
Lectures on

Stochastic Calculus with Applications to Finance

Prepared for use in Statistics 441 at the University of Regina

Michael J. Kozdron
kozdron@stat.math.uregina.ca

http://stat.math.uregina.ca/∼kozdron





Contents

Preface page iii

1 Introduction to Financial Derivatives 1

2 Financial Option Valuation Preliminaries 4

3 Normal and Lognormal Random Variables 8

4 Discrete-Time Martingales 15

5 Continuous-Time Martingales 23

6 Brownian Motion as a Model of a Fair Game 27

7 Riemann Integration 31

8 The Riemann Integral of Brownian Motion 34

9 Wiener Integration 37

10 Calculating Wiener Integrals 40

11 Further Properties of the Wiener Integral 44
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Preface

This set of lecture notes was used for Statistics 441: Stochastic Calculus with Applications to
Finance at the University of Regina in the winter semester of 2009. It was the first time that
the course was ever offered, and so part of the challenge was deciding what exactly needed
to be covered. The end result: the first three-quarters of the course focused on the theory of
option pricing while the final quarter focused on the mathematical analysis of risk. The official
course textbook by Higham [12] was used for the first half of the course (Lecture #1 through
Lecture #19). The advantage of that book is the inclusion of several MATLAB programs which
illustrate many of the ideas in the development of the option pricing solution; unfortunately,
Higham does not cover any stochastic calculus. The book by Č́ıžek et al. [5] was used as the
basis for a number of lectures on more advanced topics in option pricing including how to use the
Feynman-Kac representation theorem to derive a characteristic function for a diffusion without
actually solving a stochastic differential equation (Lecture #20 through Lecture #24). The final
quarter of the course discussed risk measures and was mostly based on the book by Föllmer and
Schied [8] (Lecture #25 through Lecture #31).

I would like to thank the students of STAT 441 from Winter 2009, namely Bridget Fortowsky,
Boxiao Huang, Adam Kehler, LaToya Khan, Dustin Kidby, Bo Li, Fan Nie, Penny Roy, Jacob
Schwartz, Kali Spencer, Jinghua Tang, Linh Van, Nathan Wollbaum, and Carter Woolhouse,
for their patience and careful reading of earlier drafts of the lectures which resulted in many
errors being eliminated.

I would also like to thank those students who worked with me as research associates in previous
summers, often through the NSERC Undergraduate Student Research Award program, including
Marina Christie (2005), Linshu Wang (2005), Sarah Wist (2006), and Bridget Fortowsky (2008).
Many of the ideas incorporated into these notes were first worked out during those summers.

Regina, Saskatchewan Michael Kozdron
April 2009

iii





1

Introduction to Financial Derivatives

The primary goal of this course is to develop the Black-Scholes option pricing formula with
a certain amount of mathematical rigour. This will require learning some stochastic calculus
which is fundamental to the solution of the option pricing problem. The tools of stochastic
calculus can then be applied to solve more sophisticated problems in finance and economics. As
we will learn, the general Black-Scholes formula for pricing options has had a profound impact
on the world of finance. In fact, trillions of dollars worth of options trades are executed each
year using this model and its variants. In 1997, Myron S. Scholes (originally from Timmins,
ON) and Robert C. Merton were awarded the Nobel Prize in Economics† for this work. (Fischer
S. Black had died in 1995.)

Exercise 1.1. Read about these Nobel laureates at

http://nobelprize.org/nobel prizes/economics/laureates/1997/index.html

and read the prize lectures Derivatives in a Dynamic Environment by Scholes and Applications
of Option-Pricing Theory: Twenty-Five Years Later by Merton also available from this website.

As noted by McDonald in the Preface of his book Derivative Markets [18]:

“Thirty years ago the Black-Scholes formula was new, and derivatives was an esoteric and specialized
subject. Today, a basic knowledge of derivatives is necessary to understand modern finance.”

Before we proceed any further, we should be clear about what exactly a derivative is.

Definition 1.2. A derivative is a financial instrument whose value is determined by the value
of something else.

That is, a derivative is a financial object derived from other, usually more basic, financial
objects. The basic objects are known as assets. According to Higham [12], the term asset is
used to describe any financial object whose value is known at present but is liable to change
over time. A stock is an example of an asset.

† Technically, Scholes and Merton won The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
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2 Introduction to Financial Derivatives

A bond is used to indicate cash invested in a risk-free savings account earning continuously
compounded interest at a known rate.

Note. The term asset does not seem to be used consistently in the literature. There are some
sources that consider a derivative to be an asset, while others consider a bond to be an asset.
We will follow Higham [12] and use it primarily to refer to stocks (and not to derivatives or
bonds).

Example 1.3. A mutual fund can be considered as a derivative since the mutual fund is com-
posed of a range of investments in various stocks and bonds. Mutual funds are often seen as a
good investment for people who want to hedge their risk (i.e., diversify their portfolio) and/or
do not have the capital or desire to invest heavily in a single stock. Chartered banks, such as
TD Canada Trust, sell mutual funds as well as other investments; see

http://www.tdcanadatrust.com/mutualfunds/mffh.jsp

for further information.

Other examples of derivatives include options, futures, and swaps. As you probably guessed, our
goal is to develop a theory for pricing options.

Example 1.4. An example that is particularly relevant to residents of Saskatchewan is the
Guaranteed Delivery Contract of the Canadian Wheat Board (CWB). See

http://www.cwb.ca/public/en/farmers/contracts/guaranteed/

for more information. The basic idea is that a farmer selling, say, barley can enter into a contract
in August with the CWB whereby the CWB agrees to pay the farmer a fixed price per tonne
of barley in December. The farmer is, in essence, betting that the price of barley in December
will be lower that the contract price, in which case the farmer earns more for his barley than
the market value. On the other hand, the CWB is betting that the market price per tonne of
barley will be higher than the contract price, in which case they can immediately sell the barely
that they receive from the farmer for the current market price and hence make a profit. This is
an example of an option, and it is a fundamental problem to determine how much this option
should be worth. That is, how much should the CWB charge the farmer for the opportunity
to enter into an option contract. The Black-Scholes formula will tell us how to price such an
option.

Thus, an option is a contract entered at time 0 whereby the buyer has the right, but not the
obligation, to purchase, at time T , shares of a stock for the fixed value $E. If, at time T ,
the actual price of the stock is greater than $E, then the buyer exercises the option, buys the
stocks for $E each, and immediately sells them to make a profit. If, at time T , the actual
price of the stock is less than $E, then the buyer does not exercise the option and the option
becomes worthless. The question, therefore, is “How much should the buyer pay at time 0 for
this contract?” Put another way, “What is the fair price of this contract?”

Technically, there are call options and put options depending on one’s perspective.
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Definition 1.5. A European call option gives its holder the right (but not the obligation) to
purchase from the writer a prescribed asset for a prescribed price at a prescribed time in the
future.

Definition 1.6. A European put option gives its holder the right (but not the obligation) to
sell to the writer a prescribed asset for a prescribed price at a prescribed time in the future.

The prescribed price is known as the exercise price or the strike price. The prescribed time in
the future is known as the expiry date.

The adjective European is to be contrasted with American. While a European option can be
exercised only on the expiry date, an American option can be exercised at any time between
the start date and the expiry date. In Chapter 18 of Higham [12], it is shown that American
call options have the same value as European call options. American put options, however, are
more complicated.

Hence, our primary goal will be to systematically develop a fair value of a European call option
at time t = 0. (The so-called put-call parity for European options means that our solution will
also apply to European put options.)

Finally, we will use the term portfolio to describe a combination of

(i) assets (i.e., stocks),
(ii) options, and
(iii) cash invested in a bank, i.e., bonds.

We assume that it is possible to hold negative amounts of each at no penalty. In other words,
we will be allowed to short sell stocks and bonds freely and for no cost.

To conclude these introductory remarks, I would like to draw your attention to the recent book
Quant Job Interview Questions and Answers by M. Joshi, A. Downes, and N. Denson [15]. To
quote from the book description,

“Designed to get you a job in quantitative finance, this book contains over 225 interview questions taken
from actual interviews in the City and Wall Street. Each question comes with a full detailed solution,
discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include
option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the
interview process and the non-technical interview.”

The “City” refers to “New York City” which is, arguably, the financial capital of the world.
(And yes, at least one University of Regina actuarial science graduate has worked in New York
City.) You can see a preview of this book at

http://www.lulu.com/content/2436045

and read questions (such as this one on page 17).

“In the Black-Scholes world, price a European option with a payoff of max{S2
T −K, 0} at time T .”

We will answer this question in Example 17.2.
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Financial Option Valuation Preliminaries

Recall that a portfolio describes a combination of

(i) assets (i.e., stocks),
(ii) options, and
(iii) cash invested in a bank, i.e., bonds.

We will write St to denote the value of an asset at time t ≥ 0. Since an asset is defined as a
financial object whose value is known at present but is liable to change over time, we see that
it is reasonable to model the asset price (i.e., stock price) by a stochastic process {St, t ≥ 0}.
There will be much to say about this later.

Suppose that D(t) denotes the value at time t of an investment which grows according to a
continuously compounded interest rate r. That is, suppose that an amount D0 is invested at
time 0. Its value at time t ≥ 0 is given by

D(t) = ertD0. (2.1)

There are a couple of different ways to derive this formula for compound interest. One way
familiar to actuarial science students is as the solution of a constant force of interest equation.
That is, D(t) is the solution of the equation

δt = r with r > 0

where

δt =
d
dt

log D(t)

and initial condition D(0) = D0. In other words,

d
dt

log D(t) = r implies
D′(t)
D(t)

= r

so that D′(t) = rD(t). This differential equation can then be solved by separation-of-variables
giving (2.1).

Remark. We will use D(t) as our model of the risk-free savings account, or bond. Assuming
that such a bond exists means that having $1 at time 0 or $ert at time t are both of equal value.

4



Financial Option Valuation Preliminaries 5

Equivalently, having $1 at time t or $e−rt at time 0 are both of equal value. This is sometimes
known as the time value of money. Transferring money in this way is known as discounting for
interest or discounting for inflation.

The word arbitrage is a fancy way of saying “money for nothing.” One of the fundamental
assumptions that we will make is that of no arbitrage (informally, we might call this the no free
lunch assumption).

The form of the no arbitrage assumption given in Higham [12] is as follows.

“There is never an opportunity to make a risk-free profit that gives a greater return than that provided
by interest from a bank deposit.”

Note that this only applies to risk-free profit.

Example 2.1. Suppose that a company has offices in Toronto and London. The exchange rate
between the dollar and the pound must be the same in both cities. If the exchange rate were
$1.60 = £1 in Toronto but only $1.58 = £1 in London, then the company could instantly sell
pounds in Toronto for $1.60 each and buy them back in London for only $1.58 making a risk-free
profit of $0.02 per pound. This would lead to unlimited profit for the company. Others would
then execute the same trades leading to more unlimited profit and a total collapse of the market!
Of course, the market would never allow such an obvious discrepancy to exist for any period of
time.

The scenario described in the previous example is an illustration of an economic law known as
the law of one price which states that “in an efficient market all identical goods must have only
one price.” An obvious violation of the efficient market assumption is found in the pricing of
gasoline. Even in Regina, one can often find two gas stations on opposite sides of the street
selling gas at different prices! (Figuring out how to legally take advantage of such a discrepancy
is another matter altogether!)

The job of arbitrageurs is to scour the markets looking for arbitrage opportunities in order to
make risk-free profit. The website

http://www.arbitrageview.com/riskarb.htm

lists some arbitrage opportunities in pending merger deals in the U.S. market. The following
quote from this website is also worth including.

“It is important to note that merger arbitrage is not a complete risk free strategy. Profiting on the
discount spread may look like the closest thing to a free lunch on Wall Street, however there are number
of risks such as the probability of a deal failing, shareholders voting down a deal, revising the terms of
the merger, potential lawsuits, etc. In addition the trading discount captures the time value of money
for the period between the announcement and the closing of the deal. Again the arbitrageurs face the
risk of a deal being prolonged and achieving smaller rate of return on an annualized basis.”

Nonetheless, in order to derive a reasonable mathematical model of a financial market we must
not allow for arbitrage opportunities.
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A neat little argument gives the relationship between the value (at time 0) of a European call
option C and the value (at time 0) of a European put option P (with both options being on the
same asset S at the same expiry date T and same strike price E). This is known as the so-called
put-call parity for European options.

Consider two portfolios Π1 and Π2 where (at time 0)

(i) Π1 consists of one call option plus Ee−rT invested in a risk-free bond, and
(ii) Π2 consists of one put option plus one unit of the asset S0.

At the expiry date T , the portfolio Π1 is worth max{ST − E, 0} + E = max{ST , E}, and the
portfolio Π2 is worth max{E − ST , 0}+ ST = max{ST , E}. Hence, since both portfolios always
give the same payoff, the no arbitrage assumption (or simply common sense) dictates that they
have the same value at time 0. Thus,

C + Ee−rT = P + S0. (2.2)

It is important to note that we have not figured out a fair value at time 0 for a European
call option (or a European put option). We have only concluded that it is sufficient to price
the European call option, because the value of the European put option follows immediately
from (2.2). We will return to this result in Lecture #17.

Summary. We assume that it is possible to hold a portfolio of stocks and bonds. Both can
be freely traded, and we can hold negative amounts of each without penalty. (That is, we can
short-sell either instrument at no cost.) The stock is a risky asset which can be bought or sold
(or even short-sold) in arbitrary units. Furthermore, it does not pay dividends. The bond, on
the other hand, is a risk-free investment. The money invested in a bond is secure and grows
according to a continuously compounded interest rate r. Trading takes place in continuous
time, there are no transaction costs, and we will not be concerned with the bid-ask spread when
pricing options. We trade in an efficient market in which arbitrage opportunities do not exist.

Example 2.2 (Pricing a forward contract). As already noted, our primary goal is to de-
termine the fair price to pay (at time 0) for a European call option. The call option is only one
example of a financial derivative. The oldest derivative, and arguably the most natural claim
on a stock, is the forward.

If two parties enter into a forward contract (at time 0), then one party (the seller) agrees to give
the other party (the holder) the specified stock at some prescribed time in the future for some
prescribed price.

Suppose that T denotes the expiry date, F denotes the strike price, and the value of the stock
at time t > 0 is St.

Note that a forward is not the same as a European call option. The stock must change hands
at time T for $F . The contract dictates that the seller is obliged to produce the stock at time
T and that the holder is obliged to pay $F for the stock. Thus, the time T value of the forward
contract for the holder is ST − F , and the time T value for the seller is F − ST .

Since money will change hands at time T , to determine the fair value of this contract means to
determine the value of F .
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Suppose that the distribution of the stock at time T is known. That is, suppose that ST is a
random variable having a known continuous distribution with density function f . The expected
value of ST is therefore

E[ST ] =
∫ ∞

−∞
xf(x) dx.

Thus, the expected value at time T of the forward contract is

E[ST − F ]

(which is calculable exactly since the distribution of ST is known). This suggests that the fair
value of the strike price should satisfy

0 = E[ST − F ] so that F = E[ST ].

In fact, the strong law of large numbers justifies this calculation—in the long run, the average
of outcomes tends towards the expected value of a single outcome. In other words, the law of
large numbers suggests that the fair strike price is F = E[ST ].

The problem is that this price is not enforceable. That is, although our calculation is not incor-
rect, it does lead to an arbitrage opportunity. Thus, in order to show that expectation pricing
is not enforceable, we need to construct a portfolio which allows for an arbitrage opportunity.

Consider the seller of the contract obliged to deliver the stock at time T in exchange for $F .
The seller borrows S0 now, buys the stock, puts it in a drawer, and waits. At time T , the seller
then repays the loan for S0e

rT but has the stock ready to deliver. Thus, if the strike price is
less that S0e

rT , the seller will lose money with certainty. If the strike price is more than S0e
rT ,

the seller will make money with certainty.

Of course, the holder of the contract can run this scheme in reverse. Thus, writing more than
S0e

rT will mean that the holder will lose money with certainty.

Hence, the only fair value for the strike price is F = S0e
rT .

Remark. To put it quite simply, if there is an arbitrage price, then any other price is too
dangerous to quote. Notice that the no arbitrage price for the forward contract completely
ignores the randomness in the stock. If E(ST ) > F , then the holder of a forward contract
expects to make money. However, so do holders of the stock itself!

Remark. Both a forward contract and a futures contract are contracts whereby the seller is
obliged to deliver the prescribed asset to the holder at the prescribed time for the prescribed
price. There are, however, two main differences. The first is that futures are traded on an
exchange, while forwards are traded over-the-counter. The second is that futures are margined,
while forwards are not. These matters will not concern us in this course.
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Normal and Lognormal Random Variables

The purpose of this lecture is to remind you of some of the key properties of normal and lognormal
random variables which are basic objects in the mathematical theory of finance. (Of course,
you already know of the ubiquity of the normal distribution from your elementary probability
classes since it arises in the central limit theorem, and if you have studied any actuarial science
you already realize how important lognormal random variables are.)

Recall that a continuous random variable Z is said to have a normal distribution with mean 0
and variance 1 if the density function of Z is

fZ(z) =
1√
2π

e−
z2

2 , −∞ < z < ∞.

If Z has such a distribution, we write Z ∼ N (0, 1).

Exercise 3.1. Show directly that if Z ∼ N (0, 1), then E(Z) = 0 and Var(Z) = 1. That is,
calculate

1√
2π

∫ ∞

−∞
ze−

z2

2 dz and
1√
2π

∫ ∞

−∞
z2e−

z2

2 dz

using only results from elementary calculus. This calculation justifies the use of the “mean 0
and variance 1” phrase in the definition above.

Let µ ∈ R and let σ > 0. We say that a continuous random variable X has a normal distribution
with mean µ and variance σ2 if the density function of X is

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x < ∞.

If X has such a distribution, we write X ∼ N (µ, σ2).

Shortly, you will be asked to prove the following result which establishes the relationship between
the random variables Z ∼ N (0, 1) and X ∼ N (µ, σ2).

Theorem 3.2. Suppose that Z ∼ N (0, 1), and let µ ∈ R, σ > 0 be constants. If the random
variable X is defined by X = σZ + µ, then X ∼ N (µ, σ2). Conversely, if X ∼ N (µ, σ2), and

8



Normal and Lognormal Random Variables 9

the random variable Z is defined by

Z =
X − µ

σ
,

then Z ∼ N (0, 1).

Let

Φ(z) =
∫ z

−∞

1√
2π

e−
x2

2 dx

denote the standard normal cumulative distribution function. That is, Φ(z) = P{Z ≤ z} =
FZ(z) is the distribution function of a random variable Z ∼ N (0, 1).

Remark. Higham [12] writes N instead of Φ for the standard normal cumulative distribution
function. The notation Φ is far more common in the literature, and so we prefer to use it instead
of N .

Exercise 3.3. Show that 1− Φ(z) = Φ(−z).

Exercise 3.4. Show that if X ∼ N (µ, σ2), then the distribution function of X is given by

FX(x) = Φ
(

x− µ

σ

)
.

Exercise 3.5. Use the result of Exercise 3.4 to complete the proof of Theorem 3.2.

The next two exercises are extremely important for us. In fact, these exercises ask you to prove
special cases of the Black-Scholes formula.

Notation. We write x+ = max{0, x} to denote the positive part of x.

Exercise 3.6. Suppose that Z ∼ N (0, 1), and let c > 0 be a constant. Compute

E[ (eZ − c)+ ].

You will need to express your answer in terms of Φ.

Answer. e1/2 Φ(1− log c)− c Φ(− log c)

Exercise 3.7. Suppose that Z ∼ N (0, 1), and let a > 0, b > 0, and c > 0 be constants.
Compute

E[ (aebZ − c)+ ].

You will need to express your answer in terms of Φ.

Answer. aeb2/2 Φ
(
b + 1

b log a
c

)
− c Φ

(
1
b log a

c

)
Recall that the characteristic function of a random variable X is the function ϕX : R → C given
by ϕX(t) = E(eitX).

Exercise 3.8. Show that if Z ∼ N (0, 1), then the characteristic function of Z is

ϕZ(t) = exp
{
− t2

2

}
.
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Exercise 3.9. Show that if X ∼ N (µ, σ2), then the characteristic function of X is

ϕX(t) = exp
{

iµt− σ2t2

2

}
.

The importance of characteristic functions is that they completely characterize the distribution
of a random variable since the characteristic function always exists (unlike moment generating
functions which do not always exist).

Theorem 3.10. Suppose that X and Y are random variables. The characteristic functions ϕX

and ϕY are equal if and only if X and Y are equal in distribution (that is, FX = FY ).

Proof. For a proof, see Theorem 4.1.2 on page 160 of [10].

Exercise 3.11. One consequence of this theorem is that it allows for an alternative solution to
Exercise 3.5. That is, use characteristic functions to complete the proof of Theorem 3.2.

We will have occasion to analyze sums of normal random variables. The purpose of the next
several exercises and results is to collect all of the facts that we will need. The first exercise
shows that a linear combination of independent normals is again normal.

Exercise 3.12. Suppose that X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are independent. Show that

for any a, b ∈ R,

aX1 + bX2 ∼ N
(
aµ1 + bµ2, a

2σ2
1 + b2σ2

2

)
.

Of course, whenever two random variables are independent, they are necessarily uncorrelated.
However, the converse is not true in general, even in the case of normal random variables. As
the following example shows, uncorrelated normal random variables need not be independent.

Example 3.13. Suppose that X1 ∼ N (0, 1) and suppose further that Y is independent of X1

with P{Y = 1} = P{Y = −1} = 1/2. If we set X2 = Y X1, then it follows that X2 ∼ N (0, 1).
(Verify this fact.) Furthermore, X1 and X2 are uncorrelated since

Cov(X1, X2) = E(X1X2) = E(X2
1Y ) = E(X2

1 )E(Y ) = 1 · 0 = 0

using the fact that X1 and Y are independent. However, X1 and X2 are not independent since

P{X1 ≥ 1, X2 ≥ 1} = P{X1 ≥ 1, Y = 1} = P{X1 ≥ 1}P{Y = 1} =
1
2
P{X1 ≥ 1}

whereas

P{X1 ≥ 1}P{X2 ≥ 1} = [P{X1 ≥ 1}]2.

Since P{X1 ≥ 1} does not equal either 0 or 1/2 (it actually equals .= 0.1587) we see that

1
2
P{X1 ≥ 1} 6= [P{X1 ≥ 1}]2.

An extension of this same example also shows that the sum of uncorrelated normal random
variables need not be normal.
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Example 3.13 (continued). We will now show that X1 + X2 is not normally distributed. If
X1 + X2 were normally distributed, then it would necessarily be the case that for any x ∈ R,
we would have P{X1 + X2 = x} = 0. Indeed, this is true for any continuous random variable.
But we see that P{X1 + X2 = 0} = P{Y = −1} = 1/2 which shows that X1 + X2 cannot be a
normal random variable (let alone a continuous random variable).

However, if we have a bivariate normal random vector X = (X1, X2)′, then independence of the
components and no correlation between them are equivalent.

Theorem 3.14. Suppose that X = (X1, X2)′ has a bivariate normal distribution so that the
components of X, namely X1 and X2, are each normally distributed. Furthermore, X1 and X2

are uncorrelated if and only if they are independent.

Proof. For a proof, see Theorem V.7.1 on page 133 of Gut [9].

Two important variations on the previous results are worth mentioning.

Theorem 3.15 (Cramér). If X and Y are independent random variables such that X + Y is
normally distributed, then X and Y themselves are each normally distributed.

Proof. For a proof of this result, see Theorem 19 on page 53 of [6].

In the special case when X and Y are also identically distributed, Cramér’s theorem is easy to
prove.

Exercise 3.16. Suppose that X and Y are independent and identically distributed random
variables such that X + Y ∼ N (2µ, 2σ2). Prove that X ∼ N (µ, σ2) and Y ∼ N (µ, σ2).

Example 3.13 showed that uncorrelated normal random variables need not be independent and
need not have a normal sum. However, if uncorrelated normal random variables are known to
have a normal sum, then it must be the case that they are independent.

Theorem 3.17. If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are normally distributed random

variables with Cov(X1, X2) = 0, and if X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2), then X1 and X2 are
independent.

Proof. In order to prove that X1 and X2 are independent, it is sufficient to prove that the
characteristic function of X1 + X2 equals the product of the characteristic functions of X1 and
X2. Since X1 + X2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2) we see using Exercise 3.9 that

ϕX1+X2(t) = exp
{

i(µ1 + µ2)t− (σ2
1 + σ2

2)t2

2

}
.

Furthermore, since X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) we see that

ϕX1(t)ϕX2(t) = exp
{

iµ1t−
σ2

1t
2

2

}
· exp

{
iµ2t−

σ2
2t

2

2

}
= exp

{
i(µ1 + µ2)t− (σ2

1 + σ2
2)t2

2

}
.

In other words, ϕX1(t)ϕX2(t) = ϕX1+X2(t) which establishes the result.
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Remark. Actually, the assumption that Cov(X1, X2) = 0 is unnecessary in the previous theo-
rem. The same proof shows that if X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2) are normally distributed

random variables, and if X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2), then X1 and X2 are independent. It
is now a consequence that Cov(X1, X2) = 0.

A variation of the previous result can be proved simply by equating variances.

Exercise 3.18. If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are normally distributed random

variables, and if X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2 + 2ρσ1σ2), then Cov(X1, X2) = ρσ1σ2 and
Corr(X1, X2) = ρ.

Our final result gives conditions under which normality is preserved for limits in distribution.
Before stating this theorem, we need to recall the definition of convergence in distribution.

Definition 3.19. Suppose that X1, X2, . . . and X are random variables with distribution func-
tions Fn, n = 1, 2, . . ., and F , respectively. We say that Xn converges in distribution to X as
n →∞ if

lim
n→∞

Fn(x) = F (x)

for all x ∈ R at which F is continuous.

