ↓

E(X + Y ) E(X) + E(Y )

so by uniqueness of limits, we conclude E(αX) = αE(X) and E(X + Y ) = E(X + Y ). Also
note that if 0 ≤ X ≤ Y , then the definition of expectation of non-negative random variables
immediately implies that 0 ≤ E(X) ≤ E(Y ) so that Y ∈ L1 implies X ∈ L1.

Suppose now that X and Y are general random variables and let α ∈ R. Since

(αX) = (αX)+ − (αX)− ≤ (αX)+ + (αX)− ≤ |α|(X+ +X−)

and

(X + Y ) = (X + Y )+ − (X + Y )− ≤ (X + Y )+ + (X + Y )− ≤ X+ +X− + Y + + Y −.

Hence, since X+, X−, Y +, Y − ∈ L1, we conclude that αX ∈ L1 and X + Y ∈ L1. Finally,
since E(X) = E(X+)−E(X−) by definition, and since we showed above that expectation is
linear on non-negative random variables, we conclude that expectation is linear on general
random variables.
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Theorem 20.2. If X : (Ω,F ,P) → (R,B) is a random variable, then X ∈ L1 if and only if
|X| ∈ L1.

Proof. Suppose that X ∈ L1 so that E(X+) < ∞ and E(X−) < ∞. Since |X| = X+ +X−

and since expectation is linear, we conclude that

E(|X|) = E(X+ +X−) = E(X+) + E(X−) < ∞

so that |X| ∈ L1.

On the other hand, suppose that |X| ∈ L1 so that E(X+) + E(X−) < ∞. However, since
X+ ≥ 0 and X− ≥ 0, we know that E(X+) ≥ 0 and E(X−) ≥ 0. We now use the fact that if
the sum of two non-negative numbers is finite, then each number must be finite to conclude
that E(X+) < ∞ and E(X−) < ∞. Thus, by definition, E(X) = E(X+) − E(X−) < ∞ so
that X ∈ L1.

Corollary. If X ∈ L1, then |E(X)| ≤ E(|X|). In particular, if E(|X|) = 0, then E(X) = 0.

Proof. Since E(X+) ≥ 0 and E(X−) ≥ 0, we have from the triangle inequality

|E(X)| = |E(X+−X−)| = |E(X+)−E(X−)| ≤ |E(X+)|+|E(X−)| = E(X+)+E(X−) = E(|X|).

Since |E(X)| ≥ 0, if E(|X|) = 0, then 0 ≤ |E(X)| ≤ E(|X|) = 0 implying E(X) = 0.

Theorem 20.3. If X, Y : (Ω,F ,P) → (R,B) are integrable random variables with X = Y
almost surely, then E(X) = E(Y ).

Proof. Suppose that X = Y almost surely so that P {ω ∈ Ω : X(ω) = Y (ω)} = 1. To begin,
assume that X ≥ 0 and Y ≥ 0 and let A = {ω : X(ω) �= Y (ω)} so that P {A} = 0. Write

E(Y ) = E(Y 1A + Y 1Ac) = E(Y 1A) + E(Y 1Ac) = E(Y 1A) + E(X1Ac). (∗)

We know that there exist sequences Xn and Yn of non-negative simple random variables such
that (i) Xn ↑ X and E(Xn) ↑ E(X), and (ii) Yn ↑ Y and E(Yn) ↑ E(Y ). Thus, Xn1A ↑ X1A
and E(Xn1A) ↑ E(X1A) and similarly Yn1A ↑ Y 1A and E(Yn1A) ↑ E(Y 1A). For each n, the
random variable Xn takes on finitely many values and is therefore bounded by K, say, where
K may depend on n. Thus, since Xn ≤ K, we obtain Xn1A ≤ K and so

0 ≤ E(Xn1A) ≤ E(K1A) = KP {A} = 0.

This implies that E(Xn1A) = 0 and so by uniqueness of limits, E(X1A) = 0. Similarly,
E(Y 1A) = 0. Therefore, by (∗), we obtain

E(Y ) = E(Y 1A) + E(X1Ac) = 0 + E(X1Ac) = E(X1A) + E(X1Ac) = E(X).

