variance 02, and you randomly select a sample of data {y1,%2,---,¥ys}, then an unbiased (point)
estimator of y is
Yy=—>—",
n
and a common unbiased (point) estimator of o2 is
1 & _
st=—=> (i~
n—1+4
i=1
In Stat 252, you studied many of the properties of these (point) estimators.

Exercise 2.1.1. Being sure to carefully list all of the necessary assumptions, prove that

e 7 is an unbiased estimator of y, and

e s? is an unbiased estimator of o2.

This is one reason for dividing by n — 1 in the definition of the sample variance s

dividing by (the more natural) n.

, instead of

You will also recall that using only a single number (such as 7 or s?) to estimate a parameter
is not that beneficial because it is unlikely that point estimator will equal the parameter exactly.
Instead, you learned that much more information is provided by a confidence interval.

Most confidence intervals that you have encountered are normal-distribution-based. This means
that if 0 is a point estimator of a parameter 6, then

éiza\/%,

where V(6) is the (estimated) variance of 6, is a (1 — @)% confidence interval for 6.

You will also recall that the interpretation of a confidence interval is that before the sample is

drawn,
P (|9 -0 > za\/f/(é)) = .

After the sample is drawn, no such probability statement is true. All you can do is simply hope
that your confidence interval is not one of the unlucky a%.

For the analysis of time series, the approach will be similar. However, as we have indicated
previously, we no longer have a single random variable to worry about, but an entire stochastic
process.

2.2 Objectives of Time Series Analysis

As with most of Statistics, the objective of time series analysis is to draw inference from a time
series. This is done by providing a concise description of the historic series. It may include some
summary statistics, but more likely, it will require a function rather than a single number to
summarize the time series’ essential features.

Another, more challenging, objective is to forecast future values of the series. (It should be
noted that many of the methods of analysis of time series were developed with this specific goal in
mind.)



A problem that occurs in the biological and medical sciences is monitoring a time series in order
to detect changes in behaviour as they occur. You might immediately think of an electrocardio-
gram (ECG) trace. It is important for a doctor observing a patient’s ECG trace to recognize an
abnormality when it occurs.

Finally, there is a role to be played in time series analysis for accommodation of the serial
dependence when making inferences about the basic stochastic structural parameters.

Definition 2.2.1. Consider an observed time series {z;}. A time series model for the observed
data {z;} is a specification of the stochastic process {X;} of which {z;} is conjectured to be a
realization. By the specification of the stochastic process, we mean the specification of its joint
distribution, or possibly only its means and covariances.

Remark. It is important to realize that in many practical problems, the time series that we observe
is the only realization of that series which will ever occur. Our analysis is only furthered, however,
if we imagine it to be one of the many processes that might have occurred.

2.3 The First Step in Time Series Modelling

As you were probably told in every class you have ever had in which you encountered data, you
should ALWAYS begin your analysis by producing a graph (or several) of the data. For time
series data, the most obvious graph is a time series plot. (See Section 1.5.)

Specifically for time series data, you should examine the plot to see whether there appears to
be

a trend (whether increasing or decreasing),

a seasonal component (as evidenced by a cyclic pattern),

e any apparent sharp changes in behaviour,

any outlying behaviour.

It should be noted that if you have discrete data, there are arguments for and against joining
successive points with straight lines.

¢ By joining succesive points, it might be easier to digest, especially if multiple time series are
superimposed on one graph.

e The zig-zag appearance of the trace made by joining points gives the false impression of
continuous observation. Doing so may give the wrong impression, especially for time series
with missing data.

One final consideration is that you should carefully choose the aspect ratio (or shape parameter)
for the actual display of the time series.

Remark. For those who are familiar with the difference between the fullscreen and widescreen ver-
sions of VHS/DVD movies, then you will already understand the concept of aspect ratio (fullscreen
is 4:3 and widescreen is 16:9).



Example 2.3.1. The following three plots are all graphs of the function
£(t) = sin(10t) — 2 cos(5t) + 0.5sin(3¢ — 1) + 2.5 cos(16¢ + 1.1) — 0.001 sin(8¢) + 0.3t ~3/2.
In the pictures below, the viewing window is fized. However, the apparent loss of smoothness occurs

because the domain is restricted in the first picture to [1, 2], in the second to [1, 8], and in the third
to [1,30].
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2.4 Sample Functions

Again, to stress the matter, a statistic is a number computed from data which is most probably used
as an estimate of a population parameter. That is, the parameter is unknown, and the investigator
desires knowledge of the parameter. A sample of data is drawn (e.g., in Stat 257 a survey is
conducted, in Stat 471 a time series is observed) from which statistics are computed and used to
make inferences about the parameter in question.

For the analysis of time series, the following list of sample functions will be important. Note
that we are no longer only talking about single numbers (such as the sample mean and sample
variance), but entire functions (such as the sample ACF).

