
Stat 851: Solutions to Assignment #2

(3.1) If A ∩B = ∅, then by Theorem 2.2 we conclude P (A ∩B) = P (∅) = 0. Hence, in order for A
and B to be independent, it must be the case that P (A ∩ B) = P (A) · P (B) = 0. The product of
two real numbers is 0 if and only if at least one of those numbers is 0. We thus conclude that at
least one of P (A) and P (B) must be 0 in order for A and B to be independent.

(3.3) Suppose (Ω,A, P ) is a probability space and that C ∈ A with P (C) > 0. If Q(A) = P (A|C)
for A ∈ A, then by Theorem 3.2 (b) it follows that Q is a probability measure on (Ω,A). It now
follows from Theorem 2.2 that Q is additive. That is, if A1, . . . , An ∈ A are disjoint, then

P

(
n⋃
i=1

Ai

∣∣∣∣C
)

= Q

(
n⋃
i=1

Ai

)
=

n∑
i=1

Q(Ai) =
n∑
i=1

P (Ai|C).

(3.6) Using the definition of conditional probability,

P (you have AIDS|test positive) =
P (test positive|you have AIDS) · P (you have AIDS)

P (test positive)
.

We now use the information given in the problem, but need to be careful about the wording. We
are told that P (you have AIDS) = 1/10000 = 0.0001, and P (test positive|you have AIDS) = 0.99.
However, the 5% false positive means P (test positive|you do NOT have AIDS) = 0.05. Therefore,
we must calculate P (test positive) using Exercise 3.5. Thus,

P (test positive)

= P (test positive|you have AIDS) · P (you have AIDS)

+ P (test positive|you do NOT have AIDS) · P (you do NOT have AIDS)

= 0.99 · 0.0001 + 0.05 · 0.9999

= 0.050094

so that

P (you have AIDS|test positive) =
0.99× 0.0001

0.050094
=

1

506
≈ 0.001976.

(3.11) Suppose that Ri is the event {red ball on draw i}, and that Bi is the event {blue ball on
draw i}. The problem specifies that

P (B1) =
b

b+ r
, P (R1) =

r

b+ r
, P (B2|B1) =

b+ d

b+ r + d
, P (B2|R1) =

b

b+ r + d
.

(a) Hence, using Exercise 3.5, we conclude that

P (B2) = P (B2|B1) · P (B1) + P (B2|R1) · P (R1) =
b+ d

b+ r + d
· b

b+ r
+

b

b+ r + d
· r

b+ r
=

b

b+ r
.

(b) It then follows from Bayes’ Theorem that

P (B1|B2) =
P (B2|B1) · P (B1)

P (B2)
=

b+ d

b+ r + d
· b

b+ r
b

b+ r

=
b+ d

b+ r + d
.
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(3.12) Let Bn denote the event that the nth ball drawn is blue. We will prove by induction that
P (Bn) = P (B1) for all n ≥ 1. When n = 2, the direct computation in Exercise 3.11 shows P (B2) =
P (B1). Suppose now that P (BN ) = P (B1) for some N ≥ 1. We will show that P (BN+1) = P (B1).
Assume that at time N there are r′ red balls and b′ blue balls in the urn. Thus,

P (BN ) =
b′

r′ + b′
.

But, by the induction hypothesis, P (BN ) = P (B1) so that

P (BN ) =
b′

r′ + b′
=

b

r + b
. (H)

Similar,

P (RN ) =
r′

r′ + b′
=

r

r + b
.

It follows from Exercise 3.5 that

P (BN+1) = P (BN+1|BN ) · P (BN ) + P (BN+1|RN ) · P (RN )

=
b′ + d

r′ + b′ + d
· b′

r′ + b′
+

b′

r′ + b′ + d
· r′

r′ + b′

=
b′

r′ + b′

=
b

r + b
= P (B1) by the induction hypothesis (H)

Thus, by induction, P (Bn) = P (B1) for all n ≥ 1.

