Lecture \#10: Continuity of Probability

Recall that last class we proved the following theorem.
Theorem 10.1. Consider the real numbers \mathbb{R} with the Borel σ-algebra \mathcal{B}, and let \mathbf{P} be a probability on $(\mathbb{R}, \mathcal{B})$. The function $F: \mathbb{R} \rightarrow[0,1]$ defined by $F(x)=\mathbf{P}\{(-\infty, x]\}, x \in \mathbb{R}$, characterizes \mathbf{P}.

The function F in the statement of the theorem is an example of a distribution function and will be of fundamental importance when we study random variables later on in the course.

Definition. A function $F: \mathbb{R} \rightarrow[0,1]$ is called a distribution function if
(i) $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$,
(ii) F is right-continuous, and
(iii) F is increasing.

Before we continue our discussion of distribution functions, we will need a result known as the continuity of probability theorem. If $A_{j}, j=1,2, \ldots$, is a sequence of events, then we say that A_{j} increases to A and write $\left\{A_{j}\right\} \uparrow A$ if $A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq \cdots$ and $\bigcup_{j=1}^{\infty} A_{j}=A$. If B_{j}, $j=1,2, \ldots$, is a sequence of events, then we say that B_{j} decreases to B and write $\left\{B_{j}\right\} \downarrow B$ if $B_{1} \supseteq B_{2} \supseteq B_{3} \supseteq \cdots$ and $\bigcap_{j=1}^{\infty} B_{j}=B$. Note that B_{j} decreases to B if and only if B_{j}^{c} increases to B^{c}.

Theorem 10.2. If $A_{j}, j=1,2, \ldots$, is a sequence of events increasing to A, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{A_{n}\right\}=\mathbf{P}\{A\}
$$

Proof. Since $A_{j} \subseteq A_{j+1}$ we see that $A_{j} \cap A_{j+1}=A_{j}$. Therefore, we consider the event $C_{j+1}=A_{j+1} \cap A_{j}^{c}$, namely that part of A_{j+1} not in A_{j}. For notational convenience, take $A_{0}=\emptyset$ so that $C_{1}=A_{1}$. Notice that C_{1}, C_{2}, \ldots are disjoint with

$$
\bigcup_{j=1}^{n} C_{j}=A_{n} \quad \text { and } \quad \bigcup_{j=1}^{\infty} C_{j}=\bigcup_{j=1}^{\infty} A_{j}=A
$$

Therefore, using the fact that \mathbf{P} is countably additive, we conclude

$$
\mathbf{P}\{A\}=\mathbf{P}\left\{\bigcup_{j=1}^{\infty} C_{j}\right\}=\sum_{j=1}^{\infty} \mathbf{P}\left\{C_{j}\right\}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} \mathbf{P}\left\{C_{j}\right\}=\lim _{n \rightarrow \infty} \mathbf{P}\left\{\bigcup_{j=1}^{n} C_{j}\right\}=\lim _{n \rightarrow \infty} \mathbf{P}\left\{A_{n}\right\}
$$

as required.
Exercise 10.3. Show that if $B_{j}, j=1,2, \ldots$, is a sequence of events decreasing to B, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{B_{n}\right\}=\mathbf{P}\{B\}
$$

One important application of the continuity of probability theorem is the following. This result is usually known as the Borel-Cantelli Lemma. (Actually, it is usually given as the first part of the Borel-Cantelli Lemma.)

Theorem 10.4. Suppose that $A_{j}, j=1,2, \ldots$, is a sequence of events. If

$$
\begin{equation*}
\sum_{j=1}^{\infty} \mathbf{P}\left\{A_{j}\right\}<\infty \tag{10.3}
\end{equation*}
$$

then

$$
\mathbf{P}\left\{\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}\right\}=0 .
$$

Proof. For $n=1,2, \ldots$, if we define

$$
B_{n}=\bigcup_{m=n}^{\infty} A_{m}
$$

then $B_{n}, n=1,2, \ldots$, is a sequence of decreasing events and so by Exercise 10.3 we find

$$
\mathbf{P}\left\{\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}\right\}=\mathbf{P}\left\{\bigcap_{n=1}^{\infty} B_{n}\right\}=\lim _{n \rightarrow \infty} \mathbf{P}\left\{B_{n}\right\}
$$

Using countable subadditivity, we see that

$$
\mathbf{P}\left\{B_{n}\right\}=\mathbf{P}\left\{\bigcup_{m=n}^{\infty} A_{m}\right\} \leq \sum_{m=n}^{\infty} \mathbf{P}\left\{A_{m}\right\}
$$

The hypothesis (10.3) implies that

$$
\lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} \mathbf{P}\left\{A_{m}\right\}=0
$$

and so the proof is complete.

Remark. The event

$$
\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

occurs so frequently in probability that it is often known as the event " A_{n} infinitely often" or as the limit supremum of the A_{n}. That is,

$$
\limsup _{n \rightarrow \infty} A_{n}=\left\{A_{n} \text { i.o. }\right\}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m} .
$$

Exercise 10.5. One of our requirements when we defined a probability was that it be countably additive. It would have been equivalent to replace that condition with the requirement that it be continuous in the sense of the previous theorem. That is, suppose that Ω is a sample space and \mathcal{F} is a σ-algebra of subsets of Ω. Show that if $\mathbf{P}: \mathcal{F} \rightarrow[0,1]$ is a set function with $\mathbf{P}\{\Omega\}=1$ and such that

$$
\mathbf{P}\left\{\bigcup_{j=1}^{n} A_{j}\right\}=\sum_{j=1}^{n} \mathbf{P}\left\{A_{j}\right\}
$$

whenever $A_{1}, \ldots, A_{n} \in \mathcal{F}$ are disjoint, then the following two statements are equivalent.
(i) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are disjoint, then

$$
\mathbf{P}\left\{\bigcup_{j=1}^{\infty} A_{j}\right\}=\sum_{j=1}^{\infty} \mathbf{P}\left\{A_{j}\right\}
$$

(ii) If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ and $\left\{A_{j}\right\} \uparrow A$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{A_{n}\right\}=\mathbf{P}\{A\}
$$

(Note that (i) implies (ii) by the continuity of measure theorem. The problem is really to show that (ii) implies (i).)

