4.1 Power Series and Euler’s Formula

Taylor series (or, in general, power series) are the quintessential representations. For example,
it is possible to represent rather arbitrary functions as infinite polynomials. This is useful for
differentiating and integrating, as well as finding limits, and deriving other formulz.

Theorem 4.1.1 (Taylor’s Theorem). Suppose that the function f is analytic in the disk Dg :=
{z € C:|z— 2| < R}. Then f has a Taylor series representation

(z — zo)j

", X £ (4
f(zo)+f'(zo)(z—zo)-I-%(z—zo)Q—i----zzf 0

=0

which converges to f(z) for all z € Dp. Furthermore, if R' < R, then the convergence is uniform
for any z in the closed disk Dgr = {|z — 2| < R'}.

There is a partial converse to Taylor’s Theorem which says that a convergent power series
defines an analytic function.

Theorem 4.1.2 (Power Series). Suppose that the power series
w .
D> o
i=0
has radius of convergence R # 0. Then the function f defined by
o0 .
=D _a?
=0

is analytic inside the disk {|z| < R}.

For instance, recall that
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which is the celebrated Fuler formula.

In particular, if £ = 7, then .
e =cosm+isinm = —1
or .
e +1=0

which relates the FIVE most important numbers in one simple formula!!!!

Exercise 4.1.4. Fill in any missing steps for yourself in the derivation of the FEuler formula,
especially the step from the second to third equality.

4.2 Fourier Analysis

Another useful represention theorem comes from Fourier analysis which says that particular periodic
functions can be expressed as sums of sines and cosines. The subject of wavelets endeavours to
extend these Fourier representations.

We will definitely be discussing representations in terms of sines and cosines (also called har-
monic representations).

Theorem 4.2.1 (Fourier Convergence Theorem). Suppose that f and f' are piecewise con-
tinuous on the interval —L < x < L. Further, suppose that f is defined outside the interval [—L, L)
so that it is periodic with period 2L. Then f has a Fourier series representation

o
g(z :30+Z<amcos —l—b sm?), (1)

m=1

whose coefficients are given by

and

The Fourier series g(x) given in (T) converges to f(ac) at all points where f(x) is continuous, and
o [f(z+)+ f(z—)]/2 at all points where f is discontinuous.

This really is a very powerful theorem. For reinforcement, you should work through the following
two exercises. The mathematics is really nothing more than integration-by-parts from elementary
calculus; the only “hard” part is keeping track of the indices.

Exercise 4.2.2. Suppose that

1, 0<z<2,
fo(z) =
-1, -2<z<0.

Let f be the periodic extension of fj to all of R. Verify that f satisfies the hypotheses of the Fourier
Convergence Theorem, and then compute its Fourier Series g(z). State the limiting values of g(x)
for all z € R.
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Exercise 4.2.3. Suppose that
folz) =lz|, —m<z<m.
Let f be the periodic extension of fj to all of R. Verify that f satisfies the hypotheses of the Fourier

Convergence Theorem, and then compute its Fourier Series g(z). State the limiting values of g(x)
for all z € R.

4.3 Decomposing Stochastic Processes

It is sometimes useful to write an arbitrary random variable X in the form X = A + M where A
and M are themselves random variables, except that they possess certain “nice” properties.

Example 4.3.1. A famous example from martingale theory is the Doob Decomposition Theorem
which states that if the stochastic process {X;} is a submartingale, then it can be written in the
form

Xt =Xo+ A+ M,

where M, is a (local) martingale, Ay is a previsible increasing process, and My = Ay = 0. This deep
result provides the foundation for the theory of stochastic integration.

However, we will only be interested in decomposing stationary stochastic processes {X;}. In
this case, our decompositions will be of the form

Xt == S(t) +Rt

where S(t) will be a “smooth” non-random function and R; will be a “rough” stochastic process.
However, the rough process R will be sufficiently “nice” that it can be easily analyzed (such as
“White Noise”). Note that we sometimes write the function as S(t), and sometimes as S;.

In Section 2.6 of [2] we will learn about the Wold Decomposition of a nondeterministic stationary
process.

4.4 Classical Decomposition

Suppose that {X;} is a stochastic process defined by the classical decompostion. That is, X is given
by
Xe=mi+s+Y;

where m; = m(t) is a slowly changing function called the trend component, s; = s(t) is a function
with known period d called the seasonal component, and Y; is a weakly stationary stochastic process
called the random mnoise component. In accordance with our earlier section on decompositions,
my + S; is “smooth” and Y; is “rough.”