In general, note that X = Y almost surely implies that X+ = Y + almost surely and
X− = Y − almost surely.
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Lecture #21: Proofs of the Main Expectation Theorems

(continued)

We will continue proving the important results for expectation that were stated in Lec-
ture #19. Recall that a random variable is said to have finite mean or have finite expectation
or be integrable if E(X) < ∞. The vector space of all integrable random variable on a given
probability space (Ω,F , P ) is denoted by L1 and if 1 ≤ p < ∞, then

Lp = {random variables X : Ω → R such that |X|p ∈ L1}.

Theorem 21.1 (Cauchy-Schwartz Inequality). If X, Y ∈ L2, then XY ∈ L1 and

|E(XY )| ≤
�
E(X2)E(Y 2).

Proof. Since 0 ≤ (X + Y )2 = X2 + Y 2 + 2XY and 0 ≤ (X − Y )2 = X2 + Y 2 − 2XY , we
conclude that 2|XY | ≤ X2 + Y 2 implying 2E(|XY |) ≤ E(X2) + E(Y 2). Thus, if X, Y ∈ L2,
we conclude that XY ∈ L1. For every x ∈ R, note that

0 ≤ E((xX + Y )2) = x2E(X2) + 2xE(XY ) + E(Y 2).

Since x2E(X2) + 2xE(XY ) + E(Y 2) is a non-negative quadratic in x, its discriminant is
necessarily non-positive; that is,

4[E(XY )]2 − 4E(X2)E(Y 2) ≤ 0,

or, equivalently,
|E(XY )| ≤ E(X2)E(Y 2)

as required.

Theorem 21.2. Let X : (Ω,F ,P) → (R,B) be a random variable.

(a) (Markov’s Inequality) If X ∈ L1, then

P {|X| ≥ a} ≤ E(|X|)
a

for every a > 0.

(b) (Chebychev’s Inequality) If X ∈ L2, then

P {|X| ≥ a} ≤ E(X2)

a2

for every a > 0.
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Proof. Recall that X ∈ L1 if and only if |X| ∈ L1. Since |X| ≥ 0, we can write

|X| ≥ a1{|X|≥a}.

Taking expectations of the previous expression implies

E(|X|) ≥ aE(1{|X|≥a}) = P {|X| ≥ a}

and Markov’s inequality follows. Similarly, X2 ≥ a21{X2≥a2} so that if X ∈ L2, taking
expectations implies

E(X2) ≥ a2P
�
X2 ≥ a2

�
.

Hence,

P {|X| ≥ a} ≤ P
�
X2 ≥ a

�
≤ E(X2)

a2

yielding Chebychev’s inequality.

Definition. If X ∈ L2 we say that X has finite variance and define the variance of X to be

Var(X) = E[(X − E(X)]2) = E(X2)− [E(X)]2.

Thus, Chebychev’s inequality sometimes takes the form

P {|X − E(X)| ≥ a} ≤ Var(X)

a2
.

Computing Expectations

Having proved a number of the main expectation theorems, we will now take a small detour
to discuss computing expectations. We will also show over the course of the next several
lectures how the formulas for the expectations of discrete and continuous random variables
encountered in introductory probability follow from the general theory developed. The first
examples we will discuss, however, are the calculations of expectations directly from the
definition and theory.

Example 21.3. Consider ([0, 1],B1,P) where B1 are the Borel sets of [0, 1] and P is the
uniform probability. Let X : Ω → R be given by X(ω) = ω so that X is a uniform random
variable. We will now compute E(X) directly by definition. Note that X is not simple since
the range of X, namely [0, 1], is uncountable. However, X is positive. This means that as
a consequence of Propositions 18.1 and 18.2, if Xn is a sequence of positive, simple random
variables with Xn ↑ X, then E(Xn) ↑ E(X). Thus, let

X1(ω) =

�
0, 0 ≤ ω < 1/2,

1/2, 1/2 ≤ ω ≤ 1

X2(ω) =






0, 0 ≤ ω ≤ 1/4,

1/4, 1/4 ≤ ω < 1/2,

1/2, 1/2 ≤ ω < 3/4,

3/4, 3/4 ≤ ω ≤ 1,
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and in general,

Xn(ω) =
2n−2�

j=1

j − 1

2n
1

�
j − 1

2n
≤ ω <

j

2n

�
+

2n − 1

2n
1

�
2n − 2

2n
≤ ω ≤ 2n − 1

2n

�
.

