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In The Very Beginning ...

The textbook [2] is eztremely well-written and is very easy to read. There is also some very good
software for analyzing time series called I'TSM 2000 which is packaged with this book.

Homework Assigned on Friday, January 7: Make sure you obtain a copy of the textbook
with the required software. If your text copy does not have the software, please see me. Read the
Preface on pages vii-viii. Read the two handouts:

e Handout #1: Course Outline

e Handout #2: Syllabus

Look at Appendices A, B, and C on pages 369—-394 as a review of your earlier mathematical statistics
courses. Make sure you can get your copy of ITSM 2000 to run. Read Appendix D.1 on page 396
and do Exercise 1.16 on page 43.

Homework Assigned Each and Every Class: Read the appropriate sections in the textbook,
and do any related exercises from the textbook. Also, read the appropriate sections of the notes,
and do any exercises in those sections.

On-going Assignment: Let me know of any errors in the notes, or of places that could use an
improved exposition.

In The Beginning ...

CAVEAT: I DON'T CARE IF YOU UNDERSTAND ALL OF THIS OR NOT, ESPECIALLY
IF YOU DON’T HAVE SUFFICIENT BACKGROUND. HOWEVER, IT IS WORTH HEARING
HOW BEAUTIFULLY INTERTWINED THIS STUFF IS! AND WHEN YOU DO LEARN IT,
MAYBE YOU’LL LOOK BACK ON TIME SERIES AND SAY, “YEAH, THAT’S PRETTY
NEAT.”

Since the title of this course is Time Series Analysis, it might be useful if we know what a time
series is!

Definition. A time series is simply a set of observations {z;}, with each data point being observed
at a specific time ¢.

However, this definition is severely inadequate. We will soon see how we can improve this
definition, and give some substance to the subject of time series analysis.

Notation

The symbol A := B means A is defined to equal B, whereas C = D by itself means simply that C
and D are equal. This is an important distinction because if you write A := B, then there is no
need to verify the equality of A and B. They are equal by definition. However, if C = D, then
there IS something that needs to be proved, namely the equality of C' and D (which might not be
obvious). Exercise 3.1.8 illustrates this subtle difference.



1 Preliminary Remarks and an Overview of the Course

1.1 Introduction to Random Variables

Suppose that 2 is the sample space of outcomes of an experiment.
Example 1.1.1. Flip a coin once: Q = {H,T}.
Example 1.1.2. Toss a die once: Q ={1,2,3,4,5,6}.

Example 1.1.3. Toss a die twice: Q = {(3,7) : 1 <i <6, 1 <j <6}.

Note that in each case Q is a finite set. (That is, the cardinality of Q, written |2/, is finite.)

Example 1.1.4. Consider a needle attached to a spinning wheel centred at the origin. When the
wheel is spun, the angle w made with the tip of the needle and the positive z-axis is measured.
The possible values of w are Q = [0, 2).

In this case, 2 is an uncountably infinite set. (That is, © is uncountable with |Q] = c0.)

Definition 1.1.5. A random variable X is a function from the sample space {2 to the real numbers
R = (—00,00). Symbolically, X : Q — R via

weN— X(w) eR

Example 1.1.1 (continued). Let X denote the number of heads on a single flip of a coin. Then,
X(H)=1and X(T)=0.

Example 1.1.2 (continued). Let X denote the upmost face when a die is tossed. Then, X (i) = i,
i=1,...,6.

Example 1.1.3 (continued). Let X denote the sum of the upmost faces when two dice are tossed.
Then, X((4,5)) =i+j,i=1,...,6, 5 =1,...,6. Note that the elements of Q are ordered pairs,
so that the function X (-) acts on (7, ) giving X ((i,7)). We will often omit the inner parentheses
and simply write X (i, 7).

Example 1.1.4 (continued). Let X denote the cosine of the angle made by the needle on the
spinning wheel and the positive z-axis. Then X (w) = cos(w) so that X (w) € [-1,1].

Remark. The use of the notation X and X (w) is EXACTLY analogous to elementary calculus.
There, the function f is described by its action on elements of its domain. For example, f(r) = 22,
f(t) =2, and f(w) = w? all describe EXACTLY the same function, namely, the function which

takes a number and squares it.

Remark. For historical reasons, the term random variable (written X) is used in place of function
(written f) and generic elements of the domain are denoted by w instead of by z.

Remark. It was A.N. Kolmogorov in the 1930’s who formalized probability and realized the need to
treat random variables as measurable functions. See Math 810: Analysis I or Stat 851: Probability.



1.2 Discrete and Continuous Random Variables

There are two extremely important classes of random variables, namely the so-called discrete and
continuous. In a sense, these two classes are the same since the random variable is described in
terms of a density function. However, there are slight differences in the handling of sums and
integrals so these two classes are often taught separately in undergraduate courses.

Important Observation. Recall from elementary calculus that the Riemann integral | ; f(z) dz

is defined as an appropriate limit of Riemann sums Zz]\i | f(z}) Az;. Thus, you are ALREADY
FAMILIAR with the fact that SOME RELATIONSHIP exists between integrals and sums.