Recall that we defined a time series model in Definition 2.2.1. Two important models which
will serve us well are the following.

Non-seasonal Model with Trend
Xe=m+Y;

where E(Y;) = 0 for all ¢.
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Classical Decompostion Model
Xi=mi+ s+ Y,

where E(Y;) = 0 for all ¢, s;14 = s¢, and Z?:l sj = 0.

Note that s;14 = s¢ says that the function s is periodic with period d. (Think back to the
Fourier Convergence Theorem.)

5 More on Stationary Processes

5.1 Strongly Stationary Stochastic Processes

To begin this section, recall that the concept of a weakly stationary stochastic process was intro-
duced in Definition 3.3.1 of Section 3.3.

Definition 3.3.1. We call the stochastic process {X;} second-order (or weakly) stationary if

e there is a constant u such that u(t) = u for all ¢, and

e Y(t + h,t) only depends on h; that is, if v(¢ + h,t) = (k) for all ¢ and for all h.

As you might have guessed, there is such a thing as a strongly stationary process.

Definition 5.1.1. A stochastic process {X;} is strongly stationary if for any m € N and for any
times t1,...,tn, the joint distribution of (Xy,, X4,,...,Xt,,) is the same as the joint distribution
of (Xt, 45, Xtgtss---3Xt,,+s) for any s.

Remark. As noted in the textbook [2], if {X;} is a strongly stationary process, then it must
necessarily be weakly stationary. You will be asked to prove this in Problem 1.3.

Remark. The condition of strong stationarity is actually quite strict, and is of little use in practice;
weak stationarity is much more useful. Hence, unless otherwise noted, whenever we refer to a process
as stationary without qualification, it will be by default a weakly stationary process.

Here are some important properties of strongly stationary processes.

Fact. Suppose that {X;} is a strongly stationary process.

e The random variables X; are identically distributed.

e The distribution of the random vector (X, X;p) is the same as the distribution of the random
vector (X1, X14p) for all ¢ and h.

e If X; € L? for each t, then {X;} is weakly stationary.

e There exist processes which are weakly stationary, but not strongly stationary. (i.e., weak
stationarity does not imply strong stationarity)

e An iid sequence is strictly stationary.

Exercise 5.1.2. You should try to prove these five properties of strongly stationary processes. If
you get stuck, consult pages 49-50 of [2].
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Although it has not yet been made clear, the concept of stationarity is extremely important for
the analysis of time series. However, it must be noted that since we are defining a time series to be
one realization of a (possibly imaginary) stochastic process, the question of stationarity is really a
very subtle one. You can actually never tell if a time series is stationary after you have observed
it. The real question is:

Should we MODEL the time series as a realization of a stationary process?

5.2 The Autoregressive Moving Average (ARMA) Processes

Moving average (M A) processes, autoregressive (AR) processes, and autoregressive moving average
(ARM A) processes provide three interesting classes of stationary processes. Although they are
usually of limited value by themselves in practice when the goal is to develop an understanding of
the underpinings of a particular model, they are of much more value when the goal of modelling is
no more than a means to an end, such as in forecasting. After we learn about spectral analysis, we
will see that the second order properties of a stationary time series can be well-approximated by
that of an appropriate ARM A process. For now, however, we will study them for their own sake!

Example 5.2.1 (MA(1), First-order Moving Average Process). Suppose that {X;} is a
discrete time stochastic process defined recursively by

X, =2, +07Z1, t=0,1,...

where § € R and {Z;} is white noise with variance o2. Clearly E(X;) = 0 for all ¢, and Var(X;) =
E(X?) = 0%(1 + 6%) < co. Thus we find that

02(1+92)5 h =0,
v(t + h,t) = < 20, h =41,
0, |h| > 1.

As a result, we conclude that the M A(1) process {X;} is stationary. Since y(0) = o2(1 + 62), we
see that

1, h =0,
p(h) =4 0/(1+6%), h==x1,
0, |h| > 1.

