Definition 3.1.4. If X and Y are both random variables in L?, then the covariance of X and Y,
written Cov(X,Y) is defined to be

Cov(X,Y) :=E((X — pux)(Y — py))

where px = E(X), puy := E(Y). Whenever the covariance of X and Y exists, we define the

correlation of X and Y to be
Cov(X,Y)

oxXoy

Corr(X,Y) := (1)

where ox is the standard deviation of X, and oy is the standard deviation of Y.

Remark. By fiat, 0/0 := 0 in (}). Although this is sinful in calculus, we advanced mathematicians
understand that such a decree is permitted as long as we recognize that it is only a convenience
which allows us to simplify the formula. We need not bother with the extra conditions about
dividing by zero. (See Exercise 3.1.20.)

Definition 3.1.5. We say that X and Y are uncorrelated if Cov(X,Y) = 0 (or, equivalently, if
Corr(X,Y) = 0).

Theorem 3.1.6 (Linearity of Expectation). Suppose that X : @ - Rand Y : Q@ — R are
(discrete or continuous) random variables with X € L' and Y € L'. Suppose also that f : R — R
and g : R — R are both (piecewise) continuous and such that fo X € L' and goY € L'. Then,
foX+goY € L! and, furthermore,

E(foX+goY)=E(foX)+E(goY).

Exercise 3.1.7. Prove the above theorem separately for both the discrete case and the continuous
case. Be sure to state any assumptions or theorems from elementary calculus that you use.

Fact. If X € L? and Y € L2, then the following computational formulz hold:

e Cov(X,Y) =E(XY) - EX)E(Y);
e Var(X) = Cov(X, X) = 0%
e Var(X) = E(X?) — (E(X))2.
Exercise 3.1.8. Verify the three computational formulae above.
Exercise 3.1.9. Using the third computational formula, and the results of Exercise 1.3.4, quickly

show that if X ~ N(u,0?), then Var(X) = o?. Together with Exercise 1.3.4, this is the reason

that if X ~ N (u,0?), we say that X is normally distributed with mean p and variance o2.

Definition 3.1.10. The random variables X and Y are said to be independent if f(z,y), the joint
density of (X,Y), can be expressed as

f(z,y) = fx(z) - fr(y)
where fx is the density of X and fy is the density of Y.

Remark. Notice that we have combined the cases of a discrete and a continuous random variable
into one definition. You can substitute the phrases probability mass function or probability density
function as appropriate.
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The following is an extremely deep, and important, result.

Theorem 3.1.11. If X and Y are independent random variables with X € L' and Y € L', then

e the product XY is a random variable with XY € L', and
e E(XY)=EX)E(Y).

Exercise 3.1.12. Using this theorem, quickly prove that if X and Y are independent random vari-
ables, then they are necessarily uncorrelated. (As the next exercise shows, the converse, however,
is not true: there do exist uncorrelated, dependent random variables.)

Exercise 3.1.13. Consider the random variable X defined by P(X = —1) =1/4, P(X =0) = 1/2,
P(X =1) = 1/4. Let the random variable Y be defined as Y := X2. Hence, P(Y = 0/X =0) =1,
PY=1X=-1)=1,PY=1X=1)=1.

e Show that the density of Y is P(Y =0) =1/2, P(Y =1) =1/2.

e Find the joint density of (X,Y’), and show that X and Y are not independent.

e Find the density of XY, compute E(XY), and show that X and Y are uncorrelated.

Exercise 3.1.14. Prove Theorem 3.1.11 in the case when both X and Y are continuous random
variables.

Exercise 3.1.15. Suppose that X : @ - Rand Y : Q — R are independent, integrable, continuous
random variables with densities fx, fy, respectively. Let g : R — R and h : R — R be continuous
functions such that go X € L' and hoY € L'. Prove that E((go X) - (hoY)) =E(go X)E(hoY).

As a consequence of the previous exercise, we have the following very important result.

Theorem 3.1.16 (Linearity of Variance when Independent). Suppose that X : @ — R and
Y : Q — R are (discrete or continuous) random variables with X € L? and Y € L. If X and Y
are independent, then

Var(X +Y) = Var(X) + Var(Y).

It turns out that Theorem 3.1.11 is not quite true when X and Y are not independent. However,
the following is a probabilistic form of the ubiquitous Cauchy-Schwarz inequality, and usually turns
out to be good enough.

Theorem 3.1.17 (Cauchy-Schwarz Inequality). Suppose that X and Y are both random vari-
ables with finite second moments. That is, X € L?, and Y € L?. It then follows that

e the product XY is a random variable with XY € L', and
o (E(XY))? <E(X?)E(Y?), and
e (Cov(X,Y))? < Var(X) Var(Y).

Exercise 3.1.18. Using the first part of the Cauchy-Schwarz inequality, show that if X € L?, then
X e L.