Definition 1.2.1. Suppose that X is a random variable. Suppose that there exists a function
f : R — R with the properties that f(z) > 0 for all z, [*° f(z) dz =1, and

PweQ: X(w) <)) = P(X <#) = /_t (z) da.

We call f the (probability) density (function) of X and say that X is a continuous random variable.
Furthermore, the function F' defined by F(t) := P(X < t) is called the (probability) distribution
(function) of X.

Fact. By the Fundamental Theorem of Calculus, F'(z) = f(z).

Exercise 1.2.2. Prove the fact that F'(z) = f(z), being sure to carefully state the necessary
assumptions on f. Convince me that you understand the use of the dummy variables x and ¢ in
your argument.

Remark. There exist continuous random variables which do not have densities. For our purposes,
though, we will always assume that our continuous random variables are ones with a density.

Example 1.2.3. A random variable X is said to be normally distributed with parameters u, o2, if
the density of X is

1 e )2
f($):U o exp(%), —oo < <00, 0<o<o0.

This is sometimes written X ~ A (u,0?). In Exercises 1.3.4 and 3.1.9, you will show that the mean
of X is p and the variance of X is o2, respectively.

Definition 1.2.4. Suppose that X is a random variable. Suppose that there exists a function
p : Z — R with the properties that p(k) > 0 for all &, >7° __ p(k) =1, and

PlweQ:X(w) <N} =P(X<N)= > p(k).

k=—00

We call p the (probability mass function or) density of X and say that X is a discrete random
variable. Furthermore, the function F' defined by F(N) := P(X < N) is called the (probability)
distribution (function) of X.

Example 1.1.3 (continued). If X is defined to be the sum of the upmost faces when two dice
are tossed, then the density of X, written p(k) := P(X = k), is given by



p(2) | p(3) | p(4) | p(5) | p(6) | p(7) | p(8) | p(9) | p(10) | p(11) | p(12)
1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36

and p(k) = 0 for any other k € Z.

Remark. There do exist random variables which are neither discrete nor continuous; however,
such random variables will not concern us.

1.3 Law of the Unconscious Statistician

Suppose that X : & — R is a random variable (either discrete or continuous), and that g : R — R
is a (piecewise) continuous function. Then Y := go X : @ — R defined by Y (w) = ¢(X (w)) is also
a random variable.

We now define the expectation of the random variable Y, distinguishing the discrete and con-

tinuous cases.

Definition 1.3.1. If X is a discrete random variable and ¢ is as above, then the ezpectation of
go X is given by

E(g o X) := Y _ g(k) p(k)
k

where p is the probability mass function of X.

Definition 1.3.2. If X is a continuous random variable and g is as above, then the ezpectation of
g o X is given by

o0

E(g 0 X) := / 9(2) f(z) de

—0o0

where f is the probability density function of X.

Notice that if g(x) = 1 for all z, then the expectation of X itself is

e E(X) := ka(k), if X is discrete, and
k

o
o E(X) := / z f(z) dz if X is continuous.

—0o0

Remark. The first place I read of the title Law of the Unconscious Statistician was in [1]. There
doesn’t seem to be much history of this funny title, other than that it appears to have been coined
by Paul Halmos.

Exercise 1.3.3. Suppose that X is a Bernoulli(p) random variable. That is, P(X = 1) = p and
P(X =0) =1 - p for some p € [0,1]. Carefully verify that

* E(X) =p,
e E(X?) =p, and

e Ele®)=1—-p(1—e9), for 0 <6< cc.



Exercise 1.3.4. The purpose of this exercise is to make sure you can compute some straightforward
(but messy) integrals. Suppose that X ~ N(u,0?); that is, X is a normally distributed random
variable with parameters u, 02. (See Example 1.2.3 for the density of X.) Show directly (without
using any unstated properties of expectations or distributions) that

o E(X) =g,
o E(X?) =02+ p?, and

202

o E(e %) = exp (—0 —%),for0§9<oo.

Together with Exercise 3.1.9, this is the reason that if X ~ A(u,02), we say that X is normally

distributed with mean y and variance o?.

1.4 Stochastic Processes

Definition 1.4.1. A stochastic process is simply an infinite collection of indexed random variables.

Definition 1.4.2. A discrete time stochastic process is a sequence of random variables {X,, n =
1,2,3,...} indexed by the positive integers.

Definition 1.4.3. A continuous time stochastic process is a family of random variables {X;, 0 <
t < oo} indexed by the positive real numbers.

Important Language Remark. The adjectives discrete time and continuous time refer to the
indexing set of the collection of random variables and NOT to the individual random variables
themselves.

Example 1.4.4. Suppose that for each n € N the random variable X, is normally distributed with
mean 0 and variance n. Then the discrete time stochastic process {X,,n =1,2,3,...} consists of
individual continuous random variables.

Example 1.4.5. Suppose that for each t € [0, 00) the random variable X; is normally distributed
with mean 0 and variance ¢. Then the continuous time stochastic process {X;,0 < ¢ < oo} consists
of individual continuous random variables.