(3.13) We must compute P (B1|B2 ∩ · · · ∩Bn+1). By definition of conditional probability,

P (B1|B2 ∩ · · · ∩Bn+1) =
P (B1 ∩B2 ∩ · · · ∩Bn+1)

P (B2 ∩ · · · ∩Bn+1)
. (∗)

Using Theorem 3.3, we calculate

P (B1 ∩ · · · ∩Bn+1) = P (B1) · P (B2|B1) · P (B3|B1 ∩B2) · · · · · P (Bn+1|B1 ∩ · · · ∩Bn)

=
b

b+ r
· b+ d

b+ r + d
· b+ 2d

b+ r + 2d
· · · · · b+ nd

b+ r + nd

=
n∏
k=0

b+ kd

b+ r + kd
. (†)

Using Exercise 3.5, we find

P (B2 ∩ · · · ∩Bn+1) = P (B1 ∩B2 ∩ · · · ∩Bn+1) + P (R1 ∩B2 ∩ · · · ∩Bn+1). (∗∗)

We can again use Theorem 3.3 to find that

P (R1 ∩B2 ∩ · · · ∩Bn+1) = P (R1) · P (B2|R1) · P (B3|R1 ∩B2) · · · · · P (Bn+1|R1 ∩B2 ∩ · · · ∩Bn)

=
r

b+ r
· b

b+ r + d
· b+ d

b+ r + 2d
· · · · · b+ (n− 1)d

b+ r + nd

=
r

b+ r

n∏
k=1

b+ (k − 1)d

b+ r + kd
. (‡)
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Substituting (†) and (‡) into (∗∗) yields

P (B2 ∩ · · · ∩Bn+1) =
n∏
k=0

b+ kd

b+ r + kd
+

r

b+ r

n∏
k=1

b+ (k − 1)d

b+ r + kd
. (∗ ∗ ∗)

Finally, substituting (∗ ∗ ∗) and (†) into (∗) gives

P (B1|B2 ∩ · · · ∩Bn+1) =

n∏
k=0

b+ kd

b+ r + kd

n∏
k=0

b+ kd

b+ r + kd
+

r

b+ r

n∏
k=1

b+ (k − 1)d

b+ r + kd

=
1

1 + r
r+b ·

b+r
b+nd

=
b+ nd

b+ r + nd
.

Note that

lim
n→∞

P (B1|B2 ∩ · · · ∩Bn+1) = lim
n→∞

b+ nd

b+ r + nd
= 1.

(4.1) If P is the binomial(n, p) distribution, then

P (k successes) =

(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k.

Substituting λ = pn gives

pk(1− p)n−k =

(
λ

n

)k (
1− λ

n

)n−k
= λkn−k

(
1− λ

n

)n(
1− λ

n

)−k
.

Furthermore,
n!

k!(n− k)!
=
n · (n− 1) · · · (n− k + 1)

k!

so that combining everything gives

P (k successes) =
n · (n− 1) · · · (n− k + 1)

k!
λkn−k

(
1− λ

n

)n(
1− λ

n

)−k
=
λk

k!

(
1− λ

n

)n{n · (n− 1) · · · (n− k + 1)

nk

}(
1− λ

n

)−k
=
λk

k!

(
1− λ

n

)n{(n
n

)(n− 1

n

)
· · ·
(
n− k + 1

n

)}(
1− λ

n

)−k
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Next, taking the limit as n→∞, λ =constant, gives

limP (k successes)

= lim

[
λk

k!

(
1− λ

n

)n{(n
n

)(n− 1

n

)
· · ·
(
n− k + 1

n

)}(
1− λ

n

)−k]

= lim

[
λk

k!

]
lim

[(
1− λ

n

)n]
lim

[{(n
n

)(n− 1

n

)
· · ·
(
n− k + 1

n

)}]
lim

[(
1− λ

n

)−k]

=
λk

k!
· e−λ · 1 · 1

=
e−λλk

k!
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