Exercise 3.1.19. Using the second part of the Cauchy-Schwarz inequality, show that if X € L2,
then X € L.
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Exercise 3.1.20. Using the third part of the Cauchy-Schwarz inequality, you can now make sense
of the Remark following Definition 3.1.4. Show that if X and Y are random variables with Var(X) =
Var(Y) = 0, then Cov(X,Y) = 0.

The following facts are also worth mentioning.

Theorem 3.1.21. Ifa € R and X € L?, then aX € L? and Var(aX) = a? Var(X). In particular,
Var(—X) = Var(X).

Theorem 3.1.22. If X1, Xo,..., X, are L? random variables, then
n n n

Var (Z Xi> =33 Cov(Xy, X;).
i=1 i=1 j=1

In particular, if X1, Xo,...,X, are uncorrelated L? random variables, then
n n
Var (Z X,-) = ZVar(Xi).
i=1 i=1

3.2 Summarizing Stochastic Processes

On the other hand, for a stochastic process {X;}, we have infinitely many random variables, and
so we have infinitely many means, variances, covariances. These can be summarized with the help
of two functions.

Definition 3.2.1. If {X;} is a stochastic process with X; € L' for each ¢, then the mean function
(or trend) of {X;} is the non-random function p(t) := E(X}).

Definition 3.2.2. If {X;} is a stochastic process with X; € L? for each ¢, then the autocovariance
function of {X;} is the non-random function

(t,5) := Cov(Xy, Xs) = E((Xy — p(t))(Xs — p(s))) -

3.3 Weakly Stationary Stochastic Processes

Definition 3.3.1. We call the stochastic process {X;} second-order (or weakly) stationary if

e there is a constant p such that u(t) = p for all ¢, and

e (¢t + h,t) only depends on h; that is, if y(¢ + h,t) = y(h) for all ¢ and for all h.

Example 3.3.2 (White Noise). Suppose that {X}} is collection of uncorrelated random variables,
each with mean 0 and variance o2. We say that {X;} is White Noise. (The reason for this luminous
name will become clear when we discuss the spectrum of a stationary process.) We now verify that
{X:} is second-order stationary. First, it is obvious that u(t) = 0. Second, if s # ¢, then the
assumption that the collection is uncorrelated implies that y(¢,s) = 0, s # ¢t. On the other hand,
if s = ¢, then 7(t,t) = Var(X;) = 02. Thus, u(t) = 0, and

%, h=0,

v(t + h,t) = {0 h2o

so that {X;} is, in fact, second-order stationary. We write {X;} ~ WN(0,0?) to indicate that {X;}
is white noise with Var(X;) = o2, each t.
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Example 3.3.3 (iid Noise). Suppose instead that {X;} is collection of independent random
variables, each with mean 0 and variance o?. We say that {X;} is iid Noise. As with white noise,
we easily see that iid noise is stationary with trend p(t) = 0 and

0%, h=0,

T+ ) = {0 h#0.

We write {X;} ~ ITD(0,0?) to indicate that {X;} is iid noise with Var(X;) = o2, each t.

Remark. With these two examples, we see that two different processes may both have the same
trend and autocovariance function. Thus, u(t) and y(t+h, t) are NOT always enough to distinguish
stationary processes. (However, for stationary Gaussian processes they are enough.) For a more
substantial example of two different stationary processes having the same second order properties,
see Example 5.2.3.

Remark. Our textbook [2] carefully distinguishes between white noise and iid noise. In fact, if
{X;} ~ IID(0,0?), then {X;} ~ WN(0,0?). However, the converse is not true; see Problem 1.8
in [2].

As a consequence of the second condition for second-order stationarity, we make the following
definition.

Definition 3.3.4. Suppose that {X;} is a second-order stationary process. The autocovariance
function (ACVF) at lag h of {X;} is

v(h) == Cov(Xitn, Xt).
The autocorrelation function (ACF) at lag h of {X;} is

Exercise 3.3.5. For a second-order stationary process, show that Var(X;) = v(0) for each ¢.

Note that Cov(X;yn, X;) = 7(h), and by the exercise above, Var(X;,) = Var(X;) = 0% = (0)
so that oy, = 04 = 0. Thus, by definition, we find that

COI‘I‘(XH_h,Xt) — COV(Xt—I—haXt) — V(h’) — ’Y(h) — p(h)

Tt+h0t oo v(0)

This verifies the second equality in the definition of the ACF in Definition 1.4.3 on page 16 of [2].

3.4 Other Important Examples of Stochastic Processes

In this section, we give some further examples of stochastic processes, and practice computing
autocovariance functions. Although these stochastic processes turn out not to be stationary, they
are of the upmost importance in the theory of probability and statistics.