Example 5.2.2 (AR(1), First-order Autoregressive Process). Suppose that {X;} is a discrete
time stochastic process defined recursively by

Xt:¢Xt—l+Zta t:O,].,..., (T)

where ¢ € R and {Z;} is white noise with variance o2. We shall show later that {X;} is stationary
if and only if |¢p| < 1 (ie., if -1 < ¢ < 1).

Assuming |¢| < 1, we now find the ACF of the AR(1) process. By stationarity, E(X;) = u does
not depend on t. Since E(Z;) = 0, we find that taking expectations gives

E(X:) = ¢E(X¢—1) + E(Z;) or p=gp,

which is only possible if y = 0.
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Next, if we multiply both sides of () by X; g, then taking expectations and dividing by
Var(X;) = v(0), we find that

o(K) = dplk — 1).
Since p(0) = 1, we find that this difference equation implies that

p(k) = ¢, k=0,1,....

Remark. You should see a similarity between the AR(1) in () and the random walk of Exam-
ple 3.4.2. That is, if {Z;} is not white noise but rather iid noise, and ¢ = 1, then (}) is a random
walk. In this case, it is not true that |¢| < 1, so we conclude that the random walk is not stationary.
This is no surprise since we calculated directly that (¢ + h,t) = to? in Example 3.4.2.

Recall that the ACF is a measure of the serial dependence within a stochastic process. As
we saw in Examples 3.3.2 and 3.3.3, two stationary processes may share the same second order
properties. The following example provides a more substantial illustration of this fact.

Example 5.2.3 (Limitations of ACF for summarizing serial dependence). Consider the
AR(1) process of (t), except that instead of {Z;} being white noise, suppose that Z; is defined as
the two component mixture

7, — {O, with probability p, (1)

Ui, with probability 1 — p.

where {U;} is a normally distributed iid noise sequence. Notice that if p is near 1, then realizations of
this new process differ from the original AR(1) process by their inclusion of exponentially decaying
subsequences which correspond to successive Z; = 0. However, this leaves the autocorrelation
function of {X;} unchanged!

Exercise 5.2.4. Prove that the ACF of the process defined in (1) is p(k) = ¢*, for k = 0,1,...,
the same as an AR(1) process.

Example 5.2.5 (M A(q), ¢-th order Moving Average Process). Suppose that {X;} is a
discrete time stochastic process defined recursively by

q
X, = ZﬁZojzt_j, t=0,1,...
i=1
where 6; € R and {Z;} ~ WN(0,0?). We call {X;} a moving average process of order q.

Example 5.2.6 (AR(p), p-th order Autoregressive Process). Suppose that {X;} is a discrete
time stochastic process defined recursively by

p
Xo=> opXep+ 2, t=0,1,..., (*)
k=1

where ¢ € R and {Z;} ~ WN(0,02). We call {X;} an autoregressive process of order p. Notice
that in the AR(q) process (x), each X; is defined in terms of its predecessors X, s < t.
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Example 5.2.7 (ARM A(p, q), Autoregressive Moving Average Process). If we combine the
MA(q) and AR(p) processes, then we obtain the so-called autoregressive moving average process.
Suppose that {X;} is a discrete time stochastic process defined by

p q
Xt:ZQkat—k‘f'Zt‘FZethfj, t=0,1,....
k=1 j=1

where 0;, ¢ € R and {Z;} ~ WN(0,0%). Then {X;} is called an autoregressive moving average
process, which is often abbreviated {X;} ~ ARM A(p,q). Notice that if p = 0 or ¢ = 0, then the
definition of the ARM A(p, q) process reduces to M A(q) or AR(p), respectively. An equivalent way
to write the ARM A(p, q) process {X;} is as follows:

p

q
X — Z Gk Xtk = Zt + Z 0;Z;_;.

k=1 j=1

The stationarity of an ARM A(p, q) process is rather subtle, as was indicated in Example 5.2.2.
Since the moving average processes are always stationary, the question of stationarity really just
depends on the autoregressive part.

Theorem 5.2.8 (Stationarity of the AR(p) process). The process {X;} ~ AR(p) defined by

p
Xt:Z¢kXt—k+Zt7 t:()a]-a"'a
k=1

where {Z;} ~ WN(0,0?), is stationary if and only if the complex polynomial

p
$(z) :=1—) dpz" =1— ¢z — dpz” — -+ — 2

k=1
has no roots for all z € C with |z| = 1. That is, {X;} is stationary if ¢(z) # 0 for every |z| = 1.