Thus,

E(Xn) =
2n−2�

j=1

j − 1

2n
P

��
j − 1

2n
,
j

2n

��
+

2n − 1

2n
P

��
2n − 2

2n
,
2n − 1

2n

��

=
2n−1�

j=1

j − 1

2n

�
j

2n
− j − 1

2n

�

=
1

22n

2n−1�

j=1

(j − 1)

=
1

22n
(2n − 2)(2n − 1)

2

=
1

2
− 1

2n
− 1

2n+1
+

1

22n

implying

E(X) = lim
n→∞

E(Xn) = lim
n→∞

�
1

2
− 1

2n
− 1

2n+1
+

1

22n

�
=

1

2
.

Example 21.4. Consider ([0, 1],B1,P) where B1 are the Borel sets of [0, 1] and P is the
uniform probability. Let Q1 = [0, 1] ∩Q and consider the random variable Y : Ω → R given
by

Y (ω) =

�
ω, if ω ∈ [0, 1] \Q1,

0, if ω ∈ Q1.

Note that Y is not a simple random variable, although it is non-negative. In order to compute
E(Y ) it is easiest to use Theorem 20.3. That is, let X(ω) = ω for ω ∈ [0, 1] and note that

{ω : X(ω) �= Y (ω)} = Q1 \ {0}.

(The technical point here is that X(0) = Y (0) = 0. However, if ω ∈ Q1 with ω �= 0, then
X(ω) �= Y (ω).) Since P {Q1 \ {0}} = 0, we see that X and Y differ on a set of probability
0 so that X = Y almost surely. Since X is a uniform random variable on [0, 1], we know
from the previous example that E(X) = 1/2. Therefore, using Theorem 20.3 we conclude
E(Y ) = E(X) = 1/2.
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Lecture #22: Computing Expectations of Discrete Random

Variables

Recall from introductory probability classes that a random variable X is called discrete if
the range of X is at most countable. The formula for the expectation of a discrete random
variable X given in these classes is

E(X) =
∞�

j=1

jP {X = j} .

We will now derive this formula as a consequence of the general theory developed during the
past several lectures.

Suppose that the range of X is at most countable. Without loss of generality, we can assume
that Ω = {1, 2, . . . , }, F = 2Ω, and X : Ω → R is given by X(ω) = ω. Assume further that
the law of X is given by P {X = j} = pj where pj ∈ [0, 1] and

∞�

j=1

pj = 1.

Let Aj = {X = j} = {ω : X(ω) = j} so that X can be written as

X(ω) =
∞�

j=1

j1Aj .

Observe that if pj = 0 for infinitely many j, then X is simple and can be written as

X(ω) =
j�

j=1

1Aj

for some n < ∞ which implies that

E(X) =
j�

j=1

P {Aj} =
n�

j=1

jP {X = j} .

On the other hand, suppose that pj �= 0 for infinitely many j. In this case, X is not simple.
We can approximate X by simple functions as follows. Let

Aj,n = {ω : X(ω) = j, j ≤ n}

so that Aj,n ⊆ Aj,n+1 and
∞�

n=1

Aj,n = Aj.
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That is, Aj,n ↑ Aj and so by continuity of probability we conclude

lim
n→∞

P {Aj,n} = P {Aj} .

If we now set

Xn(ω) =
n�

j=1

X(ω)1Aj,n =
n�

j=1

j1Aj,n

so that

E(Xn) =
n�

j=1

jP {Aj,n} ,

then (Xn) is a sequence of positive simple random variable with Xn ↑ X. Proposition 18.2
then implies

E(X) = lim
n→∞

E(Xn) = lim
n→∞

n�

j=1

jP {Aj,n} =
∞�

j=1

P {Aj} =
∞�

j=1

jP {X = j}

as required.

Computing Expectations of Continuous Random Variables

We will now turn to that other formula for computing expectation encountered in elementary
probability courses, namely if X is a continuous random variable with density fX , then

E(X) =

� ∞

−∞
xfX(x) dx.

It turns out that verifying this formula is somewhat more involved than the discrete formula.
As such, we need to take a brief detour into some general function theory.

Some General Function Theory

Suppose that f : X → Y is a function. We are implicitly assuming that f is defined for all
x ∈ X. We call X the domain of f and call Y the codomain of f .

The range of f is the set

f(X) = {y ∈ Y : f(x) = y for some x ∈ X}.

Note that f(X) ⊆ Y. If f(X) = Y, then we say that f is onto Y.

Let B ⊆ Y. We define f−1(B) by

f−1(B) = {x ∈ X : f(x) = y for some y ∈ B} = {f ∈ B} = {x : f(x) ∈ B}.