The relationship between convergence in distribution and characteristic functions is extremely
important for us.

Theorem 3.20. Suppose that X1, X2, . . . are random variables with characteristic functions
ϕXn, n = 1, 2, . . .. It then follows that ϕXn(t) → ϕX(t) as n → ∞ for all t ∈ R if and only if
Xn converges in distribution to X.

Proof. For a proof of this result, see Theorem 5.9.1 on page 238 of [10].

It is worth noting that in order to apply the result of the previous theorem we must know a priori
what the limiting random variable X is. In the case when we only know that the characteristic
functions converge to something, we must be a bit more careful.

Theorem 3.21. Suppose that X1, X2, . . . are random variables with characteristic functions
ϕXn, n = 1, 2, . . .. If ϕXn(t) converges to some function ϕ(t) as n → ∞ for all t ∈ R and ϕ(t)
is continuous at 0, then there exists a random variable X with characteristic function ϕ such
that Xn converges in distribution to X.

Proof. For a proof of this result, see Theorem 5.9.2 on page 238 of [10].

Remark. The statement of the central limit theorem is really a statement about convergence
in distribution, and its proof follows after a careful analysis of characteristic functions from
Theorems 3.10 and 3.21.

We are now ready to prove that normality is preserved under convergence in distribution. The
proof uses a result known as Slutsky’s theorem, and so we will state and prove this first.
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Theorem 3.22 (Slutsky). Suppose that the random variables Xn, n = 1, 2, . . ., converge in
distribution to X and that the sequence of real numbers an, n = 1, 2, . . ., converges to the finite
real number a. It then follows that Xn + an converges in distribution to X + a and that anXn

converges in distribution to aX.

Proof. We begin by observing that for ε > 0 fixed, we have

P{Xn + an ≤ x} = P{Xn + an ≤ x, |an − a| < ε}+ P{Xn + an ≤ x, |an − a| > ε}
≤ P{Xn + an ≤ x, |an − a| < ε}+ P{|an − a| > ε}
≤ P{Xn ≤ x− a + ε}+ P{|an − a| > ε}

That is,

FXn+an(x) ≤ FXn(x− a + ε) + P{|an − a| > ε}.

Since an → a as n →∞ we see that P{|an − a| > ε} → 0 as n →∞ and so

lim sup
n→∞

FXn+an(x) ≤ FX(x− a + ε)

for all points x− a + ε at which F is continuous. Similarly,

lim inf
n→∞

FXn+an(x) ≥ FX(x− a− ε)

for all points x− a− ε at which F is continuous. Since ε > 0 can be made arbitrarily small and
since FX has at most countably many points of discontinuity, we conclude that

lim
n→∞

FXn+an(x) = FX(x− a) = FX+a(x)

for all x ∈ R at which FX+a is continuous. The proof that anXn converges in distribution to
aX is similar.

Exercise 3.23. Complete the details to show that anXn converges in distribution to aX.

Theorem 3.24. Suppose that X1, X2, . . . is a sequence of random variables with Xi ∼ N (µi, σ
2
i ),

i = 1, 2, . . .. If the limits

lim
n→∞

µn and lim
n→∞

σ2
n

each exist and are finite, then the sequence {Xn, n = 0, 1, 2, . . .} converges in distribution to a
random variable X. Furthermore, X ∼ N (µ, σ2) where

µ = lim
n→∞

µn and σ2 = lim
n→∞

σ2
n.

Proof. For each n, let

Zn =
Xn − µn

σn

so that Zn ∼ N (0, 1) by Theorem 3.2. Clearly, Zn converges in distribution to some random
variable Z with Z ∼ N (0, 1). By Slutsky’s theorem, since Zn converges in distribution to Z, it
follows that Xn = σnZn +µn converges in distribution to σZ +µ. If we now define X = σZ +µ,
then Xn converges in distribution to X and it follows from Theorem 3.2 that X ∼ N (µ, σ2).
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We end this lecture with a brief discussion of lognormal random variables. Recall that if X ∼
N (µ, σ2), then the moment generating function of X is

mX(t) = E(etX) = exp
{

µt +
σ2t2

2

}
.

Exercise 3.25. Suppose that X ∼ N (µ, σ2) and let Y = eX .

(a) Determine the density function for Y

(b) Determine the distribution function for Y . Hint: You will need to express your answer in
terms of Φ.

(c) Compute E(Y ) and Var(Y ). Hint: Use the moment generating function of X.

Answer. (c) E(Y ) = exp{µ + σ2

2 } and Var(Y ) = e2µ+σ2
(eσ2 − 1).

Definition 3.26. We say that a random variable Y has a lognormal distribution with parameters
µ and σ2, written

Y ∼ LN (µ, σ2),

if log(Y ) is normally distributed with mean µ and variance σ2. That is, Y ∼ LN (µ, σ2) iff
log(Y ) ∼ N (µ, σ2). Equivalently, Y ∼ LN (µ, σ2) iff Y = eX with X ∼ N (µ, σ2).

Exercise 3.27. Suppose that Y1 ∼ LN (µ1, σ
2
1) and Y2 ∼ LN (µ2, σ

2
2) are independent lognor-

mal random variables. Prove that Z = Y1 · Y2 is lognormally distributed and determine the
parameters of Z.

Remark. As shown in STAT 351, if a random variable Y has a lognormal distribution, then
the moment generating function of Y does not exist.
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Discrete-Time Martingales

The concept of a martingale is fundamental to modern probability and is one of the key tools
needed to study mathematical finance. Although we saw the definition in STAT 351, we are
now going to need to be a little more careful than we were in that class. This will be especially
true when we study continuous-time martingales.

Definition 4.1. A sequence X0, X1, X2, . . . of random variables is said to be a martingale if
E(Xn+1|X0, X1, . . . , Xn) = Xn for every n = 0, 1, 2, . . ..

Technically, we need all of the random variables to have finite expectation in order that con-
ditional expectations be defined. Furthermore, we will find it useful to introduce the follow-
ing notation. Let Fn = σ(X0, X1, . . . , Xn) denote the information contained in the sequence
{X0, X1, . . . , Xn} up to (and including) time n. We then call the sequence {Fn, n = 0, 1, 2, . . .} =
{F0,F1,F2, . . .} a filtration.

Definition 4.2. A sequence {Xn, n = 0, 1, 2 . . .} of random variables is said to be a martingale
with respect to the filtration {Fn, n = 0, 1, 2, . . .} if

(i) Xn ∈ Fn for every n = 0, 1, 2, . . .,
(ii) E|Xn| < ∞ for every n = 0, 1, 2, . . ., and
(iii) E(Xn+1|Fn) = Xn for every n = 0, 1, 2, . . ..

If Xn ∈ Fn, then we often say that Xn is adapted. The intuitive idea is that if Xn is adapted,
then Xn is “known” at time n. In fact, you are already familiar with this notion from STAT 351.

Remark. Suppose that n is fixed, and let Fn = σ(X0, . . . , Xn). Clearly Fn−1 ⊆ Fn and so
X1 ∈ Fn, X2,∈ Fn, . . . , Xn ∈ Fn.

Theorem 4.3. Let X1, X2, . . . , Xn, Y be random variables, let g : Rn → R be a function, and
let Fn = σ(X1, . . . , Xn). It then follows that

(a) E(g(X1, X2, . . . , Xn) Y |Fn) = g(X1, X2, . . . , Xn)E(Y |Fn) (taking out what is known),
(b) E(Y |Fn) = E(Y ) if Y is independent of Fn, and
(c) E(E(Y |Fn)) = E(Y ).

15
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One useful fact about martingales is that they have stable expectation.

Theorem 4.4. If {Xn, n = 0, 1, 2, . . .} is a martingale, then E(Xn) = E(X0) for every n =
0, 1, 2, . . ..

Proof. Since

E(Xn+1) = E(E(Xn+1|Fn)) = E(Xn),

we can iterate to conclude that

E(Xn+1) = E(Xn) = E(Xn−1) = · · · = E(X0)

as required.

Exercise 4.5. Suppose that {Xn, n = 1, 2, . . .} is a discrete-time stochastic process. Show that
{Xn, n = 1, 2, . . .} is a martingale with respect to the filtration {Fn, n = 0, 1, 2, . . .} if and only
if

(i) Xn ∈ Fn for every n = 0, 1, 2, . . .,
(ii) E|Xn| < ∞ for every n = 0, 1, 2, . . ., and
(iii) E(Xn|Fm) = Xm for every integer m with 0 ≤ m < n.

We are now going to study several examples of martingales. Most of them are variants of simple
random walk which we define in the next example.

Example 4.6. Suppose that Y1, Y2, . . . are independent, identically distributed random variables
with P{Y1 = 1} = P{Y = −1} = 1/2. Let S0 = 0, and for n = 1, 2, . . ., define Sn =
Y1 + Y2 + · · · + Yn. The sequence {Sn, n = 0, 1, 2, . . .} is called a simple random walk (starting
at 0). Before we show that {Sn, n = 0, 1, 2, . . .} is a martingale, it will be useful to calculate
E(Sn), Var(Sn), and Cov(Sn, Sn+1). Observe that

(Y1 + Y2 + · · ·+ Yn)2 = Y 2
1 + Y 2

2 + · · ·+ Y 2
n +

∑
i6=j

YiYj .

Since E(Y1) = 0 and Var(Y1) = E(Y 2
1 ) = 1, we find

E(Sn) = E(Y1 + Y2 + · · ·+ Yn) = E(Y1) + E(Y2) + · · ·+ E(Yn) = 0

and

Var(Sn) = E(S2
n) = E(Y1 + Y2 + · · ·+ Yn)2 = E(Y 2

1 ) + E(Y 2
2 ) + · · ·+ E(Y 2

n ) +
∑
i6=j

E(YiYj)

= 1 + 1 + · · ·+ 1 + 0

= n

since E(YiYj) = E(Yi)E(Yj) when i 6= j because of the assumed independence of Y1, Y2, . . .. Since
Sn+1 = Sn + Yn+1 we see that

Cov(Sn, Sn+1) = Cov(Sn, Sn + Yn+1) = Cov(Sn, Sn) + Cov(Sn, Yn+1) = Var(Sn) + 0

using the fact that Yn+1 is independent of Sn. Furthermore, since Var(Sn) = n, we conclude
Cov(Sn, Sn+1) = n.
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Exercise 4.7. As a generalization of this covariance calculation, show that Cov(Sn, Sm) =
min{n, m}.

Example 4.6 (continued). We now show that the simple random walk {Sn, n = 0, 1, 2, . . .}
is a martingale. This also illustrates the usefulness of the Fn notation since

Fn = σ(S0, S1, . . . , Sn) = σ(Y1, . . . , Yn).

Notice that

E(Sn+1|Fn) = E(Yn+1 + Sn|Fn) = E(Yn+1|Fn) + E(Sn|Fn).

Since Yn+1 is independent of Fn we conclude that

E(Yn+1|Fn) = E(Yn+1) = 0.

If we condition on Fn, then Sn is known, and so

E(Sn|Fn) = Sn.

Combined we conclude

E(Sn+1|Fn) = E(Yn+1|Fn) + E(Sn|Fn) = 0 + Sn = Sn

which proves that {Sn, n = 0, 1, 2, . . .} is a martingale.

Example 4.6 (continued). Next we show that {S2
n − n, n = 0, 1, 2, . . .} is also a martingale.

Let Mn = S2
n − n. We must show that E(Mn+1|Fn) = Mn since

Fn = σ(M0,M1, . . . ,Mn) = σ(S0, S1, . . . , Sn).

Notice that

E(S2
n+1|Fn) = E((Yn+1 + Sn)2|Fn) = E(Y 2

n+1|Fn) + 2E(Yn+1Sn|Fn) + E(S2
n|Fn).

However, E(Y 2
n+1|Fn) = E(Y 2

n+1) = 1,

E(Yn+1Sn|Fn) = SnE(Yn+1|Fn) = SnE(Yn+1) = 0,

and E(S2
n|Fn) = S2

n from which we conclude that E(S2
n+1|Fn) = S2

n + 1. Therefore,

E(Mn+1|Fn) = E(S2
n+1 − (n + 1)|Fn) = E(S2

n+1|Fn)− (n + 1) = S2
n + 1− (n + 1)

= S2
n − n

= Mn

and so we conclude that {Mn, n = 0, 1, 2, . . .} = {S2
n − n, n = 0, 1, 2, . . .} is a martingale.

Example 4.6 (continued). We are now going to construct one more martingale related to
simple random walk. Suppose that θ ∈ R and let

Zn = (sech θ)neθSn , n = 0, 1, 2, . . . ,

where the hyperbolic secant is defined as

sech θ =
2

eθ + e−θ
.
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We will show that {Zn, n = 0, 1, 2, . . .} is a martingale. Thus, we must verify that

E(Zn+1|Fn) = Zn

since

Fn = σ(Z0, Z1, . . . , Zn) = σ(S0, S1, . . . , Sn).

Notice that Sn+1 = Sn + Yn+1 which implies

Zn+1 = (sech θ)n+1eθSn+1 = (sech θ)n+1eθ(Sn+Yn+1) = (sech θ)neθSn · (sech θ)eθYn+1

= Zn · (sech θ)eθYn+1 .

Therefore,

E(Zn+1|Fn) = E(Zn · (sech θ)eθYn+1 |Fn) = ZnE((sech θ)eθYn+1 |Fn) = ZnE((sech θ)eθYn+1)

where the second equality follows by “taking out what is known” and the third equality follows
by independence. The final step is to compute E((sech θ)eθYn+1). Note that

E(eθYn+1) = eθ·1 · 1
2

+ eθ·−1 · 1
2

=
eθ + e−θ

2
=

1
sech θ

and so

E((sech θ)eθYn+1) = (sech θ)E(eθYn+1) = (sech θ) · 1
sech θ

= 1.

In other words, we have shown that

E(Zn+1|Fn) = Zn

which implies that {Zn, n = 0, 1, 2 . . .} is a martingale.

The following two examples give more martingales derived from simple random walk.

Example 4.8. As in the previous example, let Y1, Y2, . . . be independent and identically dis-
tributed random variables with P{Y1 = 1} = P{Y1 = −1} = 1

2 , set S0 = 0, and for n =
1, 2, 3, . . ., define the random variable Sn by Sn = Y1 + · · ·+ Yn so that {Sn, n = 0, 1, 2, . . .} is a
simple random walk starting at 0. Define the process {Mn, n = 0, 1, 2, . . .} by setting

Mn = S3
n − 3nSn.

Show that {Mn, n = 0, 1, 2, . . .} is a martingale.

Solution. If Mn = S3
n − 3nSn, then

Mn+1 = S3
n+1 − 3(n + 1)Sn+1 = (Sn + Yn+1)3 − 3(n + 1)(Sn + Yn+1)

= S3
n + 3S2

nYn+1 + 3SnY 2
n+1 + Y 3

n+1 − 3(n + 1)Sn − 3(n + 1)Yn+1

= Mn + 3Sn(Y 2
n+1 − 1) + 3S2

nYn+1 − 3(n + 1)Yn+1 + Y 3
n+1.

Thus, we see that we will be able to conclude that {Mn, n = 0, 1, . . .} is a martingale if we can
show that

E
(
3Sn(Y 2

n+1 − 1) + 3S2
nYn+1 − 3(n + 1)Yn+1 + Y 3

n+1|Fn

)
= 0.
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Now

3E(Sn(Y 2
n+1 − 1)|Fn) = 3SnE(Y 2

n+1 − 1) and 3E(S2
nYn+1|Fn) = 3S2

nE(Yn+1)

by “taking out what is known,” and using the fact that Yn+1 and Fn are independent. Further-
more,

3(n + 1)E(Yn+1|Fn) = 3(n + 1)E(Yn+1) and E(Y 3
n+1|Fn) = E(Y 3

n+1)

using the fact that Yn+1 and Fn are independent. Since E(Yn+1) = 0, E(Y 2
n+1) = 1, and

E(Y 3
n+1) = 0, we see that

E(Mn+1|Fn) = Mn + 3SnE(Y 2
n+1 − 1) + 3S2

nE(Yn+1)− 3(n + 1)E(Yn+1) + E(Y 3
n+1)

= Mn + 3Sn · (1− 1) + 3S2
n · 0− 3(n + 1) · 0 + 0

= Mn

which proves that {Mn, n = 0, 1, 2, . . .} is, in fact, a martingale.

The following example is the most important discrete-time martingale calculation that you will
do. The process {Ij , j = 0, 1, 2, . . .} defined below is an example of a discrete stochastic integral.
In fact, stochastic integration is one of the greatest achievements of 20th century probability
and, as we will see, is fundamental to the mathematical theory of finance and option pricing.

Example 4.9. As in the previous example, let Y1, Y2, . . . be independent and identically dis-
tributed random variables with P{Y1 = 1} = P{Y1 = −1} = 1

2 , set S0 = 0, and for n =
1, 2, 3, . . ., define the random variable Sn by Sn = Y1 + · · ·+ Yn so that {Sn, n = 0, 1, 2, . . .} is a
simple random walk starting at 0. Now suppose that I0 = 0 and for j = 1, 2, . . . define Ij to be

Ij =
j∑

n=1

Sn−1(Sn − Sn−1).

Prove that {Ij , j = 0, 1, 2, . . .} is a martingale.

Solution. If

Ij =
j∑

n=1

Sn−1(Sn − Sn−1).

then

Ij+1 = Ij + Sj(Sj+1 − Sj).

Therefore,

E(Ij+1|Fj) = E(Ij + Sj(Sj+1 − Sj)|Fj) = E(Ij |Fj) + E(Sj(Sj+1 − Sj)|Fj)

= Ij + SjE(Sj+1|Fj)− S2
j

where we have “taken out what is known” three times. Furthermore, since {Sj , j = 0, 1, . . .} is
a martingale,

E(Sj+1|Fj) = Sj .
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Combining everything gives

E(Ij+1|Fj) = Ij + SjE(Sj+1|Fj)− S2
j = Ij + S2

j − S2
j = Ij

which proves that {Ij , j = 0, 1, 2, . . .} is, in fact, a martingale.

Exercise 4.10. Suppose that {Ij , j = 0, 1, 2, . . .} is defined as in the previous example. Show
that

Var(Ij) =
j(j − 1)

2

for all j = 0, 1, 2, . . ..

This next example gives several martingales derived from biased random walk.

Example 4.11. Suppose that Y1, Y2, . . . are independent and identically distributed random
variables with P{Y1 = 1} = p, P{Y1 = −1} = 1−p for some 0 < p < 1/2. Let Sn = Y1 + · · ·+Yn

denote their partial sums so that {Sn, n = 0, 1, 2, . . .} is a biased random walk. (Note that
{Sn, n = 0, 1, 2, . . .} is no longer a simple random walk.)

(a) Show that Xn = Sn − n(2p− 1) is a martingale.
(b) Show that Mn = X2

n − 4np(1− p) = [Sn − n(2p− 1)]2 − 4np(1− p) is a martingale.

(c) Show that Zn =
(

1−p
p

)Sn

is a martingale.

Solution. We begin by noting that

Fn = σ(Y1, . . . , Yn) = σ(S0, . . . , Sn) = σ(X0, . . . , Xn) = σ(M0, . . . ,Mn) = σ(Z0, . . . , Zn).

(a) The first step is to calculate E(Y1). That is,

E(Y1) = 1 ·P{Y = 1}+ (−1) ·P{Y = −1} = p− (1− p) = 2p− 1.

Since Sn+1 = Sn + Yn+1, we see that

E(Sn+1|Fn) = E(Sn + Yn+1|Fn) = E(Sn|Fn) + E(Yn+1|Fn)

= Sn + E(Yn+1)

= Sn + 2p− 1

by “taking out what is known” and using the fact that Yn+1 and Fn are independent. This
implies that

E(Xn+1|Fn) = E(Sn+1 − (n + 1)(2p− 1)|Fn) = E(Sn+1|Fn)− (n + 1)(2p− 1)

= Sn + 2p− 1− (n + 1)(2p− 1)

= Sn − n(2p− 1)

= Xn,

and so we conclude that {Xn, n = 1, 2, . . .} is, in fact, a martingale.
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(b) Notice that we can write Xn+1 as

Xn+1 = Sn+1 − (n + 1)(2p− 1) = Sn + Yn+1 − n(2p− 1)− (2p− 1)

= Xn + Yn+1 − (2p− 1)

and so

X2
n+1 = (Xn + Yn+1)2 + (2p− 1)2 − 2(2p− 1)(Xn + Yn+1)

= X2
n + Y 2

n+1 + 2XnYn+1 + (2p− 1)2 − 2(2p− 1)(Xn + Yn+1).

Thus,

E(X2
n+1|Fn)

= E(X2
n|Fn) + E(Y 2

n+1|Fn) + 2E(XnYn+1|Fn) + (2p− 1)2 − 2(2p− 1)E(Xn + Yn+1|Fn)

= X2
n + E(Yn+1)2 + 2XnE(Yn+1) + (2p− 1)2 − 2(2p− 1)(Xn + E(Yn+1))

= X2
n + 1 + 2(2p− 1)Xn + (2p− 1)2 − 2(2p− 1)(Xn + (2p− 1))

= X2
n + 1 + 2(2p− 1)Xn + (2p− 1)2 − 2(2p− 1)Xn − 2(2p− 1)2

= X2
n + 1− (2p− 1)2,

by again “taking out what is known” and using the fact that Yn+1 and Fn are independent.
Hence, we find

E(Mn+1|Fn) = E(X2
n+1|Fn)− 4(n + 1)p(1− p)

= X2
n + 1− (2p− 1)2 − 4(n + 1)p(1− p)

= X2
n + 1− (4p2 − 4p + 1)− 4np(1− p)− 4p(1− p)

= X2
n + 1− 4p2 + 4p− 1− 4np(1− p)− 4p + 4p2

= X2
n − 4np(1− p)

= Mn

so that {Mn, n = 1, 2, . . .} is, in fact, a martingale.

(c) Notice that

Zn+1 =
(

1− p

p

)Sn+1

=
(

1− p

p

)Sn+Yn+1

=
(

1− p

p

)Sn
(

1− p

p

)Yn+1

= Zn

(
1− p

p

)Yn+1

.

Therefore,

E(Zn+1|Fn) = E

(
Zn

(
1− p

p

)Yn+1
∣∣∣∣Fn

)
= ZnE

((
1− p

p

)Yn+1
∣∣∣∣Fn

)

= ZnE

((
1− p

p

)Yn+1
)

where the second equality follows from “taking out what is known” and the third equality follows
from the fact that Yn+1 and Fn are independent. We now compute

E

((
1− p

p

)Yn+1
)

= p

(
1− p

p

)1

+ (1− p)
(

1− p

p

)−1

= (1− p) + p = 1
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and so we conclude

E(Zn+1|Fn) = Zn.

Hence, {Zn, n = 0, 1, 2, . . .} is, in fact, a martingale.

We now conclude this section with one final example. Although it is unrelated to simple random
walk, it is an easy martingale calculation and is therefore worth including. In fact, it could be
considered as a generalization of (c) of the previous example.

Example 4.12. Suppose that Y1, Y2, . . . are independent and identically distributed random
variables with E(Y1) = 1. Suppose further that X0 = Y0 = 1 and for n = 1, 2, . . ., let

Xn = Y1 · Y2 · · ·Yn =
n∏

j=1

Yj .

Verify that {Xn, n = 0, 1, 2, . . .} is a martingale with respect to {Fn = σ(Y0, . . . , Yn), n =
0, 1, 2, . . .}.

Solution. We find

E(Xn+1|Fn) = E(Xn · Yn+1|Fn)

= XnE(Yn+1|Fn) (by taking out what is known)

= XnE(Yn+1) (since Yn+1 is independent of Fn)

= Xn · 1
= Xn

and so {Xn, n = 0, 1, 2, . . .} is, in fact, a martingale.
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Continuous-Time Martingales

Let {Xt, t ≥ 0} be a continuous-time stochastic process. Recall that this implies that there are
uncountably many random variables, one for each value of the time index t.

For t ≥ 0, let Ft denote the information contained in the process up to (and including) time t.
Formally, let

Ft = σ(Xs, 0 ≤ s ≤ t).

We call {Ft, t ≥ 0} a filtration, and we say that Xt is adapted if Xt ∈ Ft. Notice that if s ≤ t,
then Fs ⊆ Ft so that Xs ∈ Ft as well.

The definition of a continuous-time martingale is analogous to the definition in discrete time.

Definition 5.1. A collection {Xt, t ≥ 0} of random variables is said to be a martingale with
respect to the filtration {Ft, t ≥ 0} if

(i) Xt ∈ Ft for every t ≥ 0,
(ii) E|Xt| < ∞ for every t ≥ 0, and
(iii) E(Xt|Fs) = Xs for every 0 ≤ s < t.

Note that in the third part of the definition, the present time t must be strictly larger than the
past time s. (This is clearer in discrete time since the present time n+ 1 is always strictly larger
than the past time n.)

The theorem from discrete time about independence and “taking out what is known” is also
true in continuous time.

Theorem 5.2. Let {Xt, t ≥ 0} be a stochastic process and consider the filtration {Ft, t ≥ 0}
where Ft = σ(Xs, 0 ≤ s ≤ t). Let Y be a random variable, and let g : Rn → R be a function.
Suppose that 0 ≤ t1 < t2 < · · · < tn are n times, and let s be such that 0 ≤ s < t1. (Note that if
t1 = 0, then s = 0.) It then follows that

(a) E(g(Xt1 , . . . , Xtn) Y |Fs) = g(Xt1 , . . . , Xtn)E(Y |Fs) (taking out what is known),
(b) E(Y |Fs) = E(Y ) if Y is independent of Fs, and
(c) E(E(Y |Fs)) = E(Y ).
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As in the discrete case, continuous-time martingales have stable expectation.