1.5 Realizations and Time Series

If X is a random variable, then we call X(w) a realization of the random variable. The physical
interpretation is that if X denotes the UNKNOWN outcome (a priori) of the experiment before it
happens, then X (w) represents the realization or observed outcome (a posterior) of the experiment
after it happens.

We are now sufficiently prepared to state an improvement of our original definition of time
series.

Definition 1.5.1. A time series is a realization of a stochastic process.
In a sense, this is saying the same thing as our original definition. However, much more utility

is gained via the realization of a stochastic process point of view, than if we limit ourselves to the
view that a time series is only a collection of data increasingly ordered by time.



Example 1.5.2. Consider the stock SWP (Saskatchewan Wheat Pool) which is traded on the
Toronto Stock Exchange. Consider the value X, n = 1,...,365 of the stock at the end of each
trading day from January 1 to December 31, 2005. At the moment the values of all of these random
variables are not known. Thus, we can view {X,} as a stochastic process. However, if we consider
the value Y, n = 1,...,365 of the same stock at the end of each trading day from January 1 to
December 31, 2004, then all those values are known so we can view {Y,,} as a time series.

Remark. It is often useful to plot a “time series plot” of the time series (or particular realizations
of a stochastic process). That is, plot n vs. X, or ¢ vs. X;. The resulting graph is known as a
sample path, and is also sometimes called the trajectory of the time series or stochastic process.

Saskatchevwsan Wheat Pool (SWP.HV.B-T) az of 16-Dec-04
0.500

0.450
0.450
0.440
0.420

0.400

Canadian Dollars

0.350
0.360
0.340

0.320

This is a “time series plot” of the closing prices of the stock SWP from December 16, 2003, until
December 16, 2004.

1.6 Analyzing Random Variables and Stochastic Processes

If we know the distribution of a random variable, then we know all of the information about that
random variable. For example, if we know that X is a normal random variable with mean 0 and
variance 1, then we know everything possible about X without actually realizing it.

Unfortunately, it is not so easy to analyze stochastic processes. Recall that the joint dsistribution
function of a random vector (X1, Xo,...,Xy) is the (d-dimensional) function

F(ty,to,...,tq) = P(X1 <t1,X9 <tg,...,Xq < tg)-

Hence, the joint distribution function for a discrete time stochastic process (X7, Xo,...) is the
(infinite-dimensional) function

F(tl,tg,...) IP(Xl Stl,XQ Stg,...).

But what about the joint distribution function for a continuous time stochastic process {X;, 0 <
t < 00}? Now, we CANNOT specify all of the possible values of the constituent random variables
since there are uncountably many of them.



(That is, with an infinite sequence we can at least visualize all the random variables: X, Xo,
X3, Xy, etc. But with an uncountable collection of times, the problem is that for every pair of real
numbers a < b, there exists a ¢ with a < ¢ < b. Essentially, this is the Intermediate Value Theorem
in disguise.)

For a continuous time stochastic process, the best we can do is specify the finite-dimensional
distributions, namely the following: for each IV, and for each sequence of times 0 < s1 <859 < --- <
sn, the distribution of (X, Xs,,..., Xsy)-

s sy

YUCK! That is way too much to keep track of; it is untenable!

INSTEAD: If we impose additional structure on the stochastic process, in much the same way
that we study particular random variables (uniform, normal, Poisson, binomial, Bernoulli, Cauchy,
exponential, geometric, beta, gamma, Chi-squared), then the stochastic process becomes amenable
to analysis.

Some particular “types” of stochastic processes are: random walks, martingales, renewal se-
quences, exchangeable sequences, point processes, Lévy processes, Markov processes, interacting
particle systems, branching processes, diffusions, Wiener processes (aka Brownian motion). Whole
volumes are written on particular aspects of each one of these!

Fortunately for us, our main focus will be on stationary processes. The analysis of time series
is made possible by our understanding of stationary processes.

1.7 This Course

Stat 471/871 is an introduction to the analysis of time series. It is worth noting that mathematicians
and statisticians are particularly keen to call things “introductions” when, in fact, they require
anything but introductory or elementary techniques. Perhaps instead of “An Introduction to the
Analysis of Time Series” this course would be better titled “The Analysis of Univariate Time
Series.”

As noted in the Preface of our textbook [2], there is sufficient material for a full year introduction
to univariate and multivariate time series and forecasting. We will follow their advice, and cover
chapters 1 through 6 in this one-semester course on univariate time series. My plan is to proceed
linearly through the text, except that I will cover the chapters in the order 1, 2, 3, 5, 6, 4.

One reason for studying stationary processes is that the machinery of complex analysis and
Fourier analysis make it possible to perform a spectral analysis which completely characterizes
stationary processes. Chapter 4 in [2] provides an explanation of these methods, but I believe that
it is best left for a final topic.

2 The Statistics of Time Series Analysis

2.1 Estimating Parameters

Recall that the overarching goal of Statistics is to estimate population parameters. This is done
by calculating statistics, which are simply numbers computed from data, and using them as point
estimates of the appropriate parameter.

As you learned in Stat 151, if you have a population with an unknown mean g and unknown