Example 3.4.1 (Simple Symmetric Random Walk). Suppose that {X;}, j =0,1,...,is a
collection of iid random variables (called the jumps) with Xo =0 and P(X; =1) = P(X; = —1) =
1/2, j € N (called the jump density). Set Sp := Xy, and for n € N, let S,, be defined recursively by

Sn = Sp_1+ X,
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Then the stochastic process {S,}, n =0,1,..., is called a simple symmetric random walk. In order
to analyze the second order structure of {S,}, we first observe that

n
Sn=>_ Xj.
j=0

Since E(X;) = 0 for all j, using the linearity of expectations, we find that p(n) = E(S,) = 0. As
the {X;} are an iid collection of random variables, the linearity of variance can be applied so that

1(n,m) = Var(s ZVar zmz_mzl_n

since E(X2) = 0 and E(X ]2) =1 for all j € N. We immediately see that it is impossible for {S,,} to
be stationary since y(n,n) depends on n. However, to finish the computation of the autocovariance
function, note that for h € N,

COV(Sn—}-ha Sn) =E (Sn+hSn) -E (Sn—l—h) E (Sn)
== E(Sn+hsn)
n+h n

=[S0 3w
7=0
n n n+h n
E(YxYya)ee( ¥ o¥n
§=0 k=0 j=n+1 k=0
Since {X;} is an independent collection, we have E(X; Xj) = 0 for j # k. From this, we see that
n+h
(5 xyx)-
Jj=n+1 7=0
because each possible product contains different random variables. Similarly,
B(Suin)-2(Lxe $F xu)-r(Lx)-n
J=0 Jj#k, 0<4,k<n

Thus, we find that y(n + h,n) =n for all h =0,1,2,....

Example 3.4.2 (Generalized Random Walk). Here are some generalizations of the simple
symmetric random walk.

e The adjective simple refers to a random walk whose possible jumps are +1 only.
e The adjective symmetric refers to a random walk whose jump density is symmetric.

e If Xg=0and P(X; =1)=1-P(X; =-1)=p, j €N, for some p € (0,1/2) U(1/2,1), then
Sn is a simple asymmetric random walk.

e Suppose that Xg =0 and P(X; =1) =1/3, P(X; = -1)=1/3, P(X; =0) =1/3, j € N.
Then S, is a non-simple symmetric random walk.
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e Similarly, if Xg = 0 and P(X; =2) =1/2, P(X; = —-2) =1/2, j € N, then S, is a non-simple
symmetric random walk.

e Suppose that Xo =0 and P(X; =2) =1/4, P(X; =1) =1/4, P(X; = -2)=1/2,j € N.
Then S, is a non-simple asymmetric random walk.

In fact, the jumps {X;}, j = 0,1,..., can have almost ANY distribution. Suppose that {X;} ~
IID(0,0?). Let Sg = 0, and for n € N, define S, to be

n
Sn =81+ X :ZX]
j=1

Then {S,} is said to be a random walk with jump distribution {X;}. Furthermore, we find that
p(n) = 0 for all n, and by modifying Example 3.4.1 slightly, v(n + h,n) = no?. This shows that
no (non-trivial) random walk is stationary.

Random walks are among the most important, and fundamental, stochastic processes. In fact,
they are the building blocks for, and the discrete time analogue of, Brownian motion, the most
important of all stochastic processes.

Example 3.4.3 (Brownian Motion). Consider a collection of random variables {B;}, 0 < t < oo,
having the following properties:

e By =0,
e for 0 <s<t< o0, Bi— Bs ~N(0,t —s),
o for 0 < s <t < o0, By — By is independent of By,

e the trajectories ¢t — B; are continuous.

The stochastic process {B;}, 0 < t < o0, is called Brownian motion. It is actually a very deep
result that there ezists a stochastic process having these properties (continuous trajectories is the
tough part). One way to prove the existence of Brownian motion is to take an appropriate limit
of appropriately scaled simple symmetric random walks. This concept of a scaling limit is of
fundamental importance in modern probability research.

Remark. The history of Brownian motion is fascinating. In the summer of 1827, the Scottish
botanist Robert Brown observed that microscopic pollen grains suspended in water move in an
erratic, highly irregular, zigzag pattern. Following Brown’s initial report, other scientists verified the
strange phenomenon. Brownian motion was apparent whenever very small particles were suspended
in a fluid medium, for example smoke particles in air. It was eventually determined that finer
particles move more rapidly, that their motion is stimulated by heat, and that the movement is
more active when the fluid viscosity is reduced.

However, it was only in 1905 that Albert Einstein, using a probabilistic model, could provide a
satisfactory explanation of the Brownian motion. He asserted that the Brownian motion originates
in the continual bombardment of the pollen grains by the molecules of the surrounding water, with
successive molecular impacts coming from different directions and contributing different impulses to
the particles. As a result of the continual collisions, the particles themselves had the same average
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kinetic energy as the molecules. Thus, he showed that Brownian motion provided a solution (in a
certain sense) to the famous partial differential equation u; = ug,, the so-called heat equation.