Theorem 5.3. If {Xt, t ≥ 0} is a martingale, then E(Xt) = E(X0) for every t ≥ 0.

Proof. Since

E(Xt) = E(E(Xt|Fs)) = E(Xs)

for any 0 ≤ s < t, we can simply choose s = 0 to complete the proof.

You are already familiar with one example of a continuous-time stochastic process, namely the
Poisson process. This will lead us to our first continuous-time martingale.

Example 5.4. As in STAT 351, the Poisson process with intensity λ is a continuous-time
stochastic process {Xt, t ≥ 0} satisfying the following properties.

(i) The increments {Xtk −Xtk−1
, k = 1, . . . , n} are independent for all 0 ≤ t0 < · · · < tn < ∞

and all n,
(ii) X0 = 0, and
(iii) there exists a λ > 0 such that

Xt −Xs ∈ Po(λ(t− s))

for 0 ≤ s < t.

Consider the filtration {Ft, t ≥ 0} where Ft = σ(Xs, 0 ≤ s ≤ t). In order to show that
{Xt, t ≥ 0} is a martingale, we must verify that

E(Xt|Fs) = Xs

for every 0 ≤ s < t. The trick, much like for simple random walk in the discrete case, is to
add-and-subtract the correct thing. Notice that Xt = Xt −Xs + Xs so that

E(Xt|Fs) = E(Xt −Xs + Xs|Fs) = E(Xt −Xs|Fs) + E(Xs|Fs).

By assumption, Xt −Xs is independent of Fs so that

E(Xt −Xs|Fs) = E(Xt −Xs) = λ(t− s)

since Xt −Xs ∈ Po(λ(t− s)). Furthermore, since Xs is “known” at time s we have

E(Xs|Fs) = Xs.

Combined, this shows that

E(Xt|Fs) = Xs + λ(t− s) = λt + Xs − λs.

In other words, {Xt, t ≥ 0} is NOT a martingale. However, if we consider {Xt − λt, t ≥ 0}
instead, then this IS a martingale since

E(Xt − λt|Fs) = Xs − λs.

The process {Nt, t ≥ 0} given by Nt = Xt − λt is sometimes called the compensated Poisson
process with intensity λ. (In other words, the compensated Poisson process is what you need to
compensate the Poisson process by in order to have a martingale!)
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Remark. In some sense, this result is like the biased random walk. If S0 = 0 and Sn =
Y1 + · · · + Yn where P{Y1 = 1} = 1 − P{Y1 = −1} = p, 0 < p < 1/2, then E(Sn) = (2p − 1)n.
Hence, Sn does NOT have stable expectation so that {Sn, n = 0, 1, 2, . . .} cannot be a martingale.
However, if we consider {Sn−(2p−1)n, n = 0, 1, . . .} instead, then this is a martingale. Similarly,
since Xt has mean E(Xt) = λt which depends on t (and is therefore not stable), it is not possible
for {Xt, t ≥ 0} to be a martingale. By subtracting this mean we get {Xt − λt, t ≥ 0} which is a
martingale.

Remark. Do not let this previous remark fool you into thinking you can always take a stochastic
process and subtract the mean to get a martingale. This is NOT TRUE. The previous remark
is meant to simply provide some intuition. There is no substitute for checking the definition of
martingale as is shown in the next example.

Example 5.5. Suppose that the distribution of the random variable X0 is

P{X0 = 2} = P{X0 = 0} =
1
2

so that E(X0) = 1. For n = 1, 2, 3, . . . define the random variable Xn by setting

Xn = nXn−1.

Now consider the stochastic process {Xn, n = 0, 1, 2, . . .}. The claim is that the process {Mn, n =
0, 1, 2, . . .} defined by setting

Mn = Xn − E(Xn)

is NOT a martingale. Notice that

E(Xn) = nE(Xn−1)

which implies that (just iterate) E(Xn) = n!. Furthermore,

E(Xn|Fn−1) = E(nXn−1|Fn−1) = nXn−1.

Now, if we consider Mn = Xn − E(Xn) = Xn − n!, then

E(Mn|Fn−1) = E(Xn|Fn−1)− n! = nXn−1 − n! = n[Xn−1 − (n− 1)!] = nMn−1.

This shows that {Mn, n = 0, 1, 2, . . .} is NOT a martingale.

Exercise 5.6. Suppose that {Nt, t ≥ 0} is a compensated Poisson process with intensity λ. Let
0 ≤ s < t. Show that the moment generating function of the random variable Nt −Ns is

mNt−Ns(θ) = E[ eθ(Nt−Ns) ] = exp
{

λ(t− s)(eθ − 1− θ)
}

.

Conclude that

E(Nt −Ns) = 0, E[ (Nt −Ns)2 ] = λ(t− s), E[ (Nt −Ns)3 ] = λ(t− s),

and

E[ (Nt −Ns)4 ] = λ(t− s) + 3λ2(t− s)2.
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Exercise 5.7. Suppose that {Nt, t ≥ 0} is a compensated Poisson process with intensity λ.
Define the process {Mt, t ≥ 0} by setting Mt = N2

t − λt. Show that {Mt, t ≥ 0} is a martingale
with respect to the filtration {Ft, t ≥ 0} = {σ(Ns, 0 ≤ s ≤ t), t ≥ 0}.

We are shortly going to learn about Brownian motion, the most important of all stochastic
processes. Brownian motion will lead us to many, many more examples of martingales. (In
fact, there is a remarkable theorem which tells us that any continuous-time martingale with
continuous paths must be Brownian motion in disguise!)

In particular, for a simple random walk {Sn, n = 0, 1, 2, . . .}, we have seen that

(i) {Sn, n = 0, 1, 2, . . .} is a martingale,
(ii) {Mn, n = 0, 1, 2, . . .} where Mn = S2

n − n is a martingale, and
(iii) {Ij , j = 0, 1, 2, . . .} where

Ij =
j∑

n=1

Sn−1(Sn − Sn−1) (5.1)

is a martingale.

As we will soon see, there are natural Brownian motion analogues of each of these martingales,
particularly the stochastic integral (5.1).
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Brownian Motion as a Model of a Fair Game

Suppose that we are interested in setting up a model of a fair game, and that we are going to
place bets on the outcomes of the individual rounds of this game. If we assume that a round
takes place at discrete times, say at times 1, 2, 3, . . ., and that the game pays even money on unit
stakes per round, then a reasonable probability model for encoding the outcome of the jth game
is via a sequence {Xj , j = 1, 2, . . .} of independent and identically distributed random variables
with

P{X1 = 1} = P{X1 = −1} =
1
2
.

That is, we can view Xj as the outcome of the jth round of this fair game. Although we will
assume that there is no game played at time 0, it will be necessary for our notation to consider
what “happens” at time 0; therefore, we will simply define X0 = 0.

Notice that the sequence {Xj , j = 1, 2, . . .} tracks the outcomes of the individual games. We
would also like to track our net number of “wins”; that is, we care about

n∑
j=1

Xj ,

the net number of “wins” after n rounds. (If this sum is negative, we realize that a negative
number of “wins” is an interpretation of a net “loss.”) Hence, we define the process {Sn, n =
0, 1, 2, . . .} by setting

Sn =
n∑

j=0

Xj .

Of course, we know that {Sn, n = 0, 1, 2, . . .} is called a simple random walk, and so we use a
simple random walk as our model of a fair game being played in discrete time.

If we write Fn = σ(X0, X1, . . . , Xn) to denote the information contained in the first n rounds of
this game, then we showed in Lecture #4 that {Sn, n = 0, 1, 2, . . .} is a martingale with respect
to the filtration {Fn, n = 0, 1, 2, . . .}.

Notice that Sj − Sj−1 = Xj and so the increment Sj − Sj−1 is exactly the outcome of the jth
round of this fair game.
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Suppose that we bet on the outcome of the jth round of this game and that (as assumed above)
the game pays even money on unit stakes; for example, if we flip a fair coin betting $5 on
“heads” and “heads” does, in fact, appear, then we win $5 plus our original $5, but if “tails”
appears, then we lose our original $5.

If we denote our betting strategy by Yj−1, j = 1, 2, . . ., so that Yj−1 represents the bet we make
on the jth round of the game, then In, our fortune after n rounds, is given by

In =
n∑

j=1

Yj−1(Sj − Sj−1). (6.1)

We also define I0 = 0. The process {In, n = 0, 1, 2, . . .} is called a discrete stochastic integral
(or the martingale transform of Y by S).

Remark. If we choose unit bets each round so that Yj−1 = 1, j = 1, 2, . . ., then

In =
n∑

j=1

(Sj − Sj−1) = Sn

and so our “fortune” after n rounds is simply the position of the random walk Sn. We are
interested in what happens when Yj−1 is not constant in time, but rather varies with j.

Note that it is reasonable to assume that the bet you make on the jth round can only depend
on the outcomes of the previous j − 1 rounds. That is, you cannot “look into the future and
make your bet on the jth round based on what the outcome of the jth round will be.” In
mathematical language, we say that Yj−1 must be previsible (also called predictable).

Remark. The concept of a previsible stochastic process was intensely studied in the 1950s by the
French school of probability that included P. Lévy. Since the French word prévisible is translated
into English as foreseeable, there is no consistent English translation. Most probabilists use
previsible and predictable interchangeably. (Although, unfortunately, not all do!)

A slight modification of Example 4.9 shows that {In, n = 0, 1, 2, . . .} is a martingale with respect
to the filtration {Fn, n = 0, 1, . . .}. Note that the requirement that Yj−1 be previsible is exactly
the requirement that allows {In, n = 0, 1, 2, . . .} to be a martingale.

It now follows from Theorem 4.4 that E(In) = 0 for all n since {In, n = 0, 1, 2, . . .} is a martingale
with I0 = 0. As we saw in Exercise 4.10, calculating the variance of the random variable In

is more involved. The following exercise generalizes that result and shows precisely how the
variance depends on the choice of the sequence Yj−1, j = 1, 2, . . ..

Exercise 6.1. Consider the martingale transform of Y by S given by (6.1). Show that

Var(In) =
n∑

j=1

E(Y 2
j−1).

Suppose that instead of playing a round of the game at times 1, 2, 3, . . ., we play rounds more
frequently, say at times 0.5, 1, 1.5, 2, 2.5, 3, . . ., or even more frequently still. In fact, we can
imagine playing a round of the game at every time t ≥ 0.
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If this is hard to visualize, imagine the round of the game as being the price of a (fair) stock at
time t. The stock is assumed, equally likely, to move an infinitesmal amount up or an infinitesmal
amount down in every infinitesmal period of time.

Hence, if we want to model a fair game occurring in continuous time, then we need to find a
continuous limit of the simple random walk. This continuous limit is Brownian motion, also
called the scaling limit of simple random walk. To explain what this means, suppose that
{Sn, n = 0, 1, 2, . . .} is a simple random walk. For N = 1, 2, 3, . . ., define the scaled random walk
B

(N)
t , 0 ≤ t ≤ 1, to be the continuous process on the time interval [0, 1] whose value at the

fractional times 0, 1
N , 2

N , . . . , N−1
N , 1 is given by setting

B
(N)
j
N

=
1√
N

Sj , j = 0, 1, 2, . . . , N,

and for other times is defined by linear interpolation. As N → ∞, the distribution of the
process {B(N)

t , 0 ≤ t ≤ 1} converges to the distribution of a process {Bt, 0 ≤ t ≤ 1} satisfying
the following properties:

(i) B0 = 0,
(ii) for any 0 ≤ s ≤ t ≤ 1, the random variable Bt − Bs is normally distributed with mean 0

and variance t− s; that is, Bt −Bs ∼ N (0, t− s),
(iii) for any integer k and any partition 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1, the random variables

Btk −Btk−1
, . . . , Bt2 −Bt1 , Bt1 are independent, and

(iv) the trajectory t 7→ Bt is continuous.

By piecing together independent copies of this process, we can construct a Brownian motion
{Bt, t ≥ 0} defined for all times t ≥ 0 satisfying the above properties (without, of course, the
restriction in (b) that t ≤ 1 and the restriction in (c) that tk ≤ 1). Thus, we now suppose that
{Bt, t ≥ 0} is a Brownian motion with B0 = 0.

Exercise 6.2. Deduce from the definition of Brownian motion that for each t > 0, the random
variable Bt is normally distributed with mean 0 and variance t. Why does this imply that
E(B2

t ) = t?

Exercise 6.3. Deduce from the definition of Brownian motion that for 0 ≤ s < t, the distri-
bution of the random variable Bt − Bs is the same as the distribution of the random variable
Bt−s.

Exercise 6.4. Show that if {Bt, t ≥ 0} is a Brownian motion, then E(Bt) = 0 for all t, and
Cov(Bs, Bt) = min{s, t}. Hint: Suppose that s < t and write BsBt = (BsBt − B2

s ) + B2
s . The

result of this exercise actually shows that Brownian motion is not a stationary process, although
it does have stationary increments.

Note. One of the problems with using either simple random walk or Brownian motion as a
model of an asset price is that the value of a real stock is never allowed to be negative—it can
equal 0, but can never be strictly less than 0. On the other hand, both a random walk and
a Brownian motion can be negative. Hence, neither serves as an adequate model for a stock.
Nonetheless, Brownian motion is the key ingredient for building a reasonable model of a stock



30 Brownian Motion as a Model of a Fair Game

and the stochastic integral that we are about to construct is fundamental to the analysis. At
this point, we must be content with modelling (and betting on) fair games whose values can be
either positive or negative.

If we let Ft = σ(Bs, 0 ≤ s ≤ t) denote the “information” contained in the Brownian motion up
to (and including) time t, then it easily follows that {Bt, t ≥ 0} is a continuous-time martingale
with respect to the Brownian filtration {Ft, t ≥ 0}. That is, suppose that s < t, and so

E(Bt|Fs) = E(Bt −Bs + Bs|Fs) = E(Bt −Bs|Fs) + E(Bs|Fs) = E(Bt −Bs) + Bs = Bs

since the Brownian increment Bt−Bs has mean 0 and is independent of Fs, and Bs is “known”
at time s (using the “taking out what is known” property of conditional expectation).

In analogy with simple random walk, we see that although {B2
t , t ≥ 0} is not a martingale with

respect to {Ft, t ≥ 0}, the process {B2
t − t, t ≥ 0} is one.

Exercise 6.5. Let the process {Mt, t ≥ 0} be defined by setting Mt = B2
t − t. Show that

{Mt, t ≥ 0} is a (continuous-time) martingale with respect to the Brownian filtration {Ft, t ≥ 0}.

Exercise 6.6. The same “trick” used to solve the previous exercise can also be used to show
that both {B3

t − 3tBt, t ≥ 0} and {B4
t − 6tB2

t + 3t2, t ≥ 0} are martingales with respect to the
Brownian filtration {Ft, t ≥ 0}. Verify that these are both, in fact, martingales. (Once we have
learned Itô’s formula, we will discover a much easier way to “generate” such martingales.)

Assuming that our fair game is modelled by a Brownian motion, we need to consider appropriate
betting strategies. For now, we will allow only deterministic betting strategies that do not “look
into the future” and denote such a strategy by {g(t), t ≥ 0}. This notation might look a little
strange, but it is meant to be suggestive for when we allow certain random betting strategies.
Hence, at this point, our betting strategy is simply a real-valued function g : [0,∞) → R.
Shortly, for technical reasons, we will see that it is necessary for g to be at least bounded,
piecewise continuous, and in L2([0,∞)). Recall that g ∈ L2([0,∞)) means that∫ ∞

0
g2(s) ds < ∞.

Thus, if we fix a time t > 0, then, in analogy with (6.1), our “fortune process” up to time t is
given by the (yet-to-be-defined) stochastic integral

It =
∫ t

0
g(s) dBs. (6.2)

Our goal, now, is to try and define (6.2) in a reasonable way. A natural approach, therefore, is to
try and relate the stochastic integral (6.2) with the discrete stochastic integral (6.1) constructed
earlier. Since the discrete stochastic integral resembles a Riemann sum, that seems like a good
place to start.
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Riemann Integration

Suppose that g : [a, b] → R is a real-valued function on [a, b]. Fix a positive integer n, and let

πn = {a = t0 < t1 < · · · < tn−1 < tn = b}

be a partition of [a, b]. For i = 1, · · · , n, define ∆ti = ti − ti−1 and let t∗i ∈ [ti−1, ti] be
distinguished points; write τ∗n = {t∗1, . . . , t∗n} for the set of distinguished points. If πn is a
partition of [a, b], define the mesh of πn to be the width of the largest subinterval; that is,

mesh(πn) = max
1≤i≤n

∆ti = max
1≤i≤n

(ti − ti−1).

Finally, we call

S(g; πn; τ∗n) =
n∑

i=1

g(t∗i )∆ti

the Riemann sum for g corresponding to the partition πn with distinguished points τ∗n.

We say that π = {πn, n = 1, 2, . . .} is a refinement of [a, b] if π is a sequence of partitions of
[a, b] with πn ⊂ πn+1 for all n.

Definition 7.1. We say that g is Riemann integrable over [a, b] and define the Riemann integral
of g to be I if for every ε > 0 and for every refinement π = {πn, n = 1, 2, . . .} with mesh(πn) → 0
as n →∞, there exists an N such that

|S(g; πm; τ∗m)− I| < ε

for all choices of distinguished points τ∗m and for all m ≥ N . We then define∫ b

a
g(s) ds

to be this limiting value I.

Remark. There are various equivalent definitions of the Riemann integral including Darboux’s
version using upper and lower sums. The variant given in Definition 7.1 above will be the most
useful one for our construction of the stochastic integral.

The following theorem gives a sufficient condition for a function to be Riemann integrable.
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Theorem 7.2. If g : [a, b] → R is bounded and piecewise continuous, then g is Riemann
integrable on [a, b].

Proof. For a proof, see Theorem 6.10 on page 126 of Rudin [21].

The previous theorem is adequate for our purposes. However, it is worth noting that, in fact, this
theorem follows from a more general result which completely characterizes the class of Riemann
integrable functions.

Theorem 7.3. Suppose that g : [a, b] → R is bounded. The function g is Riemann integrable
on [a, b] if and only if the set of discontinuities of g has Lebesgue measure 0.

Proof. For a proof, see Theorem 11.33 on page 323 of Rudin [21].

There are two particular Riemann sums that are studied in elementary calculus—the so-called
left-hand Riemann sum and right-hand Riemann sum.

For i = 0, 1, . . . , n, let ti = a + i(b−a)
n . If t∗i = ti−1, then

b− a

n

n∑
i=1

g

(
a +

(i− 1)(b− a)
n

)
is called the left-hand Riemann sum. The right-hand Riemann sum is obtained by choosing
t∗i = ti and is given by

b− a

n

n∑
i=1

g

(
a +

i(b− a)
n

)
.

Remark. It is a technical matter that if ti = a + i(b−a)
n , then π = {πn, n = 1, 2, . . .} with

πn = {t0 = a < t1 < · · · < tn−1 < tn = b} is not a refinement. To correct this, we simply restrict
to those n of the form n = 2k for some k in order to have a refinement of [a, b]. Hence, from
now on, we will not let this concern us.

The following example shows that even though the limits of the left-hand Riemann sums and
the right-hand Riemann sums might both exist and be equal for a function g, that is not enough
to guarantee that g is Riemann integrable.

Example 7.4. Suppose that g : [0, 1] → R is defined by

g(x) =

{
0, if x ∈ Q ∩ [0, 1],

1, if x 6∈ Q ∩ [0, 1].

Let πn = {0 < 1
n < 2

n < · · · < n−1
n < 1} so that ∆ti = 1

n and mesh(πn) = 1
n . The limit of the

left-hand Riemann sums is therefore given by

lim
n→∞

1
n

n∑
i=1

g

(
i− 1

n

)
= lim

n→∞

1
n

n∑
i=1

g(0) = 0
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since i−1
n is necessarily rational. Similarly, the limit of the right-hand Riemann sums is given by

lim
n→∞

1
n

n∑
i=1

g

(
i

n

)
= lim

n→∞

1
n

n∑
i=1

g(0) = 0.

However, define a sequence of partitions as follows:

πn =

{
0 <

1
n
√

2
< · · · < n− 1

n
√

2
<

1√
2

<
1√
2

+
√

2− 1
n
√

2
< · · · < 1√

2
+

(n− 1)(
√

2− 1)
n
√

2
< 1

}
.

In this case, mesh(πn) =
√

2−1
n
√

2
so that mesh(πn) → 0 as n → ∞. If t∗i is chosen to be the

mid-point of each interval, then t∗i is necessarily irrational so that g(t∗i ) = 1. Therefore,
n∑

i=1

g(t∗i )∆ti =
n∑

i=1

∆ti =
n∑

i=1

(ti − ti−1) = tn − t0 = 1− 0 = 1

for each n. Hence, we conclude that g is not Riemann integrable on [0, 1] since there is no unique
limiting value.

However, we can make the following postive assertion about the limits of the left-hand Riemann
sums and the right-hand Riemann sums.

Remark. Suppose that g : [a, b] → R is Riemann integrable on [a, b] so that

I =
∫ b

a
g(s) ds

exists. Then, the limit of the left-hand Riemann sums and the limit of the right-hand Riemann
sums both exist, and furthermore

lim
n→∞

1
n

n∑
i=1

g

(
i

n

)
= lim

n→∞

1
n

n∑
i=1

g

(
i− 1

n

)
= I.
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The Riemann Integral of Brownian Motion

Before integrating with respect to Brownian motion it seems reasonable to try and integrate
Brownian motion itself. This will help us get a feel for some of the technicalities involved when
the integrand/integrator in a stochastic process.

Suppose that {Bt, 0 ≤ t ≤ 1} is a Brownian motion. Since Brownian motion is continuous
with probability one, it follows from Theorem 7.2 that Brownian motion is Riemann integrable.
Thus, at least theoretically, we can integrate Brownian motion, although it is not so clear what
the Riemann integral of it is. To be a bit more precise, suppose that Bt(ω), 0 ≤ t ≤ 1, is a
realization of Brownian motion (a so-called sample path or trajectory) and let

I =
∫ 1

0
Bs(ω) ds

denote the Riemann integral of the function B(ω) on [0, 1]. (By this notation, we mean that
B(ω) is the function and B(ω)(t) = Bt(ω) is the value of this function at time t. This is
analogous to our notation in calculus in which g is the function and g(t) is the value of this
function at time t.)

Question. What can be said about I?

On the one hand, we know from elementary calculus that the Riemann integral represents the
area under the curve, and so we at least have that interpretation of I. On the other hand, since
Brownian motion is nowhere differentiable with probability one, there is no hope of using the
fundamental theorem of calculus to evaluate I. Furthermore, since the value of I depends on
the realization B(ω) observed, we should really be viewing I as a function of ω; that is,

I(ω) =
∫ 1

0
Bs(ω) ds.

It is now clear that I is itself a random variable, and so the best that we can hope for in terms
of “calculating” the Riemann integral I is to determine its distribution.

As noted above, the Riemann integral I necessarily exists by Theorem 7.2, which means that in
order to determine its distribution, it is sufficient to determine the distribution of the limit of

34



The Riemann Integral of Brownian Motion 35

the right-hand sums

I = lim
n→∞

1
n

n∑
i=1

Bi/n.

(See the final remark of Lecture #7.) Therefore, we begin by calculating the distribution of

I(n) =
1
n

n∑
i=1

Bi/n. (8.1)

We know that for each i = 1, . . . , n, the distribution of Bi/n is N (0, i/n). The problem, however,
is that the sum in (8.1) is not a sum of independent random variables—only Brownian increments
are independent. However, we can use a little algebraic trick to express this as the sum of
independent increments. Notice that

n∑
i=1

Yi = nY1 + (n− 1)(Y2 − Y1) + (n− 2)(Y3 − Y2) + · · ·+ 2(Yn−1 − Yn−2) + (Yn − Yn−1).

We now let Yi = Bi/n so that Yi ∼ N (0, i/n). Furthermore, Yi − Yi−1 ∼ N (0, 1/n), and
the sum above is the sum of independent normal random variables, so it too is normal. Let
Xi = Yi − Yi−1 ∼ N (0, 1/n) so that X1, X2, . . . , Xn are independent and

n∑
i=1

Yi = nX1 + (n− 1)X2 + · · ·+ 2Xn−1 + Xn =
n∑

i=1

(n− i + 1)Xi ∼ N

(
0,

1
n

n∑
i=1

(n− i + 1)2
)

by Exercise 3.12. Since

n∑
i=1

(n− i + 1)2 = n2 + (n− 1)2 + · · ·+ 22 + 1 =
n(n + 1)(2n + 1)

6
,

we see that
n∑

i=1

Yi ∼ N
(

0,
(n + 1)(2n + 1)

6

)
,

and so finally piecing everything together we have

I(n) =
1
n

n∑
i=1

Bi/n ∼ N
(

0,
(n + 1)(2n + 1)

6n2

)
= N

(
0,

1
3

+
1

2n
+

1
6n2

)
.

Hence, we now conclude that as n →∞, the variance of I(n) approaches 1/3 so by Theorem 3.24,
the distribution of I is

I ∼ N
(
0, 1

3

)
.

In summary, this result says that if we consider the area under a Brownian path up to time 1,
then that (random) area is normally distributed with mean 0 and variance 1/3.

Weird.
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Remark. Theorem 7.2 tells us that for any fixed t > 0 we can, in theory, “compute” (i.e.,
determine the distribution of) any Riemann integral of the form∫ t

0
h(Bs) ds

where h : R → R is a continuous function. Unless h is relatively simple, however, it is not so
straightforward to determine the resulting distribution. Exercise 10.5 outlines one case in which
such a calculation is possible.
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Wiener Integration

Having successfully determined the Riemann integral of Brownian motion, we will now learn
how to integrate with respect to Brownian motion; that is, we will study the (yet-to-be-defined)
stochastic integral

It =
∫ t

0
g(s) dBs.