Remark. The necessity of complex numbers arises from the fact that any polynomial of degree
k has k complex roots (counting multiplicity). This is known as the Fundamental Theorem of
Algebra. Tt is easy to see that limiting polynomial roots to just the real numbers is inadequate. For
example, the polynomial ¢(z) = 1+ 22 has no real roots. However, it does have two complex roots,
namely z = v/—1 =4 and z = —v/—1 = —i. The polynomial ¢(z) = 1 — 22 also has two complex
roots, namely z = 1 and z = 1. That is, counting multiplicity, there are two roots.

We can now extend the above theorem to ARM A(p, q) processes.

Theorem 5.2.9 (Stationarity of the ARM A(p, q) process). The process {X;} ~ ARM A(p,q)
defined by

p q
Xy = Z¢kXt—k+Zt+29th_j, t=0,1,...,
k=1 j=1

where {Z;} ~ W N(0,02), is stationary if and only if the complex polynomial

p
$(2) =1= g2t =1~ ¢z~ ¢22” — - — 2t

k=1
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has no roots for all z € C with |z| = 1. That is, {X:} is stationary if ¢(z) # 0 for every |z| = 1.
This is equivalent to the condition that the complex polynomials ¢(z) and

q
0(z) :zl—Zszj:1—92—9222—---—0kzk
=1

have no common factors.

6 Introduction to the Spectral Analysis of Stationary Processes

6.1 A Quick Review

In high school, when you learned to graph trignometric functions you were probably shown what
to do with expressions of the form
acos(kt + b).

You will certainly recall that a is the amplitude, b/k is the phase shift, and k is the frequency (so
that p = 27 /k is the period).

Exercise 6.1.1. Sketch a graph of the function f(t) = —2cos(2t + 7/4).

While this form is excellent for interpretation (and graphing), another form proves useful for
time series analysis. Motivated by the form of the Fourier series, we see that an application of a
simple trig formula gives

a cos(kt + b) = a(cos bcos(kt) — sinbsin(kt))
= g cos bcos(kt) — asin bsin(kt)
= acos(kt) + [ sin(kt)

where we have written o« := a cosb and 8 := —asinb.

Notice also that o 4+ %2 = a? cos? b+ a®sin? b = a? and

inb
_g:asm = tanb.
a acosb

Thus, the inverse relationship of & and 8 to a and b is

a=+/o?+ 32 and b= arctan (—é) )

e
Remark. You will notice a suspicious similarity to the polar coordinates change-of-variables.
Exercise 6.1.2. Sketch a graph of the function g(t) = —v/2 cos(2t) 4 v/2sin(2t).

Exercise 6.1.3. With f and g as in Exercise 6.1.1 and Exercise 6.1.2, respectively, compute both
J f(t)dt and [ g(t) dt. What can you say about these two answers? Why?
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6.2 Fourier Frequencies

It turns out that it will be necessary to restrict our possible frequencies to the so-called Fourier
frequencies. In practical applications, we shall need to consider only frequencies in the range
0 <k <w. If k= m, then this corresponds to an alternating sequence of positive and negative
values. We further restrict k£ to be of the form

9
k=" for some positive integer j < g (1)
n

Definition 6.2.1. The discrete set of frequencies defined by (f) is called the Fourier frequencies.

We now state an extremely useful result which is one of the reasons for considering the Fourier
frequencies.

Theorem 6.2.2. Ifn € N and k = 27j/n for any positive integer j < n/2, then

. z": cos(kt) = 2": sin(kt) = z": cos(kt) sin(kt) = 0;
t=1 t=1

t=1

n n
2011y — 20y —
o Zcos (kt) = Zsm (kt) = 5"
t=1 t=1
Exercise 6.2.3. Use the facts that ¢® = cosz + isinz, and
1-2
t=1
for any z # 1, as well as the trigonometric identities 2 cos? z = 1+ cos(2z) and 2sin? z = 1 —cos(2z)

to prove the above theorem. (You might find it helpful to recall that the complex number a+bi = 0
if and only if both a =0 and b =0.)

Notice that for the Fourier frequencies, since j < n/2, we have k < w. Thus, the possible values

for the frequency k lie in the range

2
_Skgﬂ'a
n

and therefore the possible values for the period p = 27 /k lie in the range 2 < p < n.