We call X a topological space if there is a notion of open subsets of X. The Borel σ-algebra
on X, written B(X), is the σ-algebra generated by the open sets of X.
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Let X and Y be topological spaces. A function f : X → Y is called continuous if for every
open set V ⊆ Y, the set U = f−1(V ) ⊆ X is open.

A function f : X → Y is called measurable if f−1(B) ∈ B(X) for every B ∈ B(Y).

Since the open sets generate the Borel sets, this theorem follows easily.

Theorem 22.1. Suppose that (X,B(X)) and (Y,B(Y)) are topological measure spaces. The
function f : X → Y is measurable if and only if f−1(O) ∈ B(X) for every open set O ∈ B(Y).

The next theorem tells us that continuous functions are necessarily measurable functions.

Theorem 22.2. Suppose that (X,B(X)) and (Y,B(Y)) are topological measure spaces. If
f : X → Y is continuous, then f is measurable.

Proof. By definition, f : X → Y is continuous if and only if f−1(O) ⊆ X is an open set
for every open set O ⊆ Y. Since an open set is necessarily a Borel set, we conclude that
f−1(O) ∈ B(X) for every open set O ∈ B(Y). However, it now follows immediately from
the previous theorem that f : X → Y is measurable.

The following theorem shows that the composition of measurable functions is measurable.

Theorem 22.3. Suppose that (W,F), (X,G), and (Y,H) are measurable spaces, and let
f : (W,F) → (X,G) and g : (X,G) → (Y,H) be measurable. Then the function h = g ◦ f
is a measurable function from (W,F) to (Y,H).

Proof. Suppose that H ∈ H. Since g is measurable, we have g−1(H) ∈ G. Since f is
measurable, we have f−1(g−1(H)) ∈ F . Since

h−1(H) = (g ◦ f)−1(H) = f−1(g−1(H)) ∈ F

the proof is complete.

22–3



Statistics 851 (Fall 2013) October 30, 2013
Prof. Michael Kozdron

Lecture #23: Proofs of the Main Expectation Theorems

(continued)

Theorem 23.1 (Monotone Convergence Theorem). Suppose that (Ω,F ,P) is a probability
space, and let X1, X2, . . ., and X be real-valued random variables on (Ω,F ,P). If Xn ≥ 0
for all n and Xn ↑ X (i.e., Xn → X and Xn ≤ Xn+1), then

lim
n→∞

E(Xn) = E
�
lim
n→∞

Xn

�
= E(X)

(allowing E(X) = +∞ if necessary).

Proof. For every n, let Yn,k, k = 1, 2, . . ., be non-negative and simple with Yn,k ↑ Xn and
E(Yn,k) ↑ E(Xn) as k → ∞ which is possible by Propositions 18.1 and 18.2. Set

Zk = max
n≤k

Yn,k,

and observe that 0 ≤ Zk ≤ Zk+1 so that (Zk) is an increasing sequence of non-negative
simple random variables which necessarily has a limit

Z = lim
k→∞

Zk.

By Proposition 18.2, E(Zk) ↑ E(Z). We now observe that if n ≤ k, then

Yn,k ≤ Zk ≤ Xn ≤ Xk ≤ X. (23.1)

We now deduce from (23.1) that Xn ≤ Z ≤ X almost surely, and so letting n → ∞ implies
X = Z almost surely. We also deduce from (23.1) that

E(Yn,k) ≤ E(Zk) ≤ E(Xk)

for n ≤ k. Fix n and let k → ∞ to obtain

E(Xn) ≤ E(Z) ≤ lim
k→∞

E(Xk).

Now let n → ∞ to obtain

lim
n→∞

E(Xn) ≤ E(Z) ≤ lim
k→∞

E(Xk).

Thus,
E(Z) = lim

n→∞
E(Xn).

But X = Z almost surely so that E(X) = E(Z) and we conclude

E(X) = lim
n→∞

E(Xn)

as required.
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Theorem 23.2 (Fatou’s Lemma). Suppose that (Ω,F ,P) is a probability space, and let
X1, X2, . . . be real-valued random variables on (Ω,F ,P). If Xn ≥ Y almost surely for some
Y ∈ L1 and for all n, then

E
�
lim inf
n→∞

Xn

�
≤ lim inf

n→∞
E(Xn). (23.2)

In particular, (23.2) holds if Xn ≥ 0 for all n.