In all of the definitions which follow, suppose that {z1,zo,...,z,} is an observed time series.
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Sample Mean
1 n
T = - ;Zl Tt

Sample Autocovariance Function (ACVF)

n—|h|

Z (Tipp —Z)(2t —T), —n<h<n
t=1

Y(h) ==

SRS

Notice that 5(—h) = 4(h).

Sample Covariance Matrix
The sample covariance matrix is simply the matrix of sample autocovariance functions given by

A~

L :=[A(i = J)i<ij<n-
Notice that I, is nonnegative definite.

Sample Autocorrelation Function (ACF)

Sample Correlation Matrix
The sample correlation matrix is simply the matrix of sample autocorrelation functions given by

R = [p(i = f)i<ij<n
Notice that R, is nonnegative definite, and that each diagonal entry of R, is 1 since p(0) =1.

Example 2.4.1. It is important to note that all these sample functions can be computed for ANY
data set. Here is an elementary example. Suppose that the observed data set is {0,4,8,4,0, —4,0, —4}.
Viewing this as a “time series” means that {z1,xs, z3, 24, x5, z¢, 27, 28} = {0,4,8,4,0,—4,0, —4}.
The sample mean is therefore

=1,

E—lix _0+4+8+4+0-440-4 8
_8t:1 e 8 _8

and the sample autocovariance function is

8—|h
1 8

y(h) = 3 Z (»’Ut+\h| —1(zy—1), —-8<h<S8.
t=1

Thus, we can easily compute that

8
3(0) = £ 3@~ D~ 1)
t=1
= % [(z1 = 1)* + (2 — 1)+ (23 — 1)? + (24 — 1)* + (35 — 1)* + (z6 — 1)? + (27 — 1)* + (75 — 1)?]
Z%[(0—1)2+(4—1)2+(8—1)2+(4—1)2+(0—1)2+(—4—1)2+(0—1)2+(—4—1)2]
120
-8
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7
. 1
(1) =4(— :gtz:;xtﬂ—l (21— 1)

- % [(22 — 1)1 = 1) + (25 — 1)(m2 — 1) + (4 — 1)(ms — 1) + (55 — 1)1 — 1) + (w6 — (s — 1)
+ (27 = (@ — 1) + (28 — 1) (27 — 1)]
:%[(4—1)(0—1)+(8—1)(4—1)+(4—1)(8—1)—|—(0—1)(4—1)+(—4—1)(0—1)
+ (0= 1)(~4—1) + (—4 = 1)(0— 1)]

6

5> @tz — (o — 1)

t=1
= &[5 — 1)1~ 1)+ (m— Dz — 1) + (w5~ 1)(as — 1)+ (s~ D(za — 1) + (o7 — (e 1)
+ (s~ 1)(as — 1)
:é[(S—l)(0—1)+(4—1)(4—1)+(0—1)(8—1)+(—4—1)(4—1)+(0—1)(0—1)
+ (—4-1)(-4-1)]

2
—_~
N
SN—
I
2
—_~
|
N
SN—
I

)
"~ 8
1 5
A(3) =4(— _§Z$t+3—1 (z¢ — 1)
t=1
=%[(904—1)(301—1)+($5—1)($2—1)+($6—1)(903—1)+($7—1)(~’L‘4—1)+(378—1)($5—1)]
= 2 [@ =10~ 1) + (0~ )(E ~1) + (~4~ 1)~ 1)+ (0~ (4~ 1) + (~4 = 1)(0 ~ )]
-39
R
A 1y
4(4) §th+4—1 (z¢ — 1)
t=1
=gm—nm—n+m—nm—n+m—nm—n+m—nm—m
= L1010~ 1)+ (-4 = (A~ 1)+ (0~ 1)(8 ~ 1) + (~4— 1)(4 — 1)
36
T8
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3
¥(5) = 4(-5) §Z Trys — 1) (e — 1)
t=1

= < [(ao —~ V(a1 — 1) + (27— ez — 1) + (a5 ~ (s — 1)
= S [(4= 1O = 1)+ (0 - 14— 1)+ (-4~ 1)(8 - 1)
33
=%
1 2
4(6) =4(—6) = 3 Z($t+6 - 1)(z — 1)
t=1
= g llor = )1 = 1)+ (s = Vw2 = ]
= 5 [0-1DO 1) +(~4- (-1
_—14
8
1 1
A(7) - :§Z$t+7—1 (ze — 1)
t=1
=§K%—nur4n
1
= S [(-4-1)(0 - 1)
s
~3

The sample autocorrelation function is

so that
p0) =1, A1) = p(—1) =51/120, p(2) = p(~2) = 5/120, H(3) = H(~3) = —39/120,

p(4) = p(—4) = —36/120, p(5) = p(~5) = ~33/120, p(6) = p(—6) = ~14/120,
p(7) = p(~T) = 5/120.
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As for the sample covariance and correlation matrices, we have