We remark that if p = 1, then there is no cyclic phenomenon, and if p > n, then we cannot tell
if there is cyclic behaviour or if we are just observing a trend.

Finally, note that j is the number of complete cycles observed, which is one reason that it is
convenient to assume an integer number of cycles.

Exercise 6.2.4. If you are not comfortable with this manipulation of sinusoidal functions, then
sketch graphs illustrating the different scenarios listed above.

6.3 Some Multiple Linear Regression

Recall our basic decomposition: y(t) = s(t) + z(¢) where s is a smooth signal and z is noise. Using
the assumption that the signal can be expressed as a sinusoidal wave, we find

y(t) = s(t) + z(t) = acos(kt + b) + z(t) = acos(kt) + Bsin(kt) + z(t).
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If we evaluate this equation at times t1,t9,...,t, we find that
y(t1) = acos(kt1) + Bsin(kt1) + z(t1)
y(t2) = acos(kta) + Bsin(kta) + z(t2)
y(tn) = acos(kty,) + Bsin(kty,) + 2z(tn)
which we can rewrite as
y1 = ari1 + Brie + €
Yo = axa1 + B + €

Yn = QTp1 + /Bx'nQ + €n-

Notice that this looks suspiciously like the linear regression model

Y=-X (g) +e.
where
Y1 T11 T12 cos(kty) sin(ktq) €1
v y.g Cx-— .’L"21 56.22 _ cos(.ktg) SiIl('th)  and e €
y'n ac,'ﬂ ZTn2 cos('ktn) sin('ktn) €n

(See Sections 11.10 and 11.11 in [5].)

One consequence of these computations combined with Theorem 6.2.2 is that there is no
collinearity among the z-variables.

Theorem 6.3.1. If

11 Z12

T91 Z22
Xi=1 . and Xo=| . |,

Tni Tn2

then X1 and X are statistically independent. That is, X1 L Xo. Furthermore, X1 1 1 and
Xy L 1, where 1 is the column vector 1 = (11 --- )T (n times).

Exercise 6.3.2. Use Theorem 6.2.2 to prove this theorem. Recall that vectors 4 and v are orthog-
onal, written w | v, if their dot product is zero, i.e., u -v = 0.

Suppose now that there is no noise so that € = 0. As a result of the above theorem, inferences
about « and S are independent of each other. (They are orthogonal.) We also know from the
theory of linear regression that the least squares estimator of o, 3 is given by

~

(g) = (XTXx)"1xTY.
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Now,
cos” (kt cos(kt) sin(kt
iy ; (kt) ;nu <):<n/2 )
Z sin(kt) cos(kt) Z sin? (kt) 0 n/2

t=1
Thus we find that

(XTX) ' XTY = (26” 2(/)n) xTY —

which tells us that

Q>
3|l\3

n
Z yrcos(kt) and = Z y sin(kt).
t=1 "=

Recall that the regression sum of squares is given by Y7 X(XTX)71XTY. From this we find
that

YTX(XTX)%XTY = — (Z y cos(kt ) (Z y, sin(kt ) _ g (d2 i Bz) ,

and we say that the regression sum of squares is on two degrees of freedom (one for o and one for

p)-

6.4 The Periodogram

The purpose of the previous section was to motivate the following definition.

Definition 6.4.1. If we define

(Z yy cos(kt) ) (Z ye sin(kt) )

for 0 < k < m, then the plot of I(k) vs. k is called the periodogram of the time series {y;}.

—itk

Comparing the definition of the periodogram I to the regression sum of squares, we find that

=2 (Sweostin)) + (Swsintin)))

= — (regression sum of squares for «, 3) .
2 g
In other words, we have the correspondence

Sum of Squares = Amplitude = Periodogram.
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Remark. Although the definition of I(k) given in (}) makes sense for any k, if the period k is not
a Fourier frequency, then I no longer represents the regression sum of squares.

Exercise 6.4.2. Suppose that {y;} is a time series with periodogram I. Show that I(0) = ny>.

Notice that we can also decompose the total variation in the time series {y;} as

m

Sy =100)+2)_I(2mj/n) + I(r)
t=1

i=1
where m is the largest integer less than n/2, and the term I(7) = 0 is n is odd.

Remark. The periodogram is useful for exploring cyclic patterns in time series data. This is the
simple reason for excluding the period £ = 0 in the definition of I.