Proof. Without loss of generality, we can assumeXn ≥ 0. Here is the reason. If X̃n = Xn−Y ,
then X̃n ∈ L1 with X̃n ≥ 0 and

E
�
lim inf
n→∞

X̃n

�
≤ lim inf

n→∞
E(X̃n) if and only if E

�
lim inf
n→∞

Xn

�
≤ lim inf

n→∞
E(Xn)

because
lim inf
n→∞

X̃n =
�
lim inf
n→∞

Xn

�
− Y.

Hence, if Xn ≥ 0, set
Yn = inf

k≥n

Xk

so that Yn ≥ 0 is a random variable and Yn ≤ Yn+1. This implies that Yn converges and

lim
n→∞

Yn = lim inf
n→∞

Xn.

Since Xn ≥ Yn, monotonicity of expectation implies E(Xn) ≥ E(Yn). This yields

lim inf
n→∞

E(Xn) ≤ lim
n→∞

E(Yn) = E
�
lim
n→∞

Yn

�
= lim inf

n→∞
E(Xn)

by the Monotone Convergence Theorem and the proof is complete.

Theorem 23.3 (Lebesgue’s Dominated Convergence Theorem). Suppose that (Ω,F ,P) is
a probability space, and let X1, X2, . . . be real-valued random variables on (Ω,F ,P). If the
random variables Xn → X, and if for some Y ∈ L1 we have |Xn| ≤ Y almost surely for all
n, then Xn ∈ L1, X ∈ L1, and

lim
n→∞

E(Xn) = E(X).

Proof. Suppose that we define the random variables U and V by

U = lim inf
n→∞

Xn and V = lim sup
n→∞

Xn.

The assumption that Xn → X implies that U = V = X almost surely so that E(U) =
E(V ) = E(X). And if we also assume that |Xn| ≤ Y almost surely for all n so that Xn ∈ L1,
then we conclude |X| ≤ Y . Since Y ∈ L1, we have X ∈ L1. Moreover, Xn ≥ −Y almost
surely and −Y ∈ L1 so by Fatou’s Lemma,

E(U) ≤ lim inf
n→∞

E(Xn).
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However, we also know −Xn ≥ −Y almost surely and

−V = lim inf
n→∞

(−Xn)

so Fatou’s lemma also implies

−E(V ) = E(−V ) ≥ lim inf
n→∞

E(−Xn) = − lim sup
n→∞

E(Xn).

Combining these two inequalities gives

E(X) = E(U) ≤ lim inf
n→∞

E(Xn) ≤ lim sup
n→∞

E(Xn) ≤ E(V ) = E(X)

so that E(Xn) → E(X) as required.

Theorem 23.4. Let Xn be a sequence of random variables.

(a) If Xn ≥ 0 for all n, then

E
� ∞�

n=1

Xn

�
=

∞�

n=1

E(Xn) (23.3)

with both sides simultaneously being either finite or infinite.

(b) If
∞�

n=1

E(|Xn|) < ∞,

then
∞�

n=1

Xn

converges almost surely to some random variable Y ∈ L1. In other words,

∞�

n=1

Xn

is integrable with

E
� ∞�

n=1

Xn

�
=

∞�

n=1

E(Xn).

Thus, (23.3) holds with both sides being finite.

Proof. Suppose that

Sn =
n�

k=1

|Xk| and Tn =
n�

k=1

Xk.

Since Sn contains finitely many terms, we know by linearity of expectation that

E(Sn) = E
�

n�

k=1

|Xk|
�

=
n�

k=1

E(|Xk|).
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Moreover, 0 ≤ Sn ≤ Sn+1 so that Sn increases to some limit

S =
∞�

k=1

|Xk|.

Note that S(ω) ∈ [0,+∞]. By the Monotone Convergence Theorem,

E(S) = lim
n→∞

E(Sn) = lim
n→∞

n�

k=1

E(|Xk|) =
∞�

k=1

E(|Xk|).