Our experience with integrating Brownian motion suggests that It is really a random variable,
and so one of our goals will be to determine the distribution of It.

Assume that g is bounded, piecewise continuous, and in L2([0,∞)), and suppose that we parti-
tion the interval [0, t] by 0 = t0 < t1 < · · · < tn = t. Consider the left-hand Riemann sum

n∑
j=1

g(tj−1)(Btj −Btj−1).

Notice that our experience with the discrete stochastic integral suggests that we should choose a
left-hand Riemann sum; that is, our discrete-time betting strategy Yj−1 needed to be previsible
and so our continuous-time betting strategy g(t) should also be previsible. When working with
the Riemann sum, the previsible condition translates into taking the left-hand Riemann sum.
We do, however, remark that when following a deterministic betting strategy, this previsible
condition will turn out to not matter at all. On the other hand, when we follow a random
betting strategy, it will be of the utmost importance.

To begin, let

I
(n)
t =

n∑
j=1

g(tj−1)(Btj −Btj−1)

and notice that as in the discrete case, we can easily calculate E(I(n)
t ) and Var(I(n)

t ). Since
Btj −Btj−1 ∼ N (0, tj − tj−1), we have

E(I(n)
t ) =

n∑
j=1

g(tj−1)E(Btj −Btj−1) = 0,
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and since the increments of Brownian motion are independent, we have

Var(I(n)
t ) =

n∑
j=1

g2(tj−1)E(Btj −Btj−1)2 =
n∑

j=1

g2(tj−1)(tj − tj−1).

We now make a crucial observation. The variance of I
(n)
t , namely

n∑
j=1

g2(tj−1)(tj − tj−1),

should look familiar. Since 0 = t0 < t1 < · · · < tn = t is a partition of [0, t] we see that this sum
is the left-hand Riemann sum approximating the Riemann integral∫ t

0
g2(s) ds.

We also see the reason to assume that g is bounded, piecewise continuous, and in L2([0,∞)).
By Theorem 7.2, this condition is sufficient to guarantee that the limit

lim
n→∞

n∑
j=1

g2(tj−1)(tj − tj−1)

exists and equals ∫ t

0
g2(s) ds.

(Although by Theorem 7.3 it is possible to weaken the conditions on g, we will not concern
ourselves with such matters.)

In summary, we conclude that

lim
n→∞

E(I(n)
t ) = 0

and

lim
n→∞

Var(I(n)
t ) =

∫ t

0
g2(s) ds.

Therefore, if we can somehow construct It as an appropriate limit of I
(n)
t , then it seems reasonable

that E(It) = 0 and

Var(It) =
∫ t

0
g2(s) ds.

As in the previous section, however, examining the Riemann sum

I
(n)
t =

n∑
j=1

g(tj−1)(Btj −Btj−1)

suggests that we can determine more than just the mean and variance of I
(n)
t . Since disjoint

Brownian increments are independent and normally distributed, and since I
(n)
t is a sum of
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disjoint Brownian increments, we conclude that I
(n)
t is normally distributed. In fact, combined

with our earlier calculations, we see from Exercise 3.12 that

I
(n)
t ∼ N

0,
n∑

j=1

g2(tj−1)(tj − tj−1)

 .

It now follows from Theorem 3.24 that I
(n)
t converges in distribution to the random variable It

where

It ∼ N
(

0,

∫ t

0
g2(s) ds

)
since the limit in distribution of normal random variables whose means and variances converge
must itself be normal. Hence, we define ∫ t

0
g(s) dBs

to be this limit It so that

It =
∫ t

0
g(s) dBs ∼ N

(
0,

∫ t

0
g2(s) ds

)
.

Definition 9.1. Suppose that g : [0,∞) → R is a bounded, piecewise continuous function in
L2([0,∞)). The Wiener integral of g with respect to Brownian motion {Bt, t ≥ 0}, written∫ t

0
g(s) dBs,

is a random variable which has a

N
(

0,

∫ t

0
g2(s) ds

)
distribution.

Remark. We have taken the approach of defining the Wiener integral in a distributional sense.
It is possible, with a lot more technical machinery, to define it as the L2 limit of a sequence of
random variables. In the case of a random g, however, in order to the define the Itô integral of
g with respect to Brownian motion, we will need to follow the L2 approach. Furthermore, we
will see that the Wiener integral is actually a special case of the Itô integral. Thus, it seems
pedagogically more appropriate to define the Wiener integral in the distributional sense since
this is a much simpler construction and, arguably, more intuitive.
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Calculating Wiener Integrals

Now that we have defined the Wiener integral of a bounded, piecewise continuous deterministic
function in L2([0,∞)) with respect to Brownian motion as a normal random variable, namely∫ t

0
g(s) dBs ∼ N

(
0,

∫ t

0
g2(s) ds

)
,

it might seem like we are done. However, as our ultimate goal is to be able to integrate random
functions with respect to Brownian motion, it seems useful to try and develop a calculus for
Wiener integration. The key computational tool that we will develop is an integration-by-parts
formula. But first we need to complete the following exercise.

Exercise 10.1. Verify that the Wiener integral is a linear operator. That is, show that if α,
β ∈ R are constants, and g and h are bounded, piecewise continuous functions in L2([0,∞)),
then ∫ t

0
[αg(s) + βh(s)] dBs = α

∫ t

0
g(s) dBs + β

∫ t

0
h(s) dBs.

Theorem 10.2. Let g : [0,∞) → R be a bounded, continuous function in L2([0,∞)). If g is
differentiable with g′ also bounded and continuous, then the integration-by-parts formula∫ t

0
g(s) dBs = g(t)Bt −

∫ t

0
g′(s)Bs ds

holds.

Remark. Since all three objects in the above expression are random variables, the equality
is interpreted to mean that the distribution of the random variable on the left side and the
distribution of the random variable on the right side are the same, namely

N
(

0,

∫ t

0
g2(s) ds

)
.

Also note that the second integral on the right side, namely∫ t

0
g′(s)Bs ds, (10.1)

is the Riemann integral of a function of Brownian motion. Using the notation of the final remark
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of Lecture #8, we have h(Bs) = g′(s)Bs. In Exercise 10.5 you will determine the distribution
of (10.1).

Proof. We begin by writing
n∑

j=1

g(tj−1)(Btj −Btj−1) =
n∑

j=1

g(tj−1)Btj −
n∑

j=1

g(tj−1)Btj−1 . (10.2)

Since g is differentiable, the mean value theorem implies that there exists some value t∗j ∈
[tj−1, tj ] such that

g′(t∗j )(tj − tj−1) = g(tj)− g(tj−1).

Substituting this for g(tj−1) in the previous expression (10.2) gives
n∑

j=1

g(tj−1)Btj −
n∑

j=1

g(tj−1)Btj−1 =
n∑

j=1

g(tj)Btj −
n∑

j=1

g′(t∗j )(tj − tj−1)Btj −
n∑

j=1

g(tj−1)Btj−1

=
n∑

j=1

[g(tj)Btj − g(tj−1)Btj−1 ]−
n∑

j=1

g′(t∗j )(tj − tj−1)Btj

= g(tn)Btn − g(t0)Bt0 −
n∑

j=1

g′(t∗j )Btj (tj − tj−1)

= g(t)Bt −
n∑

j=1

g′(t∗j )Btj (tj − tj−1)

since tn = t and t0 = 0. Notice that we have established an equality between random variables,
namely that

n∑
j=1

g(tj−1)(Btj −Btj−1) = g(t)Bt −
n∑

j=1

g′(t∗j )Btj (tj − tj−1). (10.3)

The proof will be completed if we can show that the distribution of the limiting random variable
on the left-side of (10.3) and the distribution of the limiting random variable on the right-side
of (10.3) are the same. Of course, we know that

n∑
j=1

g(tj−1)(Btj −Btj−1) → It =
∫ t

0
g(s) dBs ∼ N

(
0,

∫ t

0
g2(s) ds

)
from our construction of the Wiener integral in Lecture #9. Thus, we conclude that

g(t)Bt −
n∑

j=1

g′(t∗j )Btj (tj − tj−1) → It ∼ N
(

0,

∫ t

0
g2(s) ds

)
in distribution as well. We now observe that since g′ is bounded and piecewise continuous, and
since Brownian motion is continuous, the function g′(t)Bt is necessarily Riemann integrable.
Thus,

lim
n→∞

n∑
j=1

g′(t∗j )Btj (tj − tj−1) =
∫ t

0
g′(s)Bs ds
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in distribution as in Lecture #8. In other words, we have shown that the distribution of∫ t

0
g(s) dBs

and the distribution of

g(t)Bt −
∫ t

0
g′(s)Bs ds

are the same, namely

N
(

0,

∫ t

0
g2(s) ds

)
and so the proof is complete.

Example 10.3. Suppose that t > 0. It might seem obvious that

Bt =
∫ t

0
dBs.

However, since Brownian motion is nowhere differentiable, and since we have only defined the
Wiener integral as a normal random variable, this equality needs a proof. Since Bt ∼ N (0, t)
and since ∫ t

0
dBs ∼ N

(
0,

∫ t

0
12 ds

)
= N (0, t),

we conclude that

Bt =
∫ t

0
dBs

in distribution. Alternatively, let g ≡ 1 so that the integration-by-parts formula implies∫ t

0
dBs = g(t)Bt −

∫ t

0
g′(s)Bs ds = Bt − 0 = Bt.

Example 10.4. Suppose that we choose t = 1 and g(s) = s. The integration-by-parts formula
implies that ∫ 1

0
s dBs = B1 −

∫ 1

0
Bs ds.

If we now write

B1 =
∫ 1

0
dBs

and use linearity of the stochastic integral, then we find∫ 1

0
Bs ds = B1 −

∫ 1

0
s dBs =

∫ 1

0
dBs −

∫ 1

0
s dBs =

∫ 1

0
(1− s) dBs.

Since ∫ 1

0
(1− s) dBs
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is normally distributed with mean 0 and variance∫ 1

0
(1− s)2 ds =

1
3
,

we conclude that ∫ 1

0
Bs ds ∼ N (0, 1/3).

Thus, we have a different derivation of the fact that we proved in Lecture #8.

Exercise 10.5. Show that ∫ 1

0
g′(s)Bs ds =

∫ 1

0
[g(1)− g(s)] dBs

where g is any antiderivative of g′. Conclude that∫ 1

0
g′(s)Bs ds ∼ N

(
0,

∫ 1

0
[g(1)− g(s)]2 ds

)
.

In general, this exercise shows that for fixed t > 0, we have∫ t

0
g′(s)Bs ds ∼ N

(
0,

∫ t

0
[g(t)− g(s)]2 ds

)
.

Exercise 10.6. Use the result of Exercise 10.5 to establish the following generalization of
Example 10.4. Show that if n = 0, 1, 2, . . . is a non-negative integer, then∫ 1

0
snBs ds ∼ N

(
0,

2
(2n + 3)(n + 2)

)
.
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Further Properties of the Wiener Integral

Recall that we have defined the Wiener integral of a bounded, piecewise continuous deterministic
function in L2([0,∞)) with respect to Brownian motion as a normal random variable, namely∫ t

0
g(s) dBs ∼ N

(
0,

∫ t

0
g2(s) ds

)
,

and that we have derived the integration-by-parts formula. That is, if g : [0,∞) → R is a
bounded, continuous function in L2([0,∞)) such that g is differentiable with g′ also bounded
and continuous, then ∫ t

0
g(s) dBs = g(t)Bt −

∫ t

0
g′(s)Bs ds

holds as an equality in distribution of random variables. The purpose of today’s lecture is to
give some further properties of the Wiener integral.

Example 11.1. Recall from Example 10.4 that∫ 1

0
Bs ds = B1 −

∫ 1

0
s dBs.

We know from that example (or from Lecture #8) that∫ 1

0
Bs ds ∼ N (0, 1/3).

Furthermore, we know that B1 ∼ N (0, 1), and we can easily calculate that∫ 1

0
s dBs ∼ N

(
0,

∫ 1

0
s2 ds

)
= N (0, 1/3).

If B1 and ∫ 1

0
s dBs

were independent random variables, then from Exercise 3.12 the distribution of

B1 −
∫ 1

0
s dBs

44
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would be N (0, 1 + 1/3) = N (0, 4/3). However,

B1 −
∫ 1

0
s dBs =

∫ 1

0
Bs ds

which we know is N (0, 1/3). Thus, we are forced to conclude that B1 and∫ 1

0
s dBs

are not independent.

Suppose that g and h are bounded, piecewise continuous functions in L2([0,∞)) and consider
the random variables

It(g) =
∫ t

0
g(s) dBs

and

It(h) =
∫ t

0
h(s) dBs.

As the previous example suggests, these two random variables are not, in general, independent.
Using linearity of the Wiener integral, we can now calculate their covariance. Since

It(g) =
∫ t

0
g(s) dBs ∼ N

(
0,

∫ t

0
g2(s) ds

)
,

It(h) =
∫ t

0
h(s) dBs ∼ N

(
0,

∫ t

0
h2(s) ds

)
,

and

It(g + h) =
∫ t

0
[g(s) + h(s)] dBs ∼ N

(
0,

∫ t

0
[g(s) + h(s)]2 ds

)
,

and since

Var(It(g + h)) = Var(It(g) + It(h)) = Var(It(g)) + Var(It(h)) + 2 Cov(It(g), It(h)),

we conclude that∫ t

0
[g(s) + h(s)]2 ds =

∫ t

0
g2(s) ds +

∫ t

0
h2(s) ds + 2 Cov(It(g), It(h)).

Expanding the square on the left-side and simplifying implies that

Cov(It(g), It(h)) =
∫ t

0
g(s)h(s) ds.

Note that taking g = h gives

Var(It(g)) = Cov(It(g), It(g)) =
∫ t

0
g(s)g(s) ds =

∫ t

0
g2(s) ds

in agreement with our previous work. This suggests that the covariance formula should not
come as a surprise to you!
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Exercise 11.2. Suppose that g(s) = sin s, 0 ≤ s ≤ π, and h(s) = cos s, 0 ≤ s ≤ π.

(a) Show that Cov(Iπ(g), Iπ(h)) = 0.
(b) Prove that Iπ(g) and Iπ(h) are independent. Hint: Theorem 3.17 will be useful here.

The same proof you used for (b) of the previous exercise holds more generally.

Theorem 11.3. If g and h are bounded, piecewise continuous functions in L2([0,∞)) with∫ t

0
g(s)h(s) ds = 0,

then the random variables It(g) and It(h) are independent.

Exercise 11.4. Prove this theorem.

We end this lecture with two extremely important properties of the Wiener integral It, namely
that {It, t ≥ 0} is a martingale and that the trajectories t 7→ It are continuous. The proof of
the following theorem requires some facts about convergence in L2 and is therefore beyond our
present scope.

Theorem 11.5. Suppose that g : [0,∞) → R is a bounded, piecewise continuous function in
L2([0,∞)). If the process {It, t ≥ 0} is defined by setting I0 = 0 and

It =
∫ t

0
g(s) dBs

for t > 0, then

(a) the process {It, t ≥ 0} is a continuous-time martingale with respect to the Brownian filtration
{Ft, t ≥ 0}, and

(b) the trajectory t 7→ It is continuous.

That is, {It, t ≥ 0} is a continuous-time continuous martingale.
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Itô Integration (Part I)

Recall that for bounded, piecewise continuous deterministic L2([0,∞)) functions, we have de-
fined the Wiener integral

It =
∫ t

0
g(s) dBs

which satisfied the following properties:

(i) I0 = 0,
(ii) for fixed t > 0, the random variable It is normally distributed with mean 0 and variance∫ t

0
g2(s) ds,

(iii) the stochastic process {It, t ≥ 0} is a martingale with respect to the Brownian filtration
{Ft, t ≥ 0}, and

(iv) the trajectory t 7→ It is continuous.

Our goal for the next two lectures is to define the integral

It =
∫ t

0
g(s) dBs. (12.1)

for random functions g.

We understand from our work on Wiener integrals that for fixed t > 0 the stochastic integral It

must be a random variable depending on the Brownian sample path. Thus, the interpretation
of (12.1) is as follows. Fix a realization (or sample path) of Brownian motion {Bt(ω), t ≥ 0}
and a realization (depending on the Brownian sample path observed) of the stochastic process
{g(t, ω), t ≥ 0} so that, for fixed t > 0, the integral (12.1) is really a random variable, namely

It(ω) =
∫ t

0
g(s, ω) dBs(ω).

We begin with the example where g is a Brownian motion. This seemingly simple example will
serve to illustrate more of the subtleties of integration with respect to Brownian motion.

47
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Example 12.1. Suppose that {Bt, t ≥ 0} is a Brownian motion with B0 = 0. We would like
to compute

It =
∫ t

0
Bs dBs

for this particular realization {Bt, t ≥ 0} of Brownian motion. If Riemann integration were
valid, we would expect, using the fundamental theorem of calculus, that

It =
∫ t

0
Bs dBs =

1
2

(B2
t −B2

0) =
1
2
B2

t . (12.2)

Motivated by our experience with Wiener integration, we expect that It has mean 0. However,
if It is given by (12.2), then

E(It) =
1
2

E(B2
t ) =

t

2
.

We might also expect that the stochastic process {It, t ≥ 0} is a martingale; of course,
{B2

t /2, t ≥ 0} is not a martingale, although,{
1
2
B2

t −
t

2
, t ≥ 0

}
(12.3)

is a martingale. Is it possible that the value of It is given by (12.3) instead? We will now show
that yes, in fact, ∫ t

0
Bs dBs =

1
2
B2

t −
t

2
.

Suppose that πn = {0 = t0 < t1 < t2 < · · · < tn = t} is a partition of [0, t] and let

Ln =
n∑

i=1

Bti−1(Bti −Bti−1) and Rn =
n∑

i=1

Bti(Bti −Bti−1)

denote the left-hand and right-hand Riemann sums, respectively. Observe that

Rn − Ln =
n∑

i=1

Bti(Bti −Bti−1)−
n∑

i=1

Bti−1(Bti −Bti−1) =
n∑

i=1

(Bti −Bti−1)2. (12.4)

The next theorem shows that

(Rn − Ln) 6→ 0 as mesh(πn) = max
i≤i≤n

(ti − ti−1) → 0

which implies that the attempted Riemann integration (12.2) is not valid for Brownian motion.

Theorem 12.2. If {πn, n = 1, 2, 3, . . .} is a refinement of [0, t] with mesh(πn) → 0, then

n∑
i=1

(
Bti −Bti−1

)2 → t in L2

as mesh(πn) → 0.



Itô Integration (Part I) 49

Proof. To begin, notice that
n∑

i=1

(ti − ti−1) = t.

Let

Yn =
n∑

i=1

(
Bti −Bti−1

)2 − t =
n∑

i=1

[(
Bti −Bti−1

)2 − (ti − ti−1)
]

=
n∑

i=1

Xi

where

Xi =
(
Bti −Bti−1

)2 − (ti − ti−1),

and note that

Y 2
n =

n∑
i=1

n∑
j=1

Xi Xj =
n∑

i=1

X2
i + 2

∑
i<j

Xi Xj .

The independence of the Brownian increments implies that E(XiXj) = 0 for i 6= j; hence,

E(Y 2
n ) =

n∑
i=1

E(X2
i ).

But

E(X2
i ) = E

[
(Bti −Bti−1)4

]
− 2(ti − ti−1)E

[
(Bti −Bti−1)2

]
+ (ti − ti−1)2

= 3(ti − ti−1)2 − 2(ti − ti−1)2 + (ti − ti−1)2

= 2(ti − ti−1)2

since the fourth moment of a normal random variable with mean 0 and variance ti − ti−1 is
3(ti − ti−1)2. Therefore,

E(Y 2
n ) =

n∑
i=1

E(X2
i ) = 2

n∑
i=1

(ti − ti−1)2 ≤ 2 mesh(πn)
n∑

i=1

(ti − ti−1) = 2t mesh(πn) → 0

as mesh(πn) → 0 from which we conclude that E(Y 2
n ) → 0 as mesh(πn) → 0. However, this is

exactly what it means for Yn → 0 in L2 as mesh(πn) → 0, and the proof is complete.

As a result of this theorem, we define the quadratic variation of Brownian motion to be this
limit in L2.

Definition 12.3. The quadratic variation of a Brownian motion {Bt, t ≥ 0} on the interval
[0, t] is defined to be

Q2(B[0, t]) = t (in L2).

Since

(Rn − Ln) → t in L2 as mesh(πn) → 0

we see that Ln and Rn cannot possibly have the same limits in L2. This is not necessarily
surprising since Bti−1 is independent of Bti − Bti−1 from which it follows that E(Ln) = 0 while
E(Rn) = t.
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Exercise 12.4. Show that E(Ln) = 0 and E(Rn) = t.

On the other hand,

Rn + Ln =
n∑

i=1

Bti(Bti −Bti−1) +
n∑

i=1

Bti−1(Bti −Bti−1) =
n∑

i=1

(Bti + Bti−1)(Bti −Bti−1)

=
n∑

i=1

(B2
ti −B2

ti−1
)

= B2
tn −B2

t0

= B2
t −B2

0

= B2
t . (12.5)

Thus, from (12.4) and (12.5) we conclude that

Ln =
1
2

(
B2

t −
n∑

i=1

(Bti −Bti−1)2
)

and Rn =
1
2

(
B2

t +
n∑

i=1

(Bti −Bti−1)2
)

and so

Ln →
1
2

(B2
t − t) in L2 and Rn →

1
2

(B2
t + t) in L2.

Unlike the usual Riemann integral, the limit of these sums does depend on the intermediate
points used (i.e., left– or right-endpoints). However, {B2

t + t, t ≥ 0} is not a martingale,
although {B2

t − t, t ≥ 0} is a martingale. Therefore, while both of these limits are valid ways to
define the integral It, it is reasonable to use as the definition the limit for which a martingale is
produced. And so we make the following definition:∫ t

0
Bs dBs = lim Ln in L2

=
1
2
B2

t −
t

2
. (12.6)
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Itô Integration (Part II)

Recall from last lecture that we defined the Itô integral of Brownian motion as∫ t

0
Bs dBs = lim Ln in L2

=
1
2
B2

t −
t

2
. (13.1)

where {πn, n = 1, 2, . . .} is a refinement of [0, t] with mesh(πn) → 0 and

Ln =
n∑

i=1

Bti−1(Bti −Bti−1)

denotes the left-hand Riemann sum corresponding to the partition πn = {0 = t0 < · · · < tn = t}.

We saw that the definition of It depended on the intermediate point used in the Riemann sum,
and that the reason for choosing the left-hand sum was that it produced a martingale.

We now present another example which shows some of the dangers of a näıve attempt at stochas-
tic integration.

Example 13.1. Let {Bt, t ≥ 0} be a realization of Brownian motion with B0 = 0, and suppose
that for any fixed 0 ≤ t < 1 we define the random variable It by

It =
∫ t

0
B1 dBs.

Since B1 is constant (for a given realization), we might expect that

It =
∫ t

0
B1 dBs = B1

∫ t

0
dBs = B1(Bt −B0) = B1Bt.

However,

E(It) = E(B1Bt) = min{1, t} = t

which is not constant. Therefore, if we want to obtain martingales, this is not how we should
define the integral It. The problem here is that the random variable B1 is not adapted to
Ft = σ(Bs, 0 ≤ s ≤ t) for any fixed 0 ≤ t < 1.
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52 Itô Integration (Part II)

From the previous example, we see that in order to define

It =
∫ t

0
g(s) dBs

the stochastic process {g(s), 0 ≤ s ≤ t} will necessarily need to be adapted to the Brownian
filtration {Fs, 0 ≤ s ≤ t} = {σ(Br, 0 ≤ r ≤ s), 0 ≤ s ≤ t}.

Definition 13.2. Let L2
ad denote the space of stochastic processes g = {g(t), t ≥ 0} such that

(i) g is adapted to the Brownian filtration {Ft, t ≥ 0} (i.e., g(t) ∈ Ft for every t > 0), and

(ii)
∫ T

0
E[g2(t)] dt < ∞ for every T > 0.

Our goal is to now define

It(g) =
∫ t

0
g(s) dBs

for g ∈ L2
ad. This is accomplished in a more technical manner than the construction of the

Wiener integral, and the precise details will therefore be omitted. Complete details may by
found in [17], however.

The first step involves defining the integral for step stochastic processes, and the second step is
to then pass to a limit.

Suppose that g = {g(t), t ≥ 0} is a stochastic process. We say that g is a step stochastic process
if for every t ≥ 0 we can write

g(s, ω) =
n−1∑
i=1

Xi−1(ω)1[ti−1,ti)(s) + Xn−1(ω)1[tn−1,tn](s) (13.2)

for 0 ≤ s ≤ t where {0 = t0 < t1 < · · · < tn = t} is a partition of [0, t] and {Xj , j = 0, 1, . . . , n−1}
is a finite collection of random variables. Define the integral of such a g as

It(g)(ω) =
∫ t

0
g(s, ω) dBs(ω) =

n∑
i=1

Xi−1(ω)(Bti(ω)−Bti−1(ω)), (13.3)

and note that (13.3) is simply a discrete stochastic integral as in (6.1), the so-called martingale
transform of X by B.

The second, and more difficult, step is show that it is possible to approximate an arbitrary
g ∈ L2

ad by a sequence of step processes gn ∈ L2
ad such that

lim
n→∞

∫ t

0
E(|gn(s)− g(s)|2) ds = 0.

We then define It(g) to be the limit in L2 of the approximating Itô integrals It(gn) defined
by (13.3), and show that the limit does not depend of the choice of step processes {gn}; that is,

It(g) = lim
n→∞

It(gn) in L2 (13.4)

and so we have the following definition.
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Definition 13.3. If g ∈ L2
ad, define the Itô integral of g to be

It(g) =
∫ t

0
g(s) dBs

where It(g) is defined as the limit in (13.4).