6.5 The Spectrum

We are now prepared to delve further into the Fourier analysis of a stationary time series.

Definition 6.5.1. Suppose that {X;} is a discrete time stationary process with autocovariance
function -y, := 7y(h). The autocovariance generating function is the function G : C — C given by

G(z) = Z pz".

h=—o

Definition 6.5.2. The spectrum (or spectral density) of the discrete time stationary process {X;}
is the function f : R — C defined by f()\) := G(e™*). In other words, if we consider the ACVF
generating function and choose z = e~ with A € R, then the spectrum of {X;} is

FO) = D e ™ (1)

h=—oc

Remark. There is a technical point to note about the definition of the spectrum, namely the
series defined by (f) may not converge. If we restrict ourselves to those stationary processes with
Y one oo lv(h)| < oo, then the series in (}) converges absolutely.

If you are familiar with Fourier analysis, then the spectrum should remind you of the dis-
crete Fourier transform. It might also remind you of a characteristic function from your earlier
probability courses.

Since y(h) = v(—h), and since e”* + e7** = 2cos A, we can also express the spectrum as
Y Y

FO)=70+2)_ yncos(hh).
h=1
Definition 6.5.3. If vy = Var(X;) = o2, then the normalized spectrum is defined to be
f() = ) = i pre” " =1 +2ip cos(h\)
- o’ h=—00 " h=1 "

where pp, := p(h) is the ACF of {X;}.
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Exercise 6.5.4. Show that if {X;} ~ WN(0,1) is white noise, then f*(A) =1 for all \. The fact
that the spectrum of white noise is constant is analogous to the flat optical spectrum of white light,
and is the source of the luminous name White Noise.

Recall that the periodogram of the observed time series {z;:} is given by

n—1

IA) =4 +2Y  Ancos(hN)
h=1

where 4, is used to estimate ;. This shows that the periodogram is may be viewed as an estimator
of the spectrum.

Fact. From the definition of f()\) we see that

o f(N) = f(=N),
o f(A) = f(A+ 2wm) for all integers m, and
e f(A) >0 forall X €[—m,m).

Together these imply that it is necessary to define f(A) only for A € [0, 7]. Recall further that we
also restricted the periodogram to frequencies A € [0, 7].

As already noted in Definition 6.5.2, f is the discrete Fourier transform of 7. The Fourier
Inversion Theorem tells us that we can recover v from f. Hence,

1 [ . 1 [

1 =5 [ )= [ eoshAF () dn (h
2 J_, T Jo

In fact, this equation characterizes the class of legitimate ACVFs.

Remark. Wold’s Theorem states that y(h) is a legitimate ACVF if and only if there exists a
non-negative function f(A) on (0,7) such that v has the representation ().

Remark. Anytime you ask someone to define the Fourier transform, there is always a question of
what to do with the “27”s. We have (arbitrarily) decided that they will appear with the inverse
formula.

As a final note, we observe that, mathematically speaking, both the spectrum and the ACVF
contain ezactly the same information about the stationary process in question. However, from a
pragmatic point of view, the spectrum can be interpreted in terms of the inherent tendency for
realizations of the process to exhibit cyclic variations about the mean.

Remark. Any (non-negative, integrable) function on (0,7) can be a spectrum, but not every
function on the integers can be an ACVF.
We end this section by computing some normalized spectra.

Example 6.5.5 (f*(\) for M A(1)). Recall from Example 5.2.1 that the autocorrelation function
of the AR(1) process is

1, h=0,
pr=p(h) = 60/(1+6%), h==l,
0, |h| > 1.
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Thus we find that the normalized spectrum is

1+ 62 + 26 cos(\
cos(A) = e (*)

. 0 . 0 .
* _ —ihA _ iA —iA _ -
() = the =11 5¢ +1+1+026 1+1_}_02

Example 6.5.6 (f*()\) for AR(1)). Recall from Example 5.2.2 that the autocorrelation function
of the AR(1) process is p(h) = ¢, h = 0,1,.... Thus we find that the normalized spectrum is

For- 5 e $ (o) = 8 () 3 ) 5 o)
h h=0 h=1

h=—o =—00 00

_ i (66)" 414 i (e )"
h=1 h=1

¢€i)\ ¢€—i)\
T P T e
1— ¢?
4o~ o)
_ 1-¢°
14 ¢2 —2pcos A\
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