If Xn ≥ 0 for all n, then Sn = Tn and (a) follows. If Xn are general random variables, with

∞�

k=1

E(|Xk|) < ∞,

then E(S) < ∞. Now, for every � > 0, since 1S=∞ ≤ �S, we conclude P {S = ∞} =
E(1S=∞) ≤ �E(S). Since � > 0 is arbitrary and E(S) < ∞, we conclude that P {S = ∞} = 0.
Therefore,

∞�

n=1

Xn

is absolutely convergent almost surely and its sum is the limit of the sequence Tn. Moreover,
|Tn| ≤ Sn ≤ S and S ∈ L1, so by the Dominated Convergence Theorem,

E
� ∞�

k=1

Xk

�
= E

�
lim
n→∞

n�

k=1

Xk

�
= lim

n→∞

n�

k=1

E(Xk) =
∞�

k=1

E(Xk)

proving (b).
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Lecture #24: The Expectation Rule

Let (Ω,F ,P) be a probability space, and let X : Ω → R be a random variable so that
X−1(B) ∈ F for every B ∈ B. Suppose that h : R → R is a measurable function so that
h−1(B) ∈ B for every B ∈ B.

Proposition 24.1. The function h ◦X : Ω → R given by h ◦X(ω) = h(X(ω)) is a random
variable.

Proof. To prove that h ◦ X is a random variable, we must show that (h ◦ X)−1(B) =
X−1(h−1(B)) ∈ F for every B ∈ B. Thus, suppose that B ∈ B. Since h is measurable,
we know h−1(B) ∈ B. Let A = h−1(B). Since A is a Borel set, i.e., A ∈ B, we know that
X−1(A) ∈ F since X is a random variable. That is,

(h ◦X)−1(B) = X−1(h−1(B)) = X−1(A) ∈ F

so that h ◦X : Ω → R is a random variable as required.

We know that X induces a probability on (R,B) called the law of X and defined by

P
X {B} = P

�
X−1(B)

�
= P {X ∈ B} = P {ω ∈ Ω : X(ω) ∈ B} .

In other words, (R,B,PX) is a probability space. This means that if h : R → R is a
measurable function on (R,B,PX), then we can also call h a random variable. As such, it is
possible to discuss the expectation of h, namely

E(h) =
�

R
h(x)PX {dx} .

As we will now show, the expectation of h and the expectation of h◦X are intimately related.

Theorem 24.2 (Expectation Rule). Let X : (Ω,F ,P) → (R,B) be a random variable with
law P

X , and let h : (R,B) → (R,B) be measurable.

(a) The random variable h(X) ∈ L1(Ω,F ,P) if and only if h ∈ L1(R,B,PX).

(b) If h ≥ 0, or if either condition in (a) holds, then

E(h(X)) =

�

Ω

h(X(ω))P {dω} =

�

R
h(x)PX {dx} .

Remark. The second integral in the theorem is actually a Lebesgue integral since it is the
integral of a random variable, namely h, with respect to a probability, namely P

X . As we
will see shortly, we can always relate this to a Riemann-Stieltjes integral and in some cases
to a Riemann integral.
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Proof. Since h ◦X : Ω → R is a random variable by Proposition 24.1, we know

E(h(X)) =

�

Ω

h(X(ω))P {dω}

by definition. The content of the theorem is that this integral is equal to
�

R
h(x)PX {dx} .

In order to complete the proof, we will follow the standard machine. That is, let h(x) = 1B(x)
for B ∈ B so that

E(h(X)) = E(1B(X)) = P {X ∈ B} = P
�
X−1(B)

�
= P

X {B} =

�

B

P
X {dx}

=

�

R
1B(x)P

X {dx}

=

�

R

h(x)PX {dx} .

Hence, if h is simple, say

h(x) =
n�

i=1

bi1Bi(x)

for some b1, . . . , bn ∈ R and B1, . . . , Bn ∈ B, then

E(h(X)) = E
�

n�

i=1

bi1Bi(x)

�
=

n�

i=1

biP
X {Bi} =

n�

i=1

bi

�

R
1Bi(x)P

X {dx}

=

�

R

�
n�

i=1

bi1Bi(x)

�
P

X {dx}

=

�

R

h(x)PX {dx}

using linearity of expectation. If h ≥ 0, let hn ≥ 0 be simple with hn ↑ h so that

E(h(X)) = E
�
lim
n→∞

hn(X)
�
= lim

n→∞
E(hn(X)) = lim

n→∞

�

R

hn(x)P
X {dx}

=

�

R

�
lim
n→∞

hn(x)
�
P

X {dx}

=

�

R

h(x)PX {dx}

using the Monotone Convergence Theorem twice. In particular, (b) follows for h ≥ 0. If
we apply the above procedure to |h|, then (a) follows. If h is not positive, then writing
h = h+ − h− implies the result by subtraction.
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