Notice that the definition of the Itô integral did not use any approximating Riemann sums.
However, in Lecture #12 we calculated

∫ t
0 Bs dBs directly by taking the limit in L2 of the

approximating Riemann sums. It is important to know when both approaches give the same
answer which is the content of the following theorem. For a proof, see Theorem 4.7.1 of [17].

Theorem 13.4. If the stochastic process g ∈ L2
ad and E(g(s)g(t)) is a continuous function of s

and t, then ∫ t

0
g(s) dBs = lim

n∑
i=1

g(ti−1)(Bti −Bti−1) in L2.

Example 13.5. For example, if the stochastic process g is a Brownian motion, then Bt is
necessarily Ft-measurable with E(B2

t ) = t < ∞ for every t > 0. Since E(BsBt) = min{s, t} is
a continuous function of s and t, we conclude that Theorem 13.4 can be applied to calculate∫ t
0 Bs dBs. This is exactly what we did in (12.6).

The following result collects together a number of properties of the Itô integral. It is relatively
straightforward to prove all of these properties when g is a step stochastic process. It is rather
more involved to pass to the appropriate limits to obtain these results for general g ∈ L2

ad.

Theorem 13.6. Suppose that g, h ∈ L2
ad, and let

It(g) =
∫ t

0
g(s) dBs and It(h) =

∫ t

0
h(s) dBs.

(a) If α, β ∈ R are constants, then It(αg + βh) = αIt(g) + βIt(h).
(b) It(g) is a random variable with I0(g) = 0, E(It(g)) = 0 and

Var(It(g)) = E[I2
t (g)] =

∫ t

0
E[g2(s)] ds. (13.5)

(c) The covariance of It(g) and It(h) is given by

E[It(g)It(h)] =
∫ t

0
E[g(s)h(s)] ds.

(d) The process {It, t ≥ 0} is a martingale with respect to the Brownian filtration.
(e) The trajectory t 7→ It is a continuous function of t.

Remark. The equality (13.5) in the second part of this theorem is sometimes known as the Itô
isometry.
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Remark. It is important to observe that the Wiener integral is a special case of the Itô integral.
That is, if g is a bounded, piecewise continuous deterministic L2([0,∞)) function, then g ∈ L2

ad

and so the Itô integral of g with respect to Brownian motion can be constructed. The fact that g

is deterministic means that we recover the properties for the Wiener integral from the properties
in Theorem 13.6 for the Itô integral. Theorem 10.2, the integration-by-parts formula for Wiener
integration, will follow from Theorem 15.1, the generalized version of Itô’s formula.

Remark. It is also important to observe that, unlike the Wiener integral, there is no general
form of the distribution of It(g). In general, the Riemann sum approximations to It(g) contain
terms of the form

g(ti−1)(Bti −Bti−1). (13.6)

When g is deterministic, the distribution of the It(g) is normal as a consequence of the fact
that the sum of independent normals is normal. However, when g is random, the distribution
of (13.6) is not necessarily normal. The following exercises illustrates this point.

Exercise 13.7. Consider

I =
∫ 1

0
Bs dBs =

B2
1

2
− 1

2
.

Since B1 ∼ N (0, 1), we know that B2
1 ∼ χ2(1), and so we conclude that

2I + 1 ∼ χ2(1).

Simulate 10000 realizations of I and plot a histogram of 2I + 1. Does your simulation match
the theory?

Exercise 13.8. Suppose that {Bt, t ≥ 0} is a standard Brownian motion, and let the stochastic
process {g(t), t ≥ 0} be defined as follows. At time t = 0, flip a fair coin and let g(0) = 2 if the
coin shows heads, and let g(0) = 3 if the coin shows tails. At time t =

√
2, roll a fair die and

let g(
√

2 ) equal the number of dots showing on the die. If 0 < t <
√

2, define g(t) = g(0), and
if t >

√
2, define g(t) = g(

√
2 ). Note that {g(t), t ≥ 0} is a step stochastic process.

(a) Express g in the form (13.2).
(b) Sketch a graph of the stochastic process {g(t), t ≥ 0}.
(c) Determine the mean and the variance of∫ 5

0
g(s) dBs.

(d) If possible, determine the distribution of∫ 5

0
g(s) dBs.
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Itô’s Formula (Part I)

In this section, we develop Itô’s formula which may be called the “fundamental theorem of
stochastic integration.” It allows for the explicit calculation of certain Itô integrals in much
the same way that the fundamental theorem of calculus gives one a way to compute definite
integrals. In fact, recall that if f : R → R and g : R → R are differentiable functions, then

d
dt

(f ◦ g)(t) = f ′(g(t)) · g′(t),

which implies that ∫ t

0
f ′(g(s)) · g′(s) ds = (f ◦ g)(t)− (f ◦ g)(0). (14.1)

Our experience with the Itô integral that we computed earlier, namely∫ t

0
Bs dBs =

1
2

(B2
t − t),

tells us that we do not expect a formula quite like the fundamental theorem of calculus given
by (14.1).

In order to explain Itô’s formula, we begin by recalling Taylor’s theorem. That is, if f : R → R
is infinitely differentiable, then f can be expressed as an infinite polynomial expanded around
a ∈ R as

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)
3!

(x− a)3 + · · · .

We now let x = t + ∆t and a = t so that

f(t + ∆t) = f(t) + f ′(t)∆t +
f ′′(t)

2!
(∆t)2 +

f ′′′(t)
3!

(∆t)3 + · · ·

which we can write as
f(t + ∆t)− f(t)

∆t
= f ′(t) +

f ′′(t)
2!

∆t +
f ′′′(t)

3!
(∆t)2 + · · · .

At this point we see that if ∆t → 0, then

lim
∆t→0

f(t + ∆t)− f(t)
∆t

= lim
∆t→0

[
f ′(t) +

f ′′(t)
2!

∆t +
f ′′′(t)

3!
(∆t)2 + · · ·

]
= f ′(t)

55
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which is exactly the definition of derivative.

The same argument can be used to prove the chain rule. That is, suppose that f and g are
infinitely differentiable. Let x = g(t) + ∆g(t) and a = g(t) so that Taylor’s theorem takes the
form

f(g(t) + ∆g(t)) = f(g(t)) + f ′(g(t))∆g(t) +
f ′′(g(t))

2!
(∆g(t))2 +

f ′′′(g(t))
3!

(∆g(t))3 + · · · .

We now write ∆g(t) = g(t + ∆t)− g(t) so that

f(g(t + ∆t))− f(g(t)) = f ′(g(t))(g(t + ∆t)− g(t)) +
f ′′(g(t))

2!
(g(t + ∆t)− g(t))2

+
f ′′′(g(t))

3!
(g(t + ∆t)− g(t))3 + · · · .

Dividing both sides by ∆t implies

f(g(t + ∆t))− f(g(t))
∆t

= f ′(g(t)) · g(t + ∆t)− g(t)
∆t

+
f ′′(g(t))

2!
· (g(t + ∆t)− g(t))2

∆t

+
f ′′′(g(t))

3!
· (g(t + ∆t)− g(t))3

∆t
+ · · · . (14.2)

The question now is what happens when ∆t → 0. Notice that the limit of the left-side of the
previous equation (14.2) is

lim
∆t→0

f(g(t + ∆t))− f(g(t))
∆t

= lim
∆t→0

(f ◦ g)(t + ∆t)− (f ◦ g)(t)
∆t

=
d
dt

(f ◦ g)(t).

As for the right-side of (14.2), we find for the first term that

lim
∆t→0

[
f ′(g(t)) · g(t + ∆t)− g(t)

∆t

]
= f ′(g(t)) · lim

∆t→0

g(t + ∆t)− g(t)
∆t

= f ′(g(t)) · g′(t).

For the second term, however, we have

lim
∆t→0

[
f ′′(g(t))

2!
· (g(t + ∆t)− g(t))2

∆t

]
=

f ′′(g(t))
2!

· lim
∆t→0

g(t + ∆t)− g(t)
∆t

· lim
∆t→0

[g(t + ∆t)− g(t)]

=
f ′′(g(t))

2!
· g′(t) · 0 = 0

which follows since g is differentiable (and therefore continuous). Similarly, the higher order
terms all approach 0 in the ∆t → 0 limit. Combining everything gives

d
dt

(f ◦ g)(t) = f ′(g(t)) · g′(t).

In fact, this proof of the chain rule illustrates precisely why the fundamental theorem of calculus
fails for Itô integrals. Brownian motion is nowhere differentiable, and so the step of the proof of
the chain rule where the second order term vanishes as ∆t → 0 is not valid. Indeed, if we take
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g(t) = Bt and divide by ∆t, then we find

∆f(Bt)
∆t

=
f(Bt+∆t)− f(Bt)

∆t

= f ′(Bt)
∆Bt

∆t
+

f ′′(Bt)
2!

· (∆Bt)2

∆t
+

f ′′′(Bt)
3!

· (∆Bt)3

∆t
+ · · · .

In the limit as ∆t → 0, the left-side of the previous equation is

lim
∆t→0

∆f(Bt)
∆t

=
d
dt

f(Bt).

As for the right-side, we are tempted to say that the first term approaches

lim
∆t→0

[
f ′(Bt) ·

∆Bt

∆t

]
= f ′(Bt) ·

dBt

dt

so that

d
dt

f(Bt) = f ′(Bt) ·
dBt

dt
+

f ′′(Bt)
2!

·
[

lim
∆t→0

(∆Bt)2

∆t

]
+

f ′′′(Bt)
3!

·
[

lim
∆t→0

(∆Bt)3

∆t

]
+ · · · .

(Even though Brownian motion is nowhere differentiable so that dBt/ dt does not exist, bear
with us.) We know that ∆Bt = Bt+∆t −Bt ∼ N (0, ∆t) so that

Var(∆Bt) = E
[
(∆Bt)2

]
= ∆t

or, approximately,

(∆Bt)2 ≈ ∆t.

This suggests that

lim
∆t→0

(∆Bt)2

∆t
= lim

∆t→0

∆t

∆t
= 1

but if k ≥ 3, then

lim
∆t→0

(∆Bt)k

∆t
= lim

∆t→0

(√
∆t
)k

∆t
= lim

∆t→0

∆t
(√

∆t
)k−2

∆t
= 0.

(In fact, these approximations can be justified using our result on the quadratic variation of
Brownian motion.) Hence, we conclude that

d
dt

f(Bt) = f ′(Bt) ·
dBt

dt
+

f ′′(Bt)
2!

.

Multiplying through by dt gives

df(Bt) = f ′(Bt) dBt +
f ′′(Bt)

2
dt

and so if we integrate from 0 to T , then∫ T

0
df(Bt) =

∫ T

0
f ′(Bt) dBt +

1
2

∫ T

0
f ′′(Bt) dt.
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Since ∫ T

0
df(Bt) = f(BT )− f(B0)

we have motivated the following result.

Theorem 14.1 (K. Itô, 1944). If f(x) ∈ C2(R), then

f(Bt)− f(B0) =
∫ t

0
f ′(Bs) dBs +

1
2

∫ t

0
f ′′(Bs) ds. (14.3)

Notice that the first integral in (14.3) is an Itô integral, while the second integral is a Riemann
integral.

Example 14.2. Let f(x) = x2 so that f ′(x) = 2x and f ′′(x) = 2. Therefore, Itô’s formula
implies

B2
t −B2

0 =
∫ t

0
2Bs dBs +

1
2

∫ t

0
2 ds = 2

∫ t

0
Bs dBs + t.

Rearranging we conclude ∫ t

0
Bs dBs =

1
2

(B2
t − t)

which agrees with our earlier result for this integral.

Example 14.3. Let f(x) = x3 so that f ′(x) = 3x2 and f ′′(x) = 6x. Therefore, Itô’s formula
implies

B3
t −B3

0 =
∫ t

0
3B2

s dBs +
1
2

∫ t

0
6Bs ds

so that rearranging yields ∫ t

0
B2

s dBs =
1
3
B3

t −
∫ t

0
Bs ds, (14.4)

and hence we are able to evaluate another Itô integral explictly. We can determine the distribu-
tion of the Riemann integral in the above expression by recalling from the integration-by-parts
formula for Wiener integrals that (for fixed t > 0)∫ t

0
Bs ds =

∫ t

0
(t− s) dBs ∼ N

(
0,

∫ t

0
(t− s)2 ds

)
∼ N

(
0,

t3

3

)
.

Example 14.4. We can take another approach to the previous example by using the integration-
by-parts formula for Wiener integrals in a slightly different way, namely∫ t

0
s dBs = tBt −

∫ t

0
Bs ds.

If we then substitute this into (14.4) we find∫ t

0
B2

s dBs =
1
3
B3

t − tBt +
∫ t

0
s dBs
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and so using the linearity of the Itô integral we are able to evaluate another integral explicitly,
namely ∫ t

0
(B2

s − s) dBs =
1
3
B3

t − tBt.

Example 14.5. Let f(x) = x4 so that f ′(x) = 4x3 and f ′′(x) = 12x2. Therefore, Itô’s formula
implies

B4
t −B4

0 =
∫ t

0
4B3

s dBs +
1
2

∫ t

0
12B2

s ds (14.5)

and so we can rearrange (14.5) to compute yet another Itô integral:∫ t

0
B3

s dBs =
1
4
B4

t −
3
2

∫ t

0
B2

s ds.
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Itô’s Formula (Part II)

Recall from last lecture that we derived Itô’s formula, namely if f(x) ∈ C2(R), then

f(Bt)− f(B0) =
∫ t

0
f ′(Bs) dBs +

1
2

∫ t

0
f ′′(Bs) ds. (15.1)

The derivation of Itô’s formula involved carefully manipulating Taylor’s theorem for the function
f(x). (In fact, the actual proof of Itô’s formula follows a careful analysis of Taylor’s theorem for
a function of one variable.) As you may know from MATH 213, there is a version of Taylor’s
theorem for functions of two variables. Thus, by writing down Taylor’s theorem for the function
f(t, x) and carefully checking which higher order terms disappear, one can derive the following
generalized version of Itô’s formula.

Consider those functions of two variables, say f(t, x), which have one continuous derivative in
the “t-variable” for t ≥ 0, and two continuous derivatives in the “x-variable.” If f is such a
function, we say that f ∈ C1([0,∞))× C2(R).

Theorem 15.1 (Generalized Version of Itô’s Formula). If f ∈ C1([0,∞))× C2(R), then

f(t, Bt)− f(0, B0) =
∫ t

0

∂

∂x
f(s,Bs) dBs +

1
2

∫ t

0

∂2

∂x2
f(s,Bs) ds +

∫ t

0

∂

∂t
f(s,Bs) ds. (15.2)

Remark. It is traditional to use the variables t and x for the function f(t, x) of two variables in
the generalized version of Itô’s formula. This has the unfortunate consequence that the letter t

serves both as a dummy variable for the function f(t, x) and as a time variable in the upper limit
of integration. One way around this confusion is to use the prime (′) notation for derivatives in
the space variable (the x-variable) and the dot (·) notation for derivatives in the time variable
(the t-variable). That is,

f ′(t, x) =
∂

∂x
f(t, x), f ′′(t, x) =

∂2

∂x2
f(t, x), ḟ(t, x) =

∂

∂t
f(t, x),

and so (15.2) becomes

f(t, Bt)− f(0, B0) =
∫ t

0
f ′(s,Bs) dBs +

1
2

∫ t

0
f ′′(s,Bs) ds +

∫ t

0
ḟ(s,Bs) ds.

60



Itô’s Formula (Part II) 61

Example 15.2. Let f(t, x) = tx2 so that

f ′(t, x) = 2xt, f ′′(t, x) = 2t, and ḟ(t, x) = x2.

Therefore, the generalized version of Itô’s formula implies

tB2
t =

∫ t

0
2sBs dBs +

1
2

∫ t

0
2s ds +

∫ t

0
B2

s ds.

Upon rearranging we conclude∫ t

0
sBs dBs =

1
2

(
tB2

t −
t2

2
−
∫ t

0
B2

s ds

)
.

Example 15.3. Let f(t, x) = 1
3x3 − xt so that

f ′(t, x) = x2 − t, f ′′(t, x) = 2x, and ḟ(t, x) = −x.

Therefore, the generalized version of Itô’s formula implies

1
3
B3

t − tBt =
∫ t

0
(B2

s − s) dBs +
1
2

∫ t

0
2Bs ds−

∫ t

0
Bs ds =

∫ t

0
(B2

s − s) dBs

which gives the same result as was obtained in Example 14.4.

Example 15.4. If we combine our result of Example 14.5, namely∫ t

0
B3

s dBs =
1
4
B4

t −
3
2

∫ t

0
B2

s ds,

with our result of Example 15.2, namely∫ t

0
sBs dBs =

1
2

(
tB2

t −
t2

2
−
∫ t

0
B2

s ds

)
,

then we conclude that ∫ t

0
(B3

s − 3sBs) dBs =
1
4
B4

t −
3
2
tB2

t +
3
4
t2.

Example 15.5. If we re-write the results of Example 14.4 and Example 15.4 slightly differently,
then we see that ∫ t

0
3(B2

s − s) dBs = B3
t − 3tBt

and ∫ t

0
4(B3

s − 3sBs) dBs = B4
t − 6tB2

t + 3t2.

The reason for doing this is that Theorem 13.6 tells us that Itô integrals are martingales. Hence,
we see that {B3

t − 3tBt, t ≥ 0} and {B4
t − 6tB2

t + 3t2, t ≥ 0} must therefore be martingales with
respect to the Brownian filtration {Ft, t ≥ 0}. Look back at Exercise 6.6; you have already
verified that these are martingales. Of course, using Itô’s formula makes for a much easier
proof.
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Exercise 15.6. Prove that the process {Mt, t ≥ 0} defined by setting

Mt = exp
{

θBt −
θ2t

2

}
where θ ∈ R is a constant is a martingale with respect to the Brownian filtration {Ft, t ≥ 0}.

Example 15.7. We will now show that Theorem 10.2, the integration-by-parts formula for
Wiener integrals, is a special case of the generalized version of Itô’s formula. Suppose that
g : [0,∞) → R is a bounded, continuous function in L2([0,∞)). Suppose further that g is
differentiable with g′ also bounded and continuous. Let f(t, x) = xg(t) so that

f ′(t, x) = g(t), f ′′(t, x) = 0, and ḟ(t, x) = xg′(t).

Therefore, the generalized version of Itô’s formula implies

g(t)Bt =
∫ t

0
g(s) dBs +

1
2

∫ t

0
0 ds +

∫ t

0
g′(s)Bs ds.

Rearranging gives ∫ t

0
g(s) dBs = g(t)Bt −

∫ t

0
g′(s)Bs ds

as required.

There are a number of versions of Itô’s formula that we will use; the first two we have already
seen. The easiest way to remember all of the different versions is as a stochastic differential
equation (or SDE).

Theorem 15.8 (Version I). If f ∈ C2(R), then

df(Bt) = f ′(Bt) dBt +
1
2
f ′′(Bt) dt.

Theorem 15.9 (Version II). If f ∈ C1([0,∞))× C2(R), then

df(t, Bt) = f ′(t, Bt) dBt +
1
2
f ′′(t, Bt) dt + ḟ(t, Bt) dt

= f ′(t, Bt) dBt +
[
ḟ(t, Bt) +

1
2
f ′′(t, Bt)

]
dt.

Example 15.10. Suppose that {Bt, t ≥ 0} is a standard Brownian motion. Determine the SDE
satisfied by

Xt = exp{σBt + µt}.

Solution. Consider the function f(t, x) = exp{σx + µt}. Since

f ′(t, x) = σ exp{σx + µt}, f ′′(t, x) = σ2 exp{σx + µt}, ḟ(t, x) = µ exp{σx + µt},

it follows from Version II of Itô’s formula that

df(t, Bt) = σ exp{σBt + µt}dBt +
σ2

2
exp{σBt + µt}dt + µ exp{σBt + µt}dt.
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In other words,

dXt = σXt dBt +
(

σ2

2
+ µ

)
Xt dt.

Suppose that the stochastic process {Xt, t ≥ 0} is defined by the stochastic differential equation

dXt = a(t, Xt) dBt + b(t, Xt) dt

where a and b are suitably smooth functions. We call such a stochastic process a diffusion (or
an Itô diffusion or an Itô process).

Again, a careful analysis of Taylor’s theorem provides a version of Itô’s formula for diffusions.

Theorem 15.11 (Version III). Let Xt be a diffusion defined by the SDE

dXt = a(t, Xt) dBt + b(t, Xt) dt.

If f ∈ C2(R), then

df(Xt) = f ′(Xt) dXt +
1
2
f ′′(Xt) d〈X〉t

where d〈X〉t is computed as

d〈X〉t = (dXt)2 = [a(t, Xt) dBt + b(t, Xt) dt]2 = a2(t, Xt) dt

using the rules (dBt)2 = dt, (dt)2 = 0, (dBt)(dt) = (dt)(dBt) = 0. That is,

df(Xt) = f ′(Xt) [a(t, Xt) dBt + b(t, Xt) dt] +
1
2
f ′′(Xt)a2(t, Xt) dt

= f ′(Xt)a(t, Xt) dBt + f ′(Xt)b(t, Xt) dt +
1
2
f ′′(Xt)a2(t, Xt) dt

= f ′(Xt)a(t, Xt) dBt +
[
f ′(Xt)b(t, Xt) +

1
2
f ′′(Xt)a2(t, Xt)

]
dt.

And finally we give the version of Itô’s formula for diffusions for functions f(t, x) of two variables.

Theorem 15.12 (Version IV). Let Xt be a diffusion defined by the SDE

dXt = a(t, Xt) dBt + b(t, Xt) dt.

If f ∈ C1([0,∞))× C2(R), then

df(t, Xt) = f ′(t, Xt) dXt +
1
2
f ′′(t, Xt) d〈X〉t + ḟ(t, Xt) dt

= f ′(t, Xt)a(t, Xt) dBt +
[
ḟ(t, Xt) + f ′(t, Xt)b(t, Xt) +

1
2
f ′′(t, Xt)a2(t, Xt)

]
dt

again computing d〈X〉t = (dXt)2 using the rules (dBt)2 = dt, (dt)2 = 0, and (dBt)(dt) =
(dt)(dBt) = 0.
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Deriving the Black–Scholes Partial Differential
Equation

Our goal for today is to use Itô’s formula to derive the Black-Scholes partial differential equation.
We will then solve this equation next lecture.

Recall from Lecture #2 that D(t) denotes the value at time t of an investment which grows
according to a continuously compounded interest rate r. We know its value at time t ≥ 0 is
given by D(t) = ertD0 which is the solution to the differential equation D′(t) = rD(t) with
initial condition D(0) = D0. Written in differential form, this becomes

dD(t) = rD(t) dt. (16.1)

We now assume that our stock price is modelled by geometric Brownian motion. That is, let St

denote the price of the stock at time t, and assume that St satisfies the stochastic differential
equation

dSt = σSt dBt + µSt dt. (16.2)

We can check using Version II of Itô’s formula (Theorem 15.9) that the solution to this SDE is
geometric Brownian motion {St, t ≥ 0} given by

St = S0 exp
{

σBt +
(

µ− σ2

2

)
t

}
where S0 is the initial value.

Remark. There are two, equally common, ways to parametrize the drift of the geometric
Brownian motion. The first is so that the process is simpler,

St = S0 exp {σBt + µt} ,

and leads to the more complicated SDE

dSt = σSt dBt +
(

µ +
σ2

2

)
St dt.

The second is so that the SDE is simpler,

dSt = σSt dBt + µSt dt,

64



Deriving the Black–Scholes Partial Differential Equation 65

and leads to the more complicated process

St = S0 exp
{

σBt +
(

µ− σ2

2

)
t

}
.

We choose the parametrization given by (16.2) to be consistent with Higham [12].

We also recall from Lecture #1 the definition of a European call option.

Definition 16.1. A European call option with strike price E at time T gives its holder an
opportunity (i.e., the right, but not the obligation) to buy from the writer one share of the
prescribed stock at time T for price E.

Notice that if, at time T , the value of the stock is less than E, then the option is worthless and
will not be exercised, but if the value of the stock is greater than E, then the option is valuable
and will therefore be exercised.

That is,

(i) if ST ≤ E, then the option is worthless, but
(ii) if ST > E, then the option has the value ST − E.

Thus, the value of the option at time T is (ST − E)+ = max{0, ST − E}. Our goal, therefore,
is to determine the value of this option at time 0.

We will write V to denote the value of the option. Since V depends on both time and on the
underlying stock, we see that V (t, St) denotes the value of the option at time t, 0 ≤ t ≤ T .

Hence,

(i) V (T, ST ) = (ST − E)+ is the value of the option at the expiry time T , and
(ii) V (0, S0) denotes the value of option at time 0.

Example 16.2. Assuming that the function V ∈ C1([0,∞)) × C2(R), use Itô’s formula on
V (t, St) to compute dV (t, St).

Solution. By Version IV of Itô’s formula (Theorem 15.12), we find

dV (t, St) = V̇ (t, St) dt + V ′(t, St) dSt +
1
2
V ′′(t, St) d〈S〉t.

From (16.2), the SDE for geometric Brownian motion is

dSt = σSt dBt + µSt dt

and so we find

d〈S〉t = (dSt)2 = σ2S2
t dt

using the rules (dBt)2 = dt, (dt)2 = (dBt)(dt) = (dt)(dBt) = 0. Hence, we conclude

dV (t, St) = V̇ (t, St) dt + V ′(t, St)
[
σSt dBt + µSt dt

]
+

1
2
V ′′(t, St)

[
σ2S2

t dt
]

= σStV
′(t, St) dBt +

[
V̇ (t, St) + µStV

′(t, St) +
σ2

2
S2

t V ′′(t, St)
]

dt. (16.3)
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We now recall the no arbitrage assumption from Lecture #2 which states that “there is never an
opportunity to make a risk-free profit that gives a greater return than that provided by interest
from a bank deposit.”