Note that in 1905, belief in atoms and molecules was far from universal. In fact, Einstein’s
“proof” of Brownian motion helped provide convincing evidence of atomic existence. Einstein had
a busy 1905, also publishing seminal papers on the special theory of relativity and the photoelectric
effect. In fact, his work on the photoelectric effect won him a Nobel prize. Curiously, though, history
has shown that the photoelectric effect is the least monumental of his three 1905 triumphs. The
world at that time simply could not accept special relativity!

Since Brownian motion described the physical trajectories of pollen grains suspended in water,
Brownian paths must be continuous. But they were seen to be so irregular that the French physicist
Jean Perrin believed them to be non-differentiable. (The German mathematician Karl Weierstrass
had recently discovered such pathological functions do exist. Indeed the continuous function

oo

g(z) = Z b" cos(a™mx)

n=1

where a is odd, b € (0,1), and ab > 1 4 37/2 is nowhere differentiable.) Perrin himself worked to
show that colliding particles obey the gas laws, calculated Avogadro’s number, and won the 1926
Nobel prize.

Finally, in 1923, the mathematician Norbert Wiener established the mathematical existence of
Brownian motion by verifying the existence of a stochastic process with the given properties.

Exercise 3.4.4. Deduce from the definition of Brownian motion that for each ¢, the random
variable B; is normally distributed with mean 0 and variance t. Why does this implies that
E(B?) = t?

Exercise 3.4.5 (Trend and ACVF of Brownian motion). Use the result of the previous
exercise to prove that if {B;} is a Brownian motion, then u(t) = 0 for all ¢, and «(¢,s) = s if
0 < s < t. This shows that Brownian motion is not a stationary process. (Hint: To compute
v(t,s), write BsB; = (BsB; — B?) + B2, take expectations, and then use the third part of the
definition of Brownian motion and the previous exercise.)

Exercise 3.4.6. Deduce from the definition of Brownian motion that for 0 < s < t < oo, the

distribution of the random variable B; — B, is the same as the distribution of the random variable
B;_.

Remark. Although Brownian motion is not a stationary process, it does have what are called
stationary increments; that is, the distribution of the increment B, — B; only depends on |t — s|.

To extend the above exercises, an alternative way to define Brownian motion is via its second
order properties.

Definition 3.4.7. A stochastic process {X;} is called a Gaussian process if for any m € N and for
any times ti,..., %y, the joint distribution of (X3, , Xy,,..., X}, ) is multivariate normal.

Example 3.4.8. Brownian motion {B;} is a Gaussian process with

e u(t) =E(B;) =0 for each t,

e (t,s) = Cov(Bi, Bs) = min(s,t), and
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e trajectories, ¢t — B;, which are continuous.

We end this section with two remarks which briefly indicate some of the connections between
Brownian motion and time series.

Remark. Brownian motion was also an early model of stock prices. However, it was quickly realized
that Brownian motion was an inadequate model since the trend of Brownian motion is 0, while
the trend of most stocks is increasing (at least for the good ones). To compensate, the processes
X; := 0By + ut (called Brownian motion with drift) and Y; := YyeXt = Yyexp(oB; + pt) (called
exponential Brownian motion) were introduced. The merits and limitations of these processes are
well-known. A further process, called fractional Brownian motion, attempts to address some of
these limitations.

Exercise 3.4.9. Here is a quick review of ordinary differential equations. Suppose that the (de-
terministic) function y(t) is defined by the differential equation

dy(t) := z(t)dt (1)

for some given function z(¢). You will recall from elementary calculus that equation () has no
meaning. Instead, it is simply shorthand for
dy(t)

Tl z(t).

Provided things make sense, we can solve the ODE (f) for y(¢), namely

Find all possible functions y(t) for which

1

“1rad

dy(t)

ie,z(t)=(1+1t)"L

Remark. You might be tempted to think that Brownian motion provides an example of white
noise (as in Example 3.3.2). Since the random variables B; and By, s # t are not uncorrelated,
Brownian motion is not white noise. However, there is a strange relationship between Brownian
motion and white noise. Although we have noted that Brownian motion is non-differentiable in the
traditional (elementary calculus) sense, it is possible to make sense of % as a generalized function.
In the statistical communication theory literature, a slightly different definition of white noise is
made, namely as the generalized derivative of Brownian motion; i.e, if {X;} is white noise, then
dBy := Xdt. The theory of stochastic integration gives meaning to such a stochastic differential

equation.

4 Representations and Decompositions

It is often useful in mathematical analysis to have a representation of a complicated object in terms
of other, more simple objects.

You saw a representation result in elementary calculus!!!
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