A0) A1) A(2)
A(=1)  40) A1)
A(=2) 4(=1)  4(0)
a3 A(=2) A1)
ST A=) A(=3) 4(-2)
A(=5) 4(—4) A(-3)
7(—6) 4(—5) 4(—4)
A(=T) 4(=6) A(=5)
(120/8 51/8  5/8
51/8 120/8 51/8
5/8  51/8 120/8
| -39/8 5/8 51/8
— | -36/8 —-39/8 5/8
-33/8 —-36/8 —39/8
—-14/8 —-33/8 —36/8
5/8 —14/8 —33/8
and
pl0)  p(1) A2 A3)
p(-1) p(0) 1) pH2)
p(=2) p(-1) p0)  p(1)
R [ P3) 2(=2) A1) p(0)
p(—4) p(=3) p(-2) p(-1)
p(=5) p(—4) p(-3) p(-2)
p(—6) p(=5) p(—4) p(-3)
p(=7) p(=6) p(=5) p(—4)
1 51/120  5/120
51/120 1 51/120
5/120  51/120 1
| -39/120 5/120  51/120
| -36/120 —39/120 5/120
—33/120 —36/120 —39/120
—14/120 —-33/120 —36/120
5/120 —14/120 —33/120

Exercise 2.4.2. It is now your turn! Consider the data set (or observed time series, if you prefer)
{1, 29,3, 24,25, 2¢} = {0,1,0,—1,—2, —3}. Compute (by hand) the sample mean, sample ACVF,

sample ACF, sample covariance matrix, and sample correlation matrix.

As you might have gathered, it is often tedious (and painful!) to compute the sample ACF by

Y3 A4 46)  46) A7)
2 4B 44 4(5) A(6)
Y1) A2 403) 9@ A(5)
0) A1) 4@ AB) A4
(=1 40) (1) 4(2) (3
¥(=2) 4(=1) 4(0) (1) (2
¥(=3) 4(=2) (=1 50) (1)
¥(=4) 4(=3) 4(=2) 4(-1) 4(0)
~39/8 —36/8 —33/8 —14/8 5/8
5/8 —39/8 —36/8 —33/8 —14/8
51/8  5/8 —39/8 —36/8 —33/8
120/8 51/8 5/8 —39/8 —36/8
51/8 120/8 51/8  5/8 —39/8
5/8 51/8 120/8 51/8  5/8
-39/8 5/8 51/8 120/8 51/8
-36/8 —39/8 5/8  51/8 120/8
pA) A p6)  p(T)\
p(3)  p4)  pB)  p(6)
p(2)  pB3)  p4)  p(5)
p(1)  p2)  pB) p4)
p(0) A1) p(2) p(3)
p(=1)  p0)  p(1) p(2)
p(=2) p(=1) p(0) p(1)
p(=3) p(=2) p(=1) p(0)
~39/120 —36/120 —33/120 —14/120
5/120 —39/120 —36/120 —33/120
51/120  5/120 —39/120 —36/120
1 51/120 5/120  —39/120
51/120 1 51/120  5/120
5/120  51/120 1 51/120
~39/120 5/120  51/120 1
—36/120 —39/120 5/120  51/120

5/120
—14/120
—33/120
—36/120
—39/120

5/120

51/120

1

hand. In fact, in practice a graphical representation is usually much more informative.

Exercise 2.4.3. Do Problem 1.17 on page 43 of [2]. Here is a partial solution, namely the time

series plot of the DEATHS.TSM data along with the sample ACF.
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3 The Probability of Time Series Analysis

As you are no doubt aware from your previous statistics courses, the language of Statistics is
probability. That is to say, although it is TRIVIAL and BORING to compute the summary
statistics of a collection of numbers (as in Example 2.4.1 and Exercise 2.4.2), it is FASCINATING
to know that a random sample can be modelled as a collection of iid random variables from which
quite INTERESTING ideas such as confidence intervals develop.

3.1 Summarizing Random Variables

Recall that for a random variable X we can compute its moments E(X*). (See Section 1.3.) One
important assumption that is often made is that X has a finite second moment, as in, for example,
the statements of the Central Limit Theorem, or the Strong Law of Large Numbers.

Definition 3.1.1. If X is a random variable, then the mean of X is the number p := E(X). Note
that —o0 <y < 0. If —0 < p < 00, then we say that X has a finite mean, or that X is an
integrable random variable, and we write X € L'.

Example 3.1.2. Suppose that X is a Cauchy-distributed random variable. That is, X is a con-
tinuous random variable with density function

Carefully show that X ¢ L!.

Definition 3.1.3. If X is a random variable with E(X?) < oo, then we say that X has a finite
second moment and write X € L2. If X € L?, then we define the variance of X to be the number
0? := E((X — pu)?). The standard deviation of X is the number o := v/o2. (As usual, this is the
positive square root.)

Remark. It is an important fact that if X € L2, then it must be the case that X € L'. This
follows from the so-called Cauchy-Schwarz Inequality. (See Exercises 3.1.18 and 3.1.19 below.)
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