Thus, to find the fair value of the option V (t, St), 0 ≤ t ≤ T , we will set up a replicating portfolio
of assets and bonds that has precisely the same risk at time t as the option does at time t. The
portfolio consists of a cash deposit D and a number A of assets.

We assume that we can vary the number of assets and the size of our cash deposit at time
t so that both D and A are allowed to be functions of both the time t and the asset price
St. (Technically, our trading strategy needs to be previsible; we can only alter our portfolio
depending on what has happened already.)

That is, if Π denotes our portfolio, then the value of our portfolio at time t is given by

Π(t, St) = A(t, St)St + D(t, St). (16.4)

Recall that we are allowed to short-sell both the stocks and the bonds and that there are no
transaction costs involved. Furthermore, it is worth noting that, although our strategy for
buying bonds may depend on both the time and the behaviour of the stock, the bond is still a
risk-free investment which evolves according to (16.1) as

dD(t, St) = rD(t, St) dt. (16.5)

The assumption that the portfolio is replicating means precisely that the portfolio is self-
financing ; in other words, the value of the portfolio one time step later is financed entirely
by the current wealth. In terms of stochastic differentials, the self-financing condition is

dΠ(t, St) = A(t, St) dSt + dD(t, St),

which, using (16.2) and (16.5), is equivalent to

dΠ(t, St) = A(t, St)
[
σSt dBt + µSt dt

]
+ rD(t, St) dt

= σA(t, St)St dBt +
[
µA(t, St)St + rD(t, St)

]
dt. (16.6)

The final step is to consider V (t, St) − Π(t, St). By the no arbitrage assumption, the change
in V (t, St) − Π(t, St) over any time step is non-random. Furthermore, it must equal the cor-
responding growth offered by the continuously compounded risk-free interest rate. In terms of
differentials, if we write

Ut = V (t, St)−Π(t, St),

then Ut must be non-random and grow according to (16.1) so that

dUt = rUt dt.

That is,

d
[
V (t, St)−Π(t, St)

]
= r
[
V (t, St)−Π(t, St)

]
dt. (16.7)

The logic is outlined by Higham [12] on page 79.
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Using (16.3) for dV (t, St) and (16.6) for dΠ(t, St), we find

d
[
V (t, St)−Π(t, St)

]
=
(

σStV
′(t, St) dBt +

[
V̇ (t, St) + µStV

′(t, St) +
σ2

2
S2

t V ′′(t, St)
]

dt

)
−
(

σA(t, St)St dBt +
[
µA(t, St)St + rD(t, St)

]
dt

)
= σSt

[
V ′(t, St)−A(t, St)

]
dBt

+
[
V̇ (t, St) + µStV

′(t, St) +
σ2

2
S2

t V ′′(t, St)− µA(t, St)St − rD(t, St)
]

dt

= σSt

[
V ′(t, St)−A(t, St)

]
dBt

+
[
V̇ (t, St) +

σ2

2
S2

t V ′′(t, St)− rD(t, St) + µSt

[
V ′(t, St)−A(t, St)

]]
dt. (16.8)

Since we assume that the change over any time step is non-random, it must be the case that
the dBt term is 0. In order for the dBt term to be 0, we simply choose

A(t, St) = V ′(t, St).

This means that that dt term

V̇ (t, St) +
σ2

2
S2

t V ′′(t, St)− rD(t, St) + µSt

[
V ′(t, St)−A(t, St)

]
reduces to

V̇ (t, St) +
σ2

2
S2

t V ′′(t, St)− rD(t, St)

since we already need A(t, St) = V ′(t, St) for the dBt piece. Looking at (16.7) therefore gives

V̇ (t, St) +
σ2

2
S2

t V ′′(t, St)− rD(t, St) = r
[
V (t, St)−Π(t, St)

]
. (16.9)

Using the facts that

Π(t, St) = A(t, St)St + D(t, St)

and

A(t, St) = V ′(t, St)

therefore imply that (16.9) becomes

V̇ (t, St) +
σ2

2
S2

t V ′′(t, St)− rD(t, St) = rV (t, St)− rStV
′(t, St)− rD(t, St)

which, upon simplification, reduces to

V̇ (t, St) +
σ2

2
S2

t V ′′(t, St) + rStV
′(t, St)− rV (t, St) = 0.
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In other words, we must find a function V (t, x) which satisfies the Black-Scholes partial differ-
ential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0. (16.10)

Remark. We have finally arrived at what Higham [12] calls “the famous Black-Scholes partial
differential equation (PDE)” given by equation (8.15) on page 79.

We now mention two important points.

(i) The drift parameter µ in the asset model does NOT appear in the Black-Scholes PDE.
(ii) Actually, we have not yet specified what type of option is being valued. The PDE given

in (16.10) must be satisfied by ANY option on the asset S whose value can be expressed
as a smooth function, i.e., a function in C1([0,∞))× C2(R).

In view of the second item, we really want to price a European call option with strike price E.
This amounts to requiring V (T, ST ) = (ST −E)+. Our goal, therefore, in the next lecture is to
solve the Black-Scholes partial differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0

for V (t, x), 0 ≤ t ≤ T , x ∈ R, subject to the boundary condition

V (T, x) = (x− E)+.
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Solving the Black–Scholes Partial Differential
Equation

Our goal for this lecture is to solve the Black-Scholes partial differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0 (17.1)

for V (t, x), 0 ≤ t ≤ T , x ∈ R, subject to the boundary condition

V (T, x) = (x− E)+.

The first observation is that it suffices to solve (17.1) when r = 0. That is, if W satisfies

Ẇ (t, x) +
σ2

2
x2W ′′(t, x) = 0, (17.2)

and V (t, x) = er(t−T )W (t, er(T−t)x), then V (t, x) satisfies (17.1) and V (T, x) = W (T, x).

This can be checked by differentiation. There is, however, an “obvious” reason why it is true,
namely due to the time value of money mentioned in Lecture #2. If money invested in a cash
deposit grows at continuously compounded interest rate r, then $x at time T is equivalent to
$er(t−T )x at time t.

Exercise 17.1. Verify (using the multivariate chain rule) that if W (t, x) satisfies (17.2) and
V (t, x) = er(t−T )W (t, er(T−t)x), then V (t, x) satisfies (17.1) and V (T, x) = W (T, x).

Since we have already seen that the Black-Scholes partial differential equation (17.1) does not
depend on µ, we can assume that µ = 0. We have also just shown that it suffices to solve (17.1)
when r = 0. Therefore, we will use W to denote the Black-Scholes solution in the r = 0 case,
i.e., the solution to (17.2), and we will then use V as the solution in the r > 0 case, i.e., the
solution to (17.1), where

V (t, x) = er(t−T )W (t, er(T−t)x). (17.3)

We now note from (16.3) that the SDE for W (t, St) is

dW (t, St) = σStW
′(t, St) dBt +

[
Ẇ (t, St) + µStW

′(t, St) +
σ2

2
S2

t W ′′(t, St)
]

dt.
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We are assuming that µ = 0 so that

dW (t, St) = σStW
′(t, St) dBt +

[
Ẇ (t, St) +

σ2

2
S2

t W ′′(t, St)
]

dt.

We are also assuming that W (t, x) satisfies the Black-Scholes PDE given by (17.2) which is
exactly what is needed to make the dt term equal to 0. Thus, we have reduced the SDE for
W (t, St) to

dW (t, St) = σStW
′(t, St) dBt.

We now have a stochastic differential equation with no dt term which means, using Theorem 13.6,
that W (t, St) is a martingale. Formally, if Mt = W (t, St), then the stochastic process {Mt, t ≥ 0}
is a martingale with respect to the Brownian filtration {Ft, t ≥ 0}.

Next, we use the fact that martingales have stable expectation (Theorem 5.3) to conclude that

E(M0) = E(MT ).

Remark. The expiry date T is a fixed time (and not a random time). This allows us to use
Theorem 5.3 directly.

Since we know the value of the European call option at time T is W (T, ST ) = (ST − E)+, we
see that

MT = W (T, ST ) = (ST − E)+.

Furthermore, M0 = W (0, S0) is non-random (since S0, the stock price at time 0, is known), and
so we conclude that M0 = E(MT ) which implies

W (0, S0) = E[ (ST − E)+ ]. (17.4)

The final step is to actually calculate the expected value in (17.4). Since we are assuming µ = 0,
the stock price follows geometric Brownian motion {St, t ≥ 0} where

St = S0 exp
{

σBt −
σ2

2
t

}
.

Hence, at time T , we need to consider the random variable

ST = S0 exp
{

σBT −
σ2

2
T

}
.

We know BT ∼ N (0, T ) so that we can write

ST = S0 e−
σ2T

2 eσ
√

TZ

for Z ∼ N (0, 1). Thus, we can now use the result of Exercise 3.7, namely if a > 0, b > 0, c > 0
are constants and Z ∼ N (0, 1), then

E[ (aebZ − c)+ ] = aeb2/2 Φ
(

b +
1
b

log
a

c

)
− c Φ

(
1
b

log
a

c

)
, (17.5)
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with

a = S0 e−
σ2T

2 , b = σ
√

T , c = E

to conclude

E[ (ST − E)+ ]

= S0 e−
σ2T

2 e
σ2T

2 Φ

σ
√

T +
1

σ
√

T
log

S0 e−
σ2T

2

E

− E Φ

 1
σ
√

T
log

S0 e−
σ2T

2

E


= S0 Φ

(
1

σ
√

T
log

S0

E
+

σ
√

T

2

)
− E Φ

(
1

σ
√

T
log

S0

E
− σ

√
T

2

)
.

To account for the time value of money, we can use Exercise 17.1 to give the solution for r > 0.
That is, if V (0, S0) denotes the fair price (at time 0) of a European call option with strike price
E, then using (17.3) we conclude

V (0, S0) = e−rT W (0, erT S0)

= e−rT erT S0 Φ

(
1

σ
√

T
log

erT S0

E
+

σ
√

T

2

)
− Ee−rT Φ

(
1

σ
√

T
log

erT S0

E
− σ

√
T

2

)

= S0 Φ

(
log(S0/E) + (r + 1

2σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2σ2)T

σ
√

T

)
= S0 Φ (d1)− Ee−rT Φ (d2)

where

d1 =
log(S0/E) + (r + 1

2σ2)T

σ
√

T
and d2 =

log(S0/E) + (r − 1
2σ2)T

σ
√

T
= d1 − σ

√
T .

AWESOME!

Remark. We have now arrived at equation (8.19) on page 80 of Higham [12]. Note that Higham
only states the answer; he never actually goes through the solution of the Black-Scholes PDE.

Summary. Let’s summarize what we did. We assumed that the asset S followed geometric
Brownian motion given by

dSt = σSt dBt + µSt dt,

and that the risk-free bond D grew at continuously compounded interest rate r so that

dD(t, St) = rD(t, St) dt.

Using Version IV of Itô’s formula on the value of the option V (t, St) combined with the self-
financing portfolio implied by the no arbitrage assumption led to the Black-Scholes partial
differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0.
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We also made the important observation that this PDE does not depend on µ. We then saw
that it was sufficient to consider r = 0 since we noted that if W (t, x) solved the resulting PDE

Ẇ (t, x) +
σ2

2
x2W ′′(t, x) = 0,

then V (t, x) = er(t−T )W (t, er(T−t)x) solved the Black-Scholes PDE for r > 0. We then assumed
that µ = 0 and we found the SDE for W (t, St) which had only a dBt term (and no dt term).
Using the fact that Itô integrals are martingales implied that {W (t, St), t ≥ 0} was a martingale,
and so the stable expectation property of martingales led to the equation

W (0, S0) = E(W (T, ST )).

Since we knew that V (T, ST ) = W (T, ST ) = (ST − E)+ for a European call option, we could
compute the resulting expectation. We then translated back to the r > 0 case via

V (0, S0) = e−rT W (0, erT S0).

This previous observation is extremely important since it tells us precisely how to price European
call options with different payoffs. In general, if the payoff function at time T is Λ(x) so that

V (T, x) = W (T, x) = Λ(x),

then, since {W (t, St), t ≥ 0} is a martingale,

W (0, S0) = E(W (T, ST )) = E(Λ(ST )).

By assuming that µ = 0, we can write ST as

ST = S0 exp
{

σBT −
σ2

2
T

}
= S0 e−

σ2T
2 eσ

√
TZ

with Z ∼ N (0, 1). Therefore, if Λ is sufficiently nice, then E(Λ(ST )) can be calculated explicitly,
and we can use

V (0, S0) = e−rT W (0, erT S0)

to determine the required fair price to pay at time 0.

In particular, we can follow this strategy to answer the following question posed at the end of
Lecture #1.

Example 17.2. In the Black-Scholes world, price a European option with a payoff of max{S2
T −

K, 0} at time T .

Solution. The required time 0 price is V (0, S0) = e−rT W (0, erT S0) where W (0, S0) = E[ (S2
T −

K)+ ]. Since we can write

S2
T = S2

0 e−σ2T e2σ
√

TZ

with Z ∼ N (0, 1), we can use (17.5) with a = S2
0 e−σ2T , b = 2σ

√
T , and c = K to conclude

V (0, S0) = S2
0 e(σ2+r)T Φ

(
log(S2

0/K) + (2r + 3σ2)T
2σ
√

T

)
−Ke−rT Φ

(
log(S2

0/K) + (2r − σ2)T
2σ
√

T

)
.
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The Greeks

Recall that if V (0, S0) denotes the fair price (at time 0) of a European call option with strike
price E and expiry date T , then the Black-Scholes option valuation formula is

V (0, S0) = S0 Φ

(
log(S0/E) + (r + 1

2σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2σ2)T

σ
√

T

)
= S0 Φ (d1)− Ee−rT Φ (d2)

where

d1 =
log(S0/E) + (r + 1

2σ2)T

σ
√

T
and d2 =

log(S0/E) + (r − 1
2σ2)T

σ
√

T
= d1 − σ

√
T .

We see that this formula depends on the initial price of the stock S0, the expiry date T , the
strike price E, the risk-free interest rate r, and the stock’s volatility σ.

The partial derivatives of V = V (0, S0) with respect to these variables are extremely important
in practice, and we will now compute them; for ease, we will write S = S0. In fact, some of
these partial derivatives are given special names and referred to collectively as “the Greeks”:

(a) ∆ =
∂V

∂S
(delta),

(b) Γ =
∂2V

∂S2
=

∂∆
∂S

(gamma),

(c) ρ =
∂V

∂r
(rho),

(d) Θ =
∂V

∂T
(theta),

(e) vega =
∂V

∂σ
.

Note. Vega is not actually a Greek letter. Sometimes it is written as ν (which is the Greek
letter nu).

Remark. On page 80 of [12], Higham changes from using V (0, S0) to denote the fair price at
time 0 of a European call option with strike price E and expiry date T to using C(0, S0). Both
notations seem to be widely used in the literature.
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The financial use of each of “The Greeks” is as follows.

• Delta measures sensitivity to a small change in the price of the underlying asset.
• Gamma measures the rate of change of delta.
• Rho measures sensitivity to the applicable risk-free interest rate.
• Theta measures sensitivity to the passage of time. Sometimes the financial definition of Θ is

−∂V

∂T
.

With this definition, if you are “long an option, then you are short theta.”
• Vega measures sensitivity to volatility.

In addition to the five “Greeks” that we have just defined (which are in widespread use), there
are many other partial derivatives that have been given special names.

• Lambda, the percentage change in the option value per unit change in the underlying asset
price, is given by

λ =
1
V

∂V

∂S
=

∂ log V

∂S
.

• Vega gamma, or volga, measures second-order sensitivity to volatility and is given by

∂2V

∂σ2
.

• Vanna measures cross-sensitivity of the option value with respect to change in the underlying
asset price and the volatility and is given by

∂2V

∂S∂σ
=

∂∆
∂σ

.

It is also the sensitivity of delta to a unit change in volatility.
• Delta decay, or charm, given by

∂2V

∂S∂T
=

∂∆
∂T

,

measures time decay of delta. (This can be important when hedging a position over the
weekend.)

• Gamma decay, or colour, given by

∂3V

∂S2∂T
,

measures the sensitivity of the charm to the underlying asset price.
• Speed, given by

∂3V

∂S3
,

measures third-order sensitivity to the underlying asset price.



The Greeks 75

In order to actually perform all of the calculations of the Greeks, we need to recall that

Φ′(x) =
1√
2π

e−x2/2.

Furthermore, we observe that

log
(

SΦ′(d1)
Ee−rT Φ′(d2)

)
= 0 (18.1)

which implies that

SΦ′(d1)− Ee−rT Φ′(d2) = 0. (18.2)

Exercise 18.1. Verify (18.1) and deduce (18.2).

Since

d1 =
log(S/E) + (r + 1

2σ2)T

σ
√

T

we find

∂d1

∂S
=

1
Sσ
√

T
,

∂d1

∂r
=
√

T

σ
,

∂d1

∂σ
=

σ2T −
[
log(S/E) + (r + 1

2σ2)T
]

σ2
√

T
= −d2

σ
, and

∂d1

∂T
=
− log(S/E) + (r + 1

2σ2)T
2σT 3/2

.

Furthermore, since

d2 = d1 − σ
√

T ,

we conclude

∂d2

∂S
=

1
Sσ
√

T
,

∂d2

∂r
=
√

T

σ
,

∂d2

∂σ
=

∂d1

∂σ
−
√

T = −d2

σ
−
√

T , and

∂d2

∂T
=

∂d1

∂T
− σ

2
√

T
=
− log(S/E) + (r + 1

2σ2)T
2σT 3/2

− σ

2
√

T
=
− log(S/E) + (r − 1

2σ2)T
2σT 3/2

.

(a) Delta. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

∆ =
∂V

∂S
= Φ (d1) + S

∂Φ (d1)
∂S

− Ee−rT ∂Φ (d2)
∂S

= Φ (d1) + S Φ′(d1)
∂d1

∂S
− Ee−rT Φ′(d2)

∂d2

∂S

= Φ (d1) +
Φ′(d1)
σ
√

T
− Ee−rT Φ′(d2)

Sσ
√

T

= Φ (d1) +
1

Sσ
√

T

[
SΦ′(d1)− Ee−rT Φ′(d2)

]
= Φ (d1)

where the last step follows from (18.2).



76 The Greeks

(b) Gamma. Since ∆ = Φ(d1), we find

Γ =
∂2V

∂S2
=

∂∆
∂S

= Φ′(d1)
∂d1

∂S
=

Φ′(d1)
Sσ
√

T
.

(c) Rho. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

ρ =
∂V

∂r
= S

∂Φ (d1)
∂r

+ ETe−rT Φ (d2)− Ee−rT ∂Φ (d2)
∂r

= S Φ′ (d1)
∂d1

∂r
+ ETe−rT Φ (d2)− Ee−rT Φ′ (d2)

∂d2

∂r

=
S
√

T

σ
Φ′ (d1) + ETe−rT Φ (d2)− Ee−rT

√
T

σ
Φ′ (d2)

=
√

T

σ

[
SΦ′(d1)− Ee−rT Φ′(d2)

]
+ ETe−rT Φ (d2)

= ETe−rT Φ (d2)

where, as before, the last step follows from (18.2).
(d) Theta. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

Θ =
∂V

∂T
= S

∂Φ (d1)
∂T

+ Ere−rT Φ (d2)− Ee−rT ∂Φ (d2)
∂T

= S Φ′ (d1)
∂d1

∂T
+ Ere−rT Φ (d2)− Ee−rT Φ′ (d2)

∂d2

∂T

= S Φ′ (d1)
∂d1

∂T
+ Ere−rT Φ (d2)− Ee−rT Φ′ (d2)

[
∂d1

∂T
− σ

2
√

T

]
=
[
S Φ′ (d1)− Ee−rT Φ′ (d2)

] ∂d1

∂T
+ Ere−rT Φ (d2) +

σ

2
√

T
Ee−rT Φ′ (d2)

= Ere−rT Φ (d2) +
σ

2
√

T
Ee−rT Φ′ (d2)

where, as before, the last step follows from (18.2). However, (18.2) also implies that we
can write Θ as

Θ = Ere−rT Φ (d2) +
σS

2
√

T
Φ′ (d1) . (18.3)

(e) Vega. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

vega =
∂V

∂σ
= S

∂Φ (d1)
∂σ

− Ee−rT ∂Φ (d2)
∂σ

= S Φ′ (d1)
∂d1

∂σ
− Ee−rT Φ′ (d2)

∂d2

∂σ

= −d2

σ
S Φ′ (d1)−

(
−d2

σ
−
√

T

)
E e−rT Φ′ (d2)

= −d2

σ

[
S Φ′ (d1)− Ee−rT Φ′ (d2)

]
+
√

T E e−rT Φ′ (d2)

=
√

T E e−rT Φ′ (d2)

where, as before, the last step follows from (18.2). However, (18.2) also implies that we
can write vega as

vega = S
√

T Φ′ (d1) .
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Remark. Our definition of Θ is slightly different than the one in Higham [12]. We are differen-
tiating V with respect to the expiry date T as opposed to an arbitrary time t with 0 ≤ t ≤ T .
This accounts for the discrepancy in the minus signs in (10.5) of [12] and (18.3).

Exercise 18.2. Compute lambda, volga, vanna, charm, colour, and speed for the Black-Scholes
option valuation formula for a European call option with strike price E.

We also recall the put-call parity formula for European call and put options from Lecture #2:

V (0, S0) + Ee−rT = P (0, S0) + S0. (18.4)

Here P = P (0, S0) is the fair price (at time 0) of a European put option with strike price E.

Exercise 18.3. Using the formula (18.4), compute the Greeks for a European put option. That
is, compute

∆ =
∂P

∂S
, Γ =

∂2P

∂S2
, ρ =

∂P

∂r
, Θ =

∂P

∂T
, and vega =

∂P

∂σ
.

Note that gamma and vega for a European put option with strike price E are the same as
gamma and vega for a European call option with strike price E.
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Implied Volatility

Recall that if V (0, S0) denotes the fair price (at time 0) of a European call option with strike
price E and expiry date T , then the Black-Scholes option valuation formula is

V (0, S0) = S0 Φ

(
log(S0/E) + (r + 1

2σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2σ2)T

σ
√

T

)
= S0 Φ (d1)− Ee−rT Φ (d2)

where

d1 =
log(S0/E) + (r + 1

2σ2)T

σ
√

T
and d2 =

log(S0/E) + (r − 1
2σ2)T

σ
√

T
= d1 − σ

√
T .

Suppose that at time 0 a first investor buys a European call option on the stock having initial
price S0 with strike price E and expiry date T . Of course, the fair price for the first investor to
pay is V (0, S0).

Suppose that some time later, say at time t, a second investor wants to buy a European call
option on the same stock with the same strike price E and the same expiry date T . What is
the fair price for this second investor to pay at time t?

Since it is now time t, the value of the underlying stock, namely St, is known. The expiry date
T is time T − t away. Thus, we simply re-scale our original Black-Scholes solution so that t is
the new time 0, the new initial price of the stock is St, and T − t is the new expiry date. This
implies that the fair price (at time t) of a European call option with strike price E and expiry
date T is given by the Black-Scholes option valuation formula

V (t, St)

= St Φ

(
log(St/E) + (r + 1

2σ2)(T − t)
σ
√

T − t

)
− Ee−r(T−t) Φ

(
log(St/E) + (r − 1

2σ2)(T − t)
σ
√

T − t

)
= St Φ (d1)− Ee−r(T−t) Φ (d2)

where

d1 =
log(St/E) + (r + 1

2σ2)(T − t)

σ
√

(T − t)
and d2 =

log(St/E) + (r − 1
2σ2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t.
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In fact, the rigorous justification for this is exactly the same as in (17.4) except now we view
Mt = W (t, St) as non-random since St, the stock price at time t, is known at time t. Note that
the formula for V (t, St) holds for 0 ≤ t ≤ T . In particular, for t = 0 we recover our original
result.

Remark. Given the general Black-Scholes formula V (t, St), 0 ≤ t ≤ T , we can define Θ as the
derivative of V with respect to t. (In Lecture #18, we defined Θ as the derivative of V with
respect to the expiry date T .) With this revised definition, we compute

Θ =
∂V

∂t
= −Ere−r(T−t) Φ (d2)− σSt

2
√

T − t
Φ′ (d1)

as in (10.5) of [12]. Note that there is a sign difference between this result and (18.3). All of
the other Greeks, namely delta, gamma, rho, and vega, are the same as in Lecture #18 except
that T is replaced with T − t.

The practical advantage of the Black-Scholes formula V (t, St) is that it allows for the fast and
easy calculation of option prices. It is worth noting, however, that “exact” calculations are not
actually possible since the formula is given in terms of Φ, the normal cumulative distribution
function. In order to “evaluate” Φ (d1) or Φ (d2) one must resort to using a computer (or table of
normal values). Computationally, it is quite easy to evaluate Φ to many decimal places accuracy;
and so this is the reason that we say the Black-Scholes formulation gives an exact formula. (In
fact, programs like MATLAB or MAPLE can easily give values of Φ accurate to 10 decimal
places.)

However, the limitations of the Black-Scholes model are numerous. Assumptions such as the
asset price process following a geometric Brownian motion (so that an asset price at a fixed
time has a lognormal distribution), or that the asset’s volatility is constant, are not justified by
actual market data.

As such, one of the goals of modern finance is to develop more sophisticated models for the asset
price process, and to then develop the necessary stochastic calculus to produce a “solution”
to the pricing problem. Unfortunately, there is no other model that produces as compact a
solution as Black-Scholes. This means that the “solution” to any other model involves numerical
analysis—and often quite involved analysis at that.

Suppose, for the moment, that we assume that the Black-Scholes model is valid. In particular,
assume that the stock price {St, t ≥ 0} follows geometric Brownian motion. The fair price
V (t, St) to pay at time t depends on the parameters St, E, T − t, r, and σ2. Of these, only the
asset volatility σ cannot be directly observed.

There are two distinct approaches to extracting a value of σ from market data. The first is
known as implied volatility and is obtained by using a quoted option value to recover σ. The
second is known as historical volatility and is essentially maximum likelihood estimation of the
parameter σ.

We will discuss only implied volatility. For ease, we will focus on the time t = 0 case. Suppose
that S0, E, T , and r are all known, and consider V (0, S0). Since we are assuming that only σ

is unknown, we will emphasis this by writing V (σ).
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Thus, if we have a quoted value of the option price, say V ∗, then we want to solve the equation
V (σ) = V ∗ for σ.

We will now show there is a unique solution to this equation which will be denoted by σ∗ so
that V (σ∗) = V ∗.

To begin, note that we are only interested in positive volatilities so that σ ∈ [0,∞). Furthermore,
V (σ) is continuous on [0,∞) with

lim
σ→∞

V (σ) = S0 and lim
σ→0+

V (σ) = max{S0 − Ee−rT , 0}. (19.1)

Recall that from Lecture #18 that

vega =
∂V

∂σ
= V ′(σ) = S0

√
T Φ′ (d1) .

Since

Φ′(x) =
1√
2π

e−x2/2

we immediately conclude that V ′(σ) > 0.

The fact that V (σ) is continuous on [0,∞) with V ′(σ) > 0 implies that V (σ) is strictly increasing
on [0,∞). Thus, we see that V (σ) = V ∗ has a solution if and only if

max{S0 − Ee−rT , 0} ≤ V ∗ ≤ S0 (19.2)

and that if a solution exists, then it must be unique. The no arbitrage assumption (i.e., the
put-call parity) implies that the condition (19.2) always holds.

We now calculate

V ′′(σ) =
∂2V

∂σ2
=

d1d2

σ

∂V

∂σ
=

d1d2

σ
V ′(σ) (19.3)

which shows that the only inflection point of V (σ) on [0,∞) is at

σ̂ =

√
2
∣∣∣∣ log(S0/E) + rT

T

∣∣∣∣. (19.4)

Notice that we can write

V ′′(σ) =
T

4σ3
(σ̂4 − σ4)V ′(σ) (19.5)

which implies that V (σ) is convex (i.e., concave up) for σ < σ̂ and concave (i.e., concave down)
for σ > σ̂.

Exercise 19.1. Verify (19.1), (19.2), (19.3), (19.4), and (19.5).

The consequence of all of this is that Newton’s method will be globally convergent for a suitably
chosen initial value. Recall that Newton’s method tells us that in order to solve the equation
F (x) = 0, we consider the sequence of iterates x0, x1, x2, . . . where

xn+1 = xn −
F (xn)
F ′(xn)

.
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If we define

x∗ = lim
n→∞

xn,

then F (x∗) = 0. Of course, there are assumptions needed to ensure that Newton’s method
converges and produces the correct solution.

If we now consider F (σ) = V (σ)− V ∗, then we have already shown that the conditions needed
to guarantee that Newton’s method converges have been satisfied.

It can also be shown that

0 <
σn+1 − σ∗

σn − σ∗
< 1

for all n which implies that the error in the approximation is strictly decreasing as n increases.
Thus, if we choose σ0 = σ̂, then the error must always converge to 0. Moreover, it can be shown
that the convergence is quadratic. Thus, choosing σ0 = σ̂ is a foolproof (and deterministic)
way of starting Newton’s method. We can then stop iterating when our error is within some
pre-specified tolerance, say < 10−8.

Remark. Computing implied volatility using Newton’s method is rather easy to implement in
MATLAB. See, for instance, the program ch14.m from Higham [12].

Consider obtaining data that reports the option price V ∗ for a variety of values of the strike
price E while at the same time holds r, S0, and T fixed. An example of such data is presented
in Section 14.5 of [12]. If the Black-Scholes formula were valid, then the volatility would be the
same for each strike price. That is, the graph of strike price vs. implied volatility would be a
horizontal line passing through σ = σ∗.

However, in this example, and in numerous other examples, the implied volatility curve appears
to bend in the shape of either a smile or a frown.

Remark. More sophisticated analyses of implied volatility involve data that reports the option
price V ∗ for a variety of values of the strike price E and expiry dates T while at the same
time holding r and S0 fixed. This produces a graph of strike price vs. expiry date vs. implied
volatility, and the result is an implied volatility surface. The functional data analysis needed
to in this case requires a number of statistical tools including principal components analysis.
If the Black-Scholes formula were valid, then the resulting implied volatility surface would be
a plane. Market data, however, typically results in bowl-shaped or hat-shaped surfaces. For
details, see [5] which is also freely available online.

This implies, of course, that the Black-Scholes formula is not a perfect description of the option
values that arise in practice. Many attempts have been made to “fix” this by considering stock
price models that do not have constant volatility. We will investigate some such models over
the next several lectures.
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The Ornstein-Uhlenbeck Process as a Model of
Volatility

The Ornstein-Uhlenbeck process is a diffusion process that was introduced as a model of the
velocity of a particle undergoing Brownian motion. We know from Newtonian physics that
the velocity of a (classical) particle in motion is given by the time derivative of its position.
However, if the position of a particle is described by Brownian motion, then the time derivative
does not exist. The Ornstein-Uhlenbeck process is an attempt to overcome this difficulty by
modelling the velocity directly. Furthermore, just as Brownian motion is the scaling limit of
simple random walk, the Ornstein-Uhlenbeck process is the scaling limit of the Ehrenfest urn
model which describes the diffusion of particles through a permeable membrane.

In recent years, however, the Ornstein-Uhlenbeck process has appeared in finance as a model of
the volatility of the underlying asset price process.

Suppose that the price of a stock {St, t ≥ 0} is modelled by geometric Brownian motion with
volatility σ and drift µ so that St satisfies the SDE

dSt = σSt dBt + µSt dt.

However, market data indicates that implied volatilities for different strike prices and expiry
dates of options are not constant. Instead, they appear to be smile shaped (or frown shaped).

Perhaps the most natural approach is to allow for the volatility σ(t) to be a deterministic
function of time so that St satisfies the SDE

dSt = σ(t)St dBt + µSt dt.

This was already suggested by Merton in 1973. Although it does explain the different implied
volatility levels for different expiry dates, it does not explain the smile shape for different strike
prices.

Instead, Hull and White in 1987 proposed to use a stochastic volatility model where the under-
lying stock price {St, t ≥ 0} satisfies the SDE

dSt =
√

vt St dBt + µSt dt

and the variance process {vt, t ≥ 0} is given by geometric Brownian motion

dvt = c1vt dBt + c2vt dt
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with c1 and c2 known constants. The problem with this model is that geometric Brownian
motion tends to increase exponentially which is an undesirable property for volatility.

Market data also indicates that volatility exhibits mean-reverting behaviour. This lead Stein
and Stein in 1991 to introduce the mean-reverting Ornstein-Uhlenbeck process satisfying

dvt = σ dBt + a(b− vt) dt

where a, b, and σ are known constants. This process, however, allows negative values of vt.

In 1993 Heston overcame this difficulty by considering a more complex stochastic volatility
model. Before investigating the Heston model, however, we will consider the Ornstein-Uhlenbeck
process separately and prove that negative volatilities are allowed thereby verifying that the Stein
and Stein stock price model is flawed.

We say that the process {Xt, t ≥ 0} is an Ornstein-Uhlenbeck process if Xt satisfies the Ornstein-
Uhlenbeck stochastic differential equation given by

dXt = σ dBt + aXt dt (20.1)

where σ and a are constants and {Bt, t ≥ 0} is a standard Brownian motion.

Remark. Sometimes (20.1) is called the Langevin equation, especially in physics contexts.

Remark. The Ornstein-Uhlenbeck SDE is very similar to the SDE for geometric Brownian
motion; the only difference is the absence of Xt in the dBt term of (20.1). However, this slight
change makes (20.1) more challenging to solve.

The “trick” for solving (20.1) is to multiply both sides by the integrating factor e−at and to
compare with d(e−atXt). The chain rule tells us that

d(e−atXt) = e−at dXt + Xt d(e−at) = e−at dXt − ae−atXt dt (20.2)

and multiplying (20.1) by e−at gives

e−atdXt = σe−at dBt + ae−atXt dt (20.3)

so that substituting (20.3) into (20.2) gives

d(e−atXt) = σe−at dBt + ae−atXt dt− ae−atXt dt = σe−at dBt.

Since d(e−atXt) = σe−atdBt, we can now integrate to conclude that

e−atXt −X0 = σ

∫ t

0
e−as dBs

and so

Xt = eatX0 + σ

∫ t

0
ea(t−s) dBs. (20.4)

Observe that the integral in (20.4) is a Wiener integral. Definition 9.1 tells us that∫ t

0
ea(t−s) dBs ∼ N

(
0,

∫ t

0
e2a(t−s) ds

)
= N

(
0,

e2at − 1
2a

)
.
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In particular, choosing X0 = x to be constant implies that

Xt = eatx + σ

∫ t

0
ea(t−s) dBs ∼ N

(
xeat,

σ2(e2at − 1)
2a

)
.

Actually, we can generalize this slightly. If we choose X0 ∼ N (x, τ2) independently of the
Brownian motion {Bt, t ≥ 0}, then Exercise 3.12 tells us that

Xt = eatX0 + σ

∫ t

0
ea(t−s) dBs ∼ N

(
xeat, τ2e2at +

σ2(e2at − 1)
2a

)
= N

(
xeat,

(
τ2 +

σ2

2a

)
e2at − σ2

2a

)
.

Exercise 20.1. Suppose that {Xt, t ≥ 0} is an Ornstein-Uhlenbeck process given by (20.4) with
X0 = 0. If s < t, compute Cov(Xs, Xt).

We say that the process {Xt, t ≥ 0} is a mean-reverting Ornstein-Uhlenbeck process if Xt satisfies
the SDE

dXt = σ dBt + (b−Xt) dt (20.5)

where σ and b are constants and {Bt, t ≥ 0} is a standard Brownian motion.

The trick for solving the mean-reverting Ornstein-Uhlenbeck process is similar. That is, we
multiply by et and compare with d(et(b−Xt)). The chain rule tells us that

d(et(b−Xt)) = −et dXt + et(b−Xt) dt (20.6)

and multiplying (20.5) by et gives

etdXt = σet dBt + et(b−Xt) dt (20.7)

so that substituting (20.7) into (20.6) gives

d(et(b−Xt)) = −σet dBt − et(b−Xt) dt + et(b−Xt) dt = −σet dBt.

Since d(et(b−Xt)) = −σet dBt, we can now integrate to conclude that

et(b−Xt)− (b−X0) = −σ

∫ t

0
es dBs

and so

Xt = (1− e−t)b + e−tX0 + σ

∫ t

0
es−t dBs. (20.8)

Exercise 20.2. Suppose that X0 ∼ N (x, τ2) is independent of {Bt, t ≥ 0}. Determine the
distribution of Xt given by (20.8).

Exercise 20.3. Use an appropriate integrating factor to solve the mean-reverting Ornstein-
Uhlenbeck SDE considered by Stein and Stein, namely dXt = σ dBt + a(b −Xt) dt. Assuming
that X0 = x is constant, determine the distribution of Xt and conclude that P{Xt < 0} > 0 for
every t > 0. Hint: Xt has a normal distribution. This then explains our earlier claim that the
Stein and Stein model is flawed.
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As previous noted, Heston introduced a stochastic volatility model in 1993 that overcame this
difficulty. Assume that the asset price process {St, t ≥ 0} satisfies the SDE

dSt =
√

vt St dB
(1)
t + µSt dt

where the variance process {vt, t ≥ 0} satisfies

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt (20.9)

and the two driving Brownian motions {B(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are correlated with rate
ρ, i.e.,

d〈B(1), B(2)〉t = ρ dt.

The
√

vt term in (20.9) is needed to guarantee positive volatility—when the process touches zero
the stochastic part becomes zero and the non-stochastic part will push it up. The parameter
a measures the speed of the mean-reversion, b is the average level of volatility, and σ is the
volatility of volatility. Market data suggests that the correlation rate ρ is typically negative.
The negative dependence between returns and volatility is sometimes called the leverage effect.

Heston’s model involves a system of stochastic differential equations. The key tool for analyzing
such a system is the multidimensional version of Itô’s formula.

Theorem 20.4 (Version V). Suppose that {Xt, t ≥ 0} and {Yt, t ≥ 0} are diffusions defined
by the stochastic differential equations

dXt = a1(t, Xt, Yt) dB
(1)
t + b1(t, Xt, Yt) dt

and

dYt = a2(t, Xt, Yt) dB
(2)
t + b2(t, Xt, Yt) dt,

respectively, where {B(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are each standard one-dimensional Brownian
motions. If f ∈ C1([0,∞))× C2(R2), then

df(t, Xt, Yt) = ḟ(t, Xt, Yt) dt + f1(t, Xt, Yt) dXt +
1
2
f11(t, Xt, Yt) d〈X〉t

+ f2(t, Xt, Yt) dYt +
1
2
f22(t, Xt, Yt) d〈Y 〉t + f12(t, Xt, Yt) d〈X, Y 〉t

where the partial derivatives are defined as

ḟ(t, x, y) =
∂

∂t
f(t, x, y), f1(t, x, y) =

∂

∂x
f(t, x, y), f11(t, x, y) =

∂2

∂x2
f(t, x, y)

f2(t, x, y) =
∂

∂y
f(t, x, y), f22(t, x, y) =

∂2

∂y2
f(t, x, y), f12(t, x, y) =

∂2

∂x∂y
f(t, x, y),

and d〈X, Y 〉t is computed according to the rule

d〈X, Y 〉t = (dXt)(dYt) = a1(t, Xt, Yt)a2(t, Xt, Yt) d〈B(1), B(2)〉t.
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Remark. In a typical problem involving the multidimensional version of Itô’s formula, the
quadratic covariation process 〈B(1), B(2)〉t will be specified. However, two particular examples
are worth mentioning. If B(1) = B(2), then d〈B(1), B(2)〉t = dt, whereas if B(1) and B(2) are
independent, then d〈B(1), B(2)〉t = 0.

Exercise 20.5. Suppose that f(t, x, y) = xy. Using Version V of Itô’s formula (Theorem 20.4),
verify that the product rule for diffusions is given by

d(XtYt) = Xt dYt + Yt dXt + d〈X, Y 〉t.

Thus, our goal in the next few lectures is to price a European call option assuming that the
underlying stock price follows Heston’s model of geometric Brownian motion with a stochastic
volatility, namely 

dSt =
√

vt St dB
(1)
t + µSt dt,

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt,

d〈B(1), B(2)〉t = ρ dt.
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The Characteristic Function for a Diffusion

Recall that the characteristic function of a random variable X is the function ϕX : R → C defined
by ϕX(θ) = E(eiθX). From Exercise 3.9, if X ∼ N (µ, σ2), then the characteristic function of X

is

ϕX(θ) = exp
{

iµθ − σ2θ2

2

}
.

Suppose that {Xt, t ≥ 0} is a stochastic process. For each T ≥ 0, we know that XT is a random
variable. Thus, we can consider ϕXT

(θ).

In the particular case that {Xt, t ≥ 0} is a diffusion defined by the stochastic differential equation

dXt = σ(t, Xt) dBt + µ(t, Xt) dt (21.1)

where {Bt, t ≥ 0} is a standard Brownian motion with B0 = 0, if we can solve the SDE, then
we can determine ϕXT

(θ) for any T ≥ 0.

Example 21.1. Consider the case when both coefficients in (21.1) are constant so that

dXt = σ dBt + µ dt

where {Bt, t ≥ 0} is a standard Brownian motion with B0 = 0, In this case, the SDE is trivial
to solve. If X0 = x is constant, then for any T ≥ 0, we have

XT = x + σBT + µT

which is simply arithmetic Brownian motion started at x. Therefore,

XT ∼ N (x + µT, σ2T )

so that

ϕXT
(θ) = exp

{
i(x + µT )θ − σ2Tθ2

2

}
.

Example 21.2. Consider the Ornstein-Uhlenbeck stochastic differential equation given by

dXt = σ dBt + aXt dt

87



88 The Characteristic Function for a Diffusion

where σ and a are constants. As we saw in Lecture #20, if X0 = x is constant, then for any
T ≥ 0, we have

XT = eaT x + σ

∫ T

0
ea(T−s) dBs ∼ N

(
xeaT ,

σ2(e2aT − 1)
2a

)
.

Therefore,

ϕXT
(θ) = exp

{
ixeaT θ − σ2(e2aT − 1)θ2

4a

}
.

Now it might seem like the only way to determine the characteristic function ϕXT
(θ) if {Xt, t ≥

0} is a diffusion defined by (21.1) is to solve this SDE. Fortunately, this is not true. In many cases,
the characteristic function for a diffusion defined by a SDE can be found using the Feynman-Kac
representation theorem without actually solving the SDE.

Consider the diffusion

dXt = σ(t, Xt) dBt + µ(t, Xt) dt. (21.2)

We know from Version IV of Itô’s formula (Theorem 15.12) that if f ∈ C1([0,∞))×C2(R), then

df(t, Xt) = f ′(t, Xt) dXt +
1
2
f ′′(t, Xt) d〈X〉t + ḟ(t, x) dt

= σ(t, Xt)f ′(t, Xt) dBt +
[
µ(t, Xt)f ′(t, Xt) +

1
2
σ2(t, Xt)f ′′(t, Xt) + ḟ(t, x)

]
dt.

We also know from Theorem 13.6 that any Itô integral is a martingale. Therefore, if we can find
a particular function f(t, x) such that the dt term is zero, then f(t, Xt) will be a martingale.
We define the differential operator (sometimes called the generator of the diffusion) to be the
operator A given by

(Af)(t, x) = µ(t, x)f ′(t, x) +
1
2
σ2(t, x)f ′′(t, x) + ḟ(t, x).

Note that Version IV of Itô’s formula now takes the form

df(t, Xt) = σ(t, Xt)f ′(t, Xt) dBt + (Af)(t, Xt) dt.

This shows us the first connection between stochastic calculus and differential equations, namely
that if {Xt, t ≥ 0} is a diffusion defined by (21.2) and if f ∈ C1([0,∞))× C2(R), then f(t, Xt)
is a martingale if and only if f satisfies the partial differential equation

(Af)(t, x) = 0.

The Feynman-Kac representation theorem extends this idea by providing an explicit formula for
the solution of this partial differential equation subject to certain boundary conditions.

Theorem 21.3 (Feynman-Kac Representation Theorem). Suppose that u ∈ C2(R), and
let {Xt, t ≥ 0} be defined by the SDE

dXt = σ(t, Xt) dBt + µ(t, Xt) dt.
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The unique bounded function f : [0,∞)× R → R satisfying the partial differential equation

(Af)(t, x) = µ(t, x)f ′(t, x) +
1
2
σ2(t, x)f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R,

subject to the terminal condition

f(T, x) = u(x), x ∈ R,

is given by

f(t, x) = E[u(XT )|Xt = x].

Example 21.4. We will now use the Feynman-Kac representation theorem to derive the char-
acteristic function for arithmetic Brownian motion satisfying the SDE

dXt = σ dBt + µ dt

where σ, µ, and X0 = x are constants. Let u(x) = eiθx so that the Feynman-Kac representation
theorem implies

f(t, x) = E[u(XT )|Xt = x] = E[eiθXT |Xt = x]

is the unique bounded solution of the partial differential equation

µf ′(t, x) +
1
2
σ2f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (21.3)

subject to the terminal condition

f(T, x) = eiθx, x ∈ R.

Note that f(0, x) = E[eiθXT |X0 = x] = ϕXT
(θ) is the characteristic function of XT .

In order to solve (21.3) we use separation of variables. That is, we guess that f(t, x) can be
written as a function of x only times a function of t only so that

f(t, x) = χ(x)τ(t), 0 ≤ t ≤ T, x ∈ R. (21.4)

Therefore, we find

f ′(t, x) = χ′(x)τ(t), f ′′(t, x) = χ′′(x)τ(t), ḟ(t, x) = χ(x)τ ′(t)

so that (21.3) implies

µχ′(x)τ(t) +
1
2
σ2χ′′(x)τ(t) + χ(x)τ ′(t) = 0, 0 ≤ t ≤ T, x ∈ R,

or equivalently,
µχ′(x)
χ(x)

+
σ2χ′′(x)
2χ(x)

= −τ ′(t)
τ(t)

.

Since the left side of this equation which is a function of x only equals the right side which is
a function of t only, we conclude that both sides must be constant. For ease, we will write the
constant as −λ2. Thus, we must solve the two ordinary differential equations

µχ′(x)
χ(x)

+
σ2χ′′(x)
2χ(x)

= −λ2 and − τ ′(t)
τ(t)

= −λ2.
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The ODE for τ is easy to solve; clearly τ ′(t) = λ2τ(t) implies

τ(t) = C exp{λ2t}

where C is an arbitrary constant. The ODE for χ is

µχ′(x) +
σ2χ′′(x)

2
= −λ2χ(x),

or equivalently,

σ2χ′′(x) + 2µχ′(x) + 2λ2χ(x) = 0. (21.5)

Although this ODE is reasonably straightforward to solve for χ, it turns out that we do not
need to actually solve it. This is because of our terminal condition. We know that

f(T, x) = eiθx

and we also have assumed that

f(t, x) = χ(x)τ(t).

This implies that

f(T, x) = χ(x)τ(T ) = eiθx

which means that

τ(T ) = 1 and χ(x) = eiθx.

We now realize that we can solve for the arbitrary constant C; that is,

τ(t) = C exp{λ2t} and τ(T ) = 1

implies

C = exp{−λ2T} so that τ(t) = exp{−λ2(T − t)}.

We are also in a position to determine the value of λ2. That is, we know that χ(x) = eiθx must
be a solution to the ODE (21.5). Thus, we simply need to choose λ2 so that this is true. Since

χ′(x) = iθeiθx and χ′′(x) = −θ2eiθx,

we conclude that

−σ2θ2eiθx + 2iµθeiθx + 2λ2eiθx = 0,

and so factoring out eiθx gives

−σ2θ2 + 2iµθ + 2λ2 = 0.

Thus,

−λ2 = iµθ − σ2θ2

2
so that substituting in for τ(t) gives

τ(t) = exp
{

iµ(T − t)θ − σ2(T − t)θ2

2

}
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and so from (21.4) we conclude

f(t, x) = χ(x)τ(t) = eiθx exp
{

iµ(T − t)θ − σ2(T − t)θ2

2

}
= exp

{
i(x + µ(T − t))θ − σ2(T − t)θ2

2

}
.

Taking t = 0 gives

ϕXT
(θ) = f(0, x) = exp

{
i(x + µT )θ − σ2Tθ2

2

}
in agreement with Example 21.1.

Example 21.5. We will now use the Feynman-Kac representation theorem to derive the char-
acteristic function for a process satisfying the Ornstein-Uhlenbeck SDE

dXt = σ dBt + aXt dt

where σ, a, and X0 = x are constants. Let u(x) = eiθx so that the Feynman-Kac representation
theorem implies

f(t, x) = E[u(XT )|Xt = x] = E[eiθXT |Xt = x]

is the unique bounded solution of the partial differential equation

axf ′(t, x) +
1
2
σ2f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (21.6)

subject to the terminal condition

f(T, x) = eiθx, x ∈ R.

Note that f(0, x) = E[eiθXT |X0 = x] = ϕXT
(θ) is the characteristic function of XT .

If we try to use separation of variables to solve (21.6), then we soon discover that it does not
produce a solution. Thus, we are forced to conclude that the solution f(t, x) is not separable
and is necessarily more complicated. Guided by the form of the terminal condition, we guess
that f(t, x) can be written as

f(t, x) = exp{iθα(t)x + β(t)}, 0 ≤ t ≤ T, x ∈ R, (21.7)

for some functions α(t) and β(t) of t only satisfying α(T ) = 1 and β(T ) = 0. Differentiating we
find

f ′(t, x) = iθα(t) exp{iθα(t)x + β(t)} = iθα(t)f(t, x),

f ′′(t, x) = −θ2α2(t) exp{iθα(t)x + β(t)} = −θ2α2(t)f(t, x), and

ḟ(t, x) = [iθα′(t)x + β′(t)] exp{iθα(t)x + β(t)} = [iθα′(t)x + β′(t)]f(t, x)

so that (21.6) implies

iθaxα(t)f(t, x)− σ2θ2

2
α2(t)f(t, x) + [iθα′(t)x + β′(t)]f(t, x) = 0, 0 ≤ t ≤ T, x ∈ R.
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Factoring out the common f(t, x) reduces the equation to

iθaxα(t)− σ2θ2

2
α2(t) + iθα′(t)x + β′(t) = 0,

or equivalently,

iθ[aα(t) + α′(t)]x + β′(t)− σ2θ2

2
α2(t) = 0.

Since this equation must be true for all 0 ≤ t ≤ T and x ∈ R, the only way that is possible is if
the coefficient of x is zero and the constant term is 0. Thus, we must have

aα(t) + α′(t) = 0 and β′(t)− σ2θ2

2
α2(t) = 0. (21.8)

This first equation in (21.8) involves only α(t) and is easily solved. That is, α′(t) = −aα(t)
implies α(t) = Ce−at for some arbitrary constant C. The terminal condition α(T ) = 1 implies
that C = eaT so that

α(t) = ea(T−t).

Since we have solved for α(t), we can now solve the second equation in (21.8); that is,

β′(t) =
σ2θ2

2
α2(t) =

σ2θ2

2
e2a(T−t).

We simply integrate from 0 to t to find β(t):

β(t)− β(0) =
σ2θ2

2

∫ t

0
e2a(T−s) ds =

σ2θ2

4a
(e2aT − e2a(T−t)).

The terminal condition β(T ) = 0 implies that

β(0) =
σ2θ2

4a
(1− e2aT )

and so

β(t) =
σ2θ2

4a
(1− e2aT ) +

σ2θ2

4a
(e2aT − e2a(T−t)) =

σ2(1− e2a(T−t))θ2

4a
= −σ2(e2a(T−t) − 1)θ2

4a
.

Thus, from (21.7) we are now able to conclude that

f(t, x) = exp{iθα(t)x + β(t)} = exp

{
iθea(T−t)x− σ2(e2a(T−t) − 1)θ2

4a

}
for 0 ≤ t ≤ T and x ∈ R. Taking t = 0 gives

ϕXT
(θ) = f(0, x) = exp

{
iθeaT x− σ2(e2aT − 1)θ2

4a

}
in agreement with Example 21.2.
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The Characteristic Function for Heston’s Model

As we saw last lecture, it is sometimes possible to determine the characteristic function of a
random variable defined via a stochastic differential equation without actually solving the SDE.
The computation involves the Feynman-Kac representation theorem, but it does require the
solution of a partial differential equation. In certain cases where an explicit solution does not
exist for the SDE, computing the characteristic function might still be possible as long as the
resulting PDE is solvable.

Recall that the Heston model assumes that the asset price process {St, t ≥ 0} satisfies the SDE

dSt =
√

vt St dB
(1)
t + µSt dt

where the variance process {vt, t ≥ 0} satisfies

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt

and the two driving Brownian motions {B(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are correlated with rate
ρ, i.e.,

d〈B(1), B(2)〉t = ρ dt.

In order to analyze the Heston model, it is easier to work with

Xt = log(St)

instead. Itô’s formula implies that {Xt, t ≥ 0} satisfies the SDE

dXt = d log St =
dSt

St
− d〈S〉t

2S2
t

=
√

vt dB
(1)
t +

(
µ− vt

2

)
dt.

We will now determine the characteristic function of XT for any T ≥ 0. The multidimensional
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version of Itô’s formula (Theorem 20.4) implies that

df(t, Xt, vt) = ḟ(t, Xt, vt) dt + f1(t, Xt, vt) dXt +
1
2
f11(t, Xt, vt) d〈X〉t

+ f2(t, Xt, vt) dvt +
1
2
f22(t, Xt, vt) d〈v〉t + f12(t, Xt, vt) d〈X, v〉t

= ḟ(t, Xt, vt) dt + f1(t, Xt, vt)
(√

vt dB
(1)
t +

(
µ− vt

2

)
dt
)

+
1
2
f11(t, Xt, vt)vt dt

+ f2(t, Xt, vt)
(
σ
√

vt dB
(2)
t + a(b− vt) dt

)
+

1
2
f22(t, Xt, vt)σ2vt dt

+ f12(t, Xt, vt)σρvt dt

= f1(t, Xt, vt)
√

vt dB
(1)
t + f2(t, Xt, vt)σ

√
vt dB

(2)
t + (Af)(t, Xt, vt) dt

where the differential operator A is defined as

(Af)(t, x, y) = ḟ(t, x, y) +
(
µ− y

2

)
f1(t, x, y) +

y

2
f11(t, x, y) + a(b− y)f2(t, x, y)

+
σ2y

2
f22(t, x, y) + σρyf12(t, x, y).

If we now let u(x) = eiθx, then the (multidimensional form of the) Feynman-Kac representation
theorem implies

f(t, x, y) = E[u(XT )|Xt = x, vt = y] = E[eiθXT |Xt = x, vt = y]

is the unique bounded solution of the partial differential equation

(Af)(t, x, y) = 0, 0 ≤ t ≤ T, x ∈ R, y ∈ R, (22.1)

subject to the terminal condition

f(T, x, y) = eiθx, x ∈ R, y ∈ R.

Note that f(0, x, y) = E[eiθXT |X0 = x, v0 = y] = ϕXT
(θ) is the characteristic function of XT .

Guided by the form of the terminal condition and by our experience with the Ornstein-Uhlenbeck
characteristic function, we guess that f(t, x, y) can be written as

f(t, x, y) = exp{α(t)y + β(t)} exp{iθx} (22.2)

for some functions α(t) and β(t) of t only satisfying α(T ) = 0 and β(T ) = 0. Differentiating we
find

ḟ(t, x, y) = [α′(t)y + β′(t)]f(t, x, y), f1(t, x, y) = iθf(t, x, y), f11(t, x, y) = −θ2f(t, x, y),

f2(t, x, y) = α(t)f(t, x, y), f22(t, x, y) = α2(t)f(t, x, y), f12(t, x, y) = iθα(t)f(t, x, y),

so that substituting into the explicit form of (Af)(t, x, y) = 0 and factoring out the common
f(t, x, y) gives

[α′(t)y + β′(t)] + iθ
(
µ− y

2

)
− θ2

2
y + aα(t)(b− y) +

σ2α2(t)
2

y + iσρθα(t)y = 0,
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or equivalently,[
α′(t) + (iσρθ − a)α(t) +

σ2α2(t)
2

− iθ

2
− θ2

2

]
y + β′(t) + iθµ + abα(t) = 0.

Since this equation must be true for all 0 ≤ t ≤ T , x ∈ R, and y ∈ R, the only way that is
possible is if the coefficient of y is zero and the constant term is 0. Thus, we must have

α′(t) + (iσρθ − a)α(t) +
σ2α2(t)

2
− iθ

2
− θ2

2
= 0 and β′(t) + iθµ + abα(t) = 0. (22.3)

The first equation in (22.3) involves α(t) only and is of the form

α′(t) = Aα(t) + Bα2(t) + C

with

A = a− iσρθ, B = −σ2

2
, C =

iθ

2
+

θ2

2
. (22.4)

This ordinary differential equation can be solved by integration; see Exercise 22.1 below. The
solution is given by

α(t) = D + E tan(Ft + G)

where

D = − A

2B
, E =

√
C

B
− A2

4B2
, F = BE = B

√
C

B
− A2

4B2
, (22.5)

and G is an arbitrary constant. The terminal condition α(T ) = 0 implies

0 = D + E tan(FT + G) so that G = arctan
(
−D

E

)
− FT

which gives

α(t) = D + E tan
(

arctan
(
−D

E

)
− F (T − t)

)
. (22.6)

Exercise 22.1. Suppose that a, b, and c are non-zero real constants. Compute∫
dx

ax2 + bx + c
.

Hint: Complete the square in the denominator. The resulting function is an antiderivative of
an arctangent function.

In order to simplify the expression for α(t) given by (22.6) above, we begin by noting that

cos
(

arctan
(
−D

E

))
=

E√
D2 + E2

and sin
(

arctan
(
−D

E

))
= − D√

D2 + E2
. (22.7)



96 The Characteristic Function for Heston’s Model

Using the sum of angles identity for cosine therefore gives

cos
(

arctan
(
−D

E

)
− F (T − t)

)
= cos

(
arctan

(
−D

E

))
cos (F (T − t)) + sin

(
arctan

(
−D

E

))
sin (F (T − t))

=
E√

D2 + E2
cos (F (T − t))− D√

D2 + E2
sin (F (T − t))

=
E cos (F (T − t))−D sin (F (T − t))√

D2 + E2
. (22.8)

Similarly, the sum of angles identity for sine yields

sin
(

arctan
(
−D

E

)
− F (T − t)

)
=
−D cos (F (T − t))− E sin (F (T − t))√

D2 + E2
. (22.9)

Writing tan(z) = sin(z)
cos(z) and using (22.8) and (22.9) implies

tan
(

arctan
(
−D

E

)
− F (T − t)

)
=
−D cos (F (T − t))− E sin (F (T − t))
E cos (F (T − t))−D sin (F (T − t))

=
−D cot (F (T − t))− E

E cot (F (T − t))−D

so that substituting the above expression into (22.6) for α(t) gives

α(t) = D + E

[
−D cot (F (T − t))− E

E cot (F (T − t))−D

]
=

−(D2 + E2)
E cot (F (T − t))−D

.

The next step is to substitute back for D, E, and F in terms of the original parameters. It turns
out, however, that it is useful to write them in terms of

γ =
√

σ2(θ2 + iθ) + (a− iσρθ)2. (22.10)

Thus, substituting (22.4) into (22.5) gives

D =
a− iσρθ

σ2
, E =

iγ

σ2
, and F = − iγ

2
. (22.11)

Since

D2 + E2 = − iθ + θ2

σ2

we conclude that

α(t) =
iθ + θ2

iγ cot
(
− iγ(T−t)

2

)
− (a− iσρθ)

.

The final simplification is to note that

cos(−iz) = cosh(z) and sin(−iz) = −i sinh(z)

so that

cot(iz) =
cos(iz)
sin(iz)

=
cosh(z)
−i sinh(z)

= i coth(z)
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which gives

α(t) =
iθ + θ2

i2γ coth
(

γ(T−t)
2

)
− (a− iσρθ)

= − iθ + θ2

γ coth
(

γ(T−t)
2

)
+ (a− iσρθ)

.

Finally, we find

exp{α(t)y} = exp

− (iθ + θ2)y

γ coth
(

γ(T−t)
2

)
+ (a− iσρθ)

 . (22.12)

Having determined α(t), we can now consider the second equation in (22.3) involving β′(t).
It is easier, however, to manipulate this expression using α(t) in the form (22.6). Thus, the
expression for β′(t) now becomes

β′(t) = −abD − iθµ− abE tan
(

arctan
(
−D

E

)
− F (T − t)

)
which can be solved by integrating from 0 to t. Recall that∫

tan(z) dz = log(sec(z)) = − log(cos(z))

and so

β(t) = β(0)− abDt− iθµt− abE

∫ t

0
tan

(
arctan

(
−D

E

)
− F (T − s)

)
ds

= β(0)− abDt− iθµt− abE

F
log

(
cos(arctan

(
−D

E

)
− FT )

cos(arctan
(
−D

E

)
− F (T − t))

)
.

The terminal condition β(T ) = 0 implies that

β(0) = abDT + iθµT +
abE

F
log

(√
E2 + D2 cos(arctan

(
−D

E

)
− FT )

E

)

using (22.7), and so we now have

β(t) = abD(T − t) + iθµ(T − t) +
abE

F
log

(√
E2 + D2 cos(arctan

(
−D

E

)
− F (T − t))

E

)
.

As in the calculation of α(t), we can simplify this further using (22.8) so that

β(t) = abD(T − t) + iθµ(T − t) +
abE

F
log
(

cos (F (T − t))− D

E
sin (F (T − t))

)
which implies

exp{β(t)} = exp{abD(T − t) + iθµ(T − t)}
(

cos (F (T − t))− D

E
sin (F (T − t))

)abE
F

. (22.13)
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Substituting the expressions given by (22.11) for D, E, and F in terms of the original parameters
into (22.13) gives

exp{β(t)} =
exp

{
ab(a−iσρθ)(T−t)

σ2 + iθµ(T − t)
}

(
cos
(
− iγ

2 (T − t)
)
− a−iσρθ

iγ sin
(
− iγ

2 (T − t)
)) 2ab

σ2

.

As in the calculation of α(t), the final simplification is to note that cos(−iz) = cosh(z) and
sin(−iz) = −i sinh(z) so that

exp{β(t)} =
exp

{
ab(a−iσρθ)(T−t)

σ2 + iθµ(T − t)
}

(
cosh

(
γ(T−t)

2

)
+ a−iσρθ

γ sinh
(

γ(T−t)
2

)) 2ab
σ2

. (22.14)

We can now substitute our expression for exp{α(t)y} given by (22.12) and our expression for
exp{β(t)} given by (22.14) into our guess for f(t, x, y) given by (22.2) to conclude

f(t, x, y) = exp{α(t)y + β(t)} exp{iθx}

=

exp

{
iθx− (iθ+θ2)y

γ coth
(

γ(T−t)
2

)
+(a−iσρθ)

+ ab(a−iσρθ)(T−t)
σ2 + iθµ(T − t)

}
(

cosh
(

γ(T−t)
2

)
+ a−iσρθ

γ sinh
(

γ(T−t)
2

)) 2ab
σ2

.

Taking t = 0 gives

ϕXT
(θ) = f(0, x, y) =

exp
{

iθx− (iθ+θ2)y

γ coth γT
2

+(a−iσρθ)
+ abT (a−iσρθ)

σ2 + iθµT

}
(

cosh γT
2 + a−iσρθ

γ sinh γT
2

) 2ab
σ2

.

and we are done!
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Risk Neutrality

We will now use the Feynman-Kac representation theorem to derive a general solution to the
Black-Scholes option pricing problem for European call options. This representation of the
solution will be needed next lecture when we explain how to use the characteristic function of a
diffusion to price an option.

Suppose that the asset price process {St, t ≥ 0} satisfies the stochastic differential equation

dSt = σ(t, St)St dB̃t + µ(t, St)St dt, (23.1)

or equivalently,
dSt

St
= σ(t, St) dB̃t + µ(t, St) dt,

where {B̃t, t ≥ 0} is a standard Brownian motion with B̃0 = 0, and that the risk-free investment
D(t, St) evolves according to

dD(t, St) = rD(t, St) dt

where r > 0 is the risk-free interest rate.

Remark. We are writing {B̃t, t ≥ 0} for the Brownian motion that drives the asset price process
since the formula that we are going to derive for the fair price at time t = 0 of a European call
option on this asset involves a one-dimensional Brownian motion distinct from this one.

Remark. The asset price process given by (23.1) is similar to geometric Brownian motion,
except that the volatility and drift do not necessarily need to be constant. Instead, they can be
stochastic, but the randomness is assumed to come from the asset price itself. In this general
form, there is no explicit form for {St, t ≥ 0} as the solution of the SDE (23.1).

Suppose further that we write V (t, St), 0 ≤ t ≤ T , to denote the price at time t of a European
call option with expiry date T on the asset {St, t ≥ 0}. If the payoff function is given by Λ(x),
x ∈ R, then

V (T, ST ) = Λ(ST ).

(Recall that a European call option can be exercised only on the expiry date T and not earlier.)
Our goal is to determine V (0, S0), the fair price to pay at time t = 0.

99



100 Risk Neutrality

Furthermore, assume that there are no arbitrage opportunities so that there exists a replicating
portfolio

Π(t, St) = A(t, St)St + D(t, St)

consisting of a cash deposit D and a number A of assets which is self-financing:

dΠ(t, St) = A(t, St) dSt + rD(t, St) dt.

As in Lecture #16, this implies that the change in V (t, St) − Π(t, St) over any time step is
non-random and must equal the corresponding growth offered by the continuously compounded
risk-free interest rate. That is,

d
[
V (t, St)−Π(t, St)

]
= r
[
V (t, St)−Π(t, St)

]
dt.

By repeating the calculations in Lecture #16 assuming that the asset price movement satis-
fies (23.1) leads to the following conclusion. The function V (t, x), 0 ≤ t ≤ T , x ∈ R, satisfies
the Black-Scholes partial differential equation

V̇ (t, x) +
σ2(t, x)

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (23.2)

subject to the terminal condition

V (T, x) = Λ(x).

Note. The only difference between (23.2) and the Black-Scholes PDE that we derived in Lec-
ture #16, namely (16.10), is the appearance of the function σ(t, x) instead of the constant σ.
Thus, (23.2) reduces to (16.10) when σ(t, x) = σ is constant.

At this point, we observe that the formulation of the option pricing problem sounds rather
similar to the formulation of the Feynman-Kac representation theorem which we now recall.

Theorem 23.1 (Feynman-Kac Representation Theorem). Suppose that u ∈ C2(R), and
let {Xt, t ≥ 0} be defined by the SDE

dXt = a(t, Xt) dBt + b(t, Xt) dt.

The unique bounded function f : [0,∞)× R → R satisfying the partial differential equation

(Af)(t, x) = b(t, x)f ′(t, x) +
1
2
a2(t, x)f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (23.3)

subject to the terminal condition

f(T, x) = u(x), x ∈ R,

is given by

f(t, x) = E[u(XT )|Xt = x].

However, the differential equation (23.2) that we need to solve is of the form

b(t, x)g′(t, x) +
1
2
a2(t, x)g′′(t, x) + ġ(t, x) = rg(t, x), 0 ≤ t ≤ T, x ∈ R, (23.4)
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subject to the terminal condition

g(T, x) = u(x), x ∈ R.

In other words, we need to solve a non-homogeneous partial differential equation. Although the
theory for non-homogeneous PDEs is reasonably well-established, it is not too difficult to guess
what the solution to our particular equation (23.4) must be. If we let

g(t, x) = e−r(T−t)f(t, x), 0 ≤ t ≤ T, x ∈ R,

where f(t, x) is the solution to the homogeneous partial differential equation (Af)(t, x) = 0
given in (23.3) subject to the terminal condition f(T, x) = u(x), then g(T, x) = f(T, x) = u(x),
and

g′(t, x) = e−r(T−t)f ′(t, x), g′′(t, x) = e−r(T−t)f ′′(t, x), and

ġ(t, x) = e−r(T−t)ḟ(t, x) + re−r(T−t)f(t, x)

so that

b(t, x)g′(t, x) +
1
2
a2(t, x)g′′(t, x) + ġ(t, x)

= b(t, x)e−r(T−t)f ′(t, x) +
1
2
a2(t, x)e−r(T−t)f ′′(t, x) + e−r(T−t)ḟ(t, x) + re−r(T−t)f(t, x)

= e−r(T−t)

[
b(t, x)f ′(t, x) +

1
2
a2(t, x)f ′′(t, x) + ḟ(t, x)

]
+ re−r(T−t)f(t, x)

= e−r(T−t)(Af)(t, x) + rg(t, x)

= rg(t, x)

using the assumption that (Af)(t, x) = 0. In other words, we have established the following
extension of the Feynman-Kac representation theorem.

Theorem 23.2 (Feynman-Kac Representation Theorem). Suppose that u ∈ C2(R), and
let {Xt, t ≥ 0} be defined by the SDE

dXt = a(t, Xt) dBt + b(t, Xt) dt.

The unique bounded function g : [0,∞)× R → R satisfying the partial differential equation

b(t, x)g′(t, x) +
1
2
a2(t, x)g′′(t, x) + ġ(t, x)− rg(t, x) = 0, 0 ≤ t ≤ T, x ∈ R,

subject to the terminal condition

g(T, x) = u(x), x ∈ R,

is given by

g(t, x) = e−r(T−t)E[u(XT )|Xt = x].

At this point, let’s recall where we are. We are assuming that the asset price {St, t ≥ 0} evolves
according to

dSt = σ(t, St)St dB̃t + µ(t, St)St dt
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and we want to determine V (0, S0), the fair price at time t = 0 of a European call option with
expiry date T and payoff V (T, ST ) = Λ(ST ) where Λ(x), x ∈ R, is given. We have also shown
that V (t, x) satisfies the PDE

V̇ (t, x) +
σ2(t, x)

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (23.5)

subject to the terminal condition

V (T, x) = Λ(x).

The generalized Feynman-Kac representation theorem tells us that the solution to

b(t, x)g′(t, x) +
1
2
a2(t, x)g′′(t, x) + ġ(t, x)− rg(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (23.6)

subject to the terminal condition g(T, x) = Λ(x) is

g(t, x) = e−r(T−t)E[Λ(XT )|Xt = x], (23.7)

where Xt satisfies the SDE

dXt = a(t, Xt) dBt + b(t, Xt) dt

and {Bt, t ≥ 0} is a standard one-dimensional Brownian motion with B0 = 0. Note that the
expectation in (23.7) is with respect to the process {Xt, t ≥ 0} driven by the Brownian motion
{Bt, t ≥ 0}.

Comparing (23.5) and (23.6) suggests that

b(t, x) = rx and a2(t, x) = σ2(t, x)x2

so that

dXt = σ(t, Xt)Xt dBt + rXt dt, (23.8)

or equivalently,
dXt

Xt
= σ(t, Xt) dBt + r dt,

Hence, we have developed a complete solution to the European call option pricing problem which
we summarize in Theorem 23.3 below.

Remark. The process {Xt, t ≥ 0} defined by the SDE (23.8) is sometimes called the risk-neutral
process associated with the asset price process {St, t ≥ 0} defined by (23.1). As with the asset
price process, the associated risk-neutral process is similar to geometric Brownian motion. Note
that the function σ(t, x) is the same in both equations. However, {B̃t, t ≥ 0}, the Brownian
motion that drives {St, t ≥ 0} is NOT the same as {Bt, t ≥ 0}, the Brownian motion that drives
{Xt, t ≥ 0}.

Remark. The approach we have used to develop the associated risk-neutral process was via
the Feynman-Kac representation theorem. An alternative approach which we do not discuss is
to use the Girsanov-Cameron-Martin theorem to construct an equivalent martingale measure.
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Theorem 23.3. Let V (t, St), 0 ≤ t ≤ T , denote the fair price to pay at time t of a European
call option having payoff V (T, ST ) = Λ(ST ) on the asset price {St, t ≥ 0} which satisfies the
stochastic differential equation

dSt = σ(t, St)St dB̃t + µ(t, St)St dt

where {B̃t, t ≥ 0} is a standard Brownian motion with B0 = 0. The fair price to pay at time
t = 0 is given by

V (0, S0) = e−rT E[Λ(XT )|X0 = S0]

where the associated risk-neutral process {Xt, t ≥ 0} satisfies the stochastic differential equation

dXt = σ(t, Xt)Xt dBt + rXt dt

and {Bt, t ≥ 0} is a standard one-dimensional Brownian motion distinct from {B̃t, t ≥ 0}.

Remark. Since S0, the value of the underlying asset at t = 0, is known, in order to calculate
the expectation E[Λ(XT )|X0 = S0], you need to know something about the distribution of XT .
There is no general formula for determining the distribution of XT in terms of the distribution
of ST unless some additional structure is known about σ(t, x). For instance, assuming that
σ(t, x) = σ is constant leads to the Black-Scholes formula from Lecture #17, while assuming
σ(t, x) = σ(t) is a deterministic function of time leads to an explicit formula which, though
similar, is more complicated to write down.

Example 23.4. We now explain how to recover the Black-Scholes formula in the case that
{St, t ≥ 0} is geometric Brownian motion and Λ(x) = (x − E)+. Since the asset price process
SDE is

dSt = σSt dB̃t + µSt dt

we conclude that the risk-neutral process is

dXt = σXt dBt + rXt dt.

The risk-neutral process is also geometric Brownian motion (but with drift r) so that

XT = X0 exp
{

σBT +
(

r − σ2

2

)
T

}
= S0 exp

{
σBT +

(
r − σ2

2

)
T

}
since we are assuming that X0 = S0. Since BT ∼ N (0, T ), we can write

XT = S0 exp
{(

r − σ2

2

)
T

}
exp

{
σ
√

TZ
}

for Z ∼ N (0, 1). Therefore,

V (0, S0) = e−rT E[Λ(XT )|X0 = S0] = e−rT E[(XT − E)+|X0 = S0]

can be evaluated using Exercise 3.7, namely if a > 0, b > 0, c > 0 are constants and Z ∼ N (0, 1),
then

E[ (aebZ − c)+ ] = aeb2/2 Φ
(

b +
1
b

log
a

c

)
− c Φ

(
1
b

log
a

c

)
,
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with

a = S0 e

(
r−σ2

2

)
T
, b = σ

√
T , c = E.

Doing this, and noting that aeb2/2 = S0e
rT , gives

V (0, S0)

= e−rT E[(XT − E)+|X0 = S0]

= e−rT

S0 erT Φ

σ
√

T +
1

σ
√

T
log

S0 e

(
r−σ2

2

)
T

E

− E Φ

 1
σ
√

T
log

S0 e

(
r−σ2

2

)
T

E


= S0 Φ

(
log(S0/E) + (r + 1

2σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2σ2)T

σ
√

T

)
in agreement with Lecture #17.
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A Numerical Approach to Option Pricing Using
Characteristic Functions

As we discussed in Lectures #21 and #22, it is sometimes possible to determine the charac-
teristic function ϕXT

(θ) for the random variable XT , which is defined via a diffusion. We then
discussed risk-neutrality in Lecture #23, and derived a complete solution to the problem of
pricing European call options.

At this point, it is time to address the following question. How does knowing the characteristic
function help us determine the value of an option?

In order to keep our notation straight, we will write {St, t ≥ 0} for the underlying asset price
process driven by the Brownian motion {B̃t, t ≥ 0}, and we will assume that

dSt

St
= σ(t, St) dB̃t + µ(t, St) dt.

We will then write {Xt, t ≥ 0} for the associated risk-neutral process driven by the Brownian
motion {Bt, t ≥ 0}. Guided by Lecture #23, we will phrase all of our results in terms of the
risk-neutral process {Xt, t ≥ 0}.

Note. The purpose of Example 21.4 with arithmetic Brownian motion and Example 21.5 with
the Ornstein-Uhlenbeck process was to illustrate how the characteristic function could be found
without actually solving the SDE. Of course, neither of these is an adequate model of the asset
price movement. Heston’s model, however, is an adequate model for the underlying asset price,
and in Lecture 22 we found the characteristic function without solving the defining SDE.

Suppose that we are interested in determining the fair price at time t = 0 of a European call
option on the asset price {St, t ≥ 0} with strike price E and expiry date T assuming a risk-free
interest rate r. The payoff function is therefore Λ(x) = (x − E)+. If V (0, S0) denotes the fair
price at time t = 0, then from Theorem 23.3, we can express the solution as

V (0, S0) = e−rT E[(XT − E)+|X0 = S0]

where the expectation is with respect to the associated risk-neutral process {Xt, t ≥ 0} driven
by the Brownian motion {Bt, t ≥ 0}. As we saw in Lecture #23, the associated risk-neutral
process is a geometric-type Brownian motion given by

dXt

Xt
= σ(t, Xt) dBt + r dt.
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It turns out that for the following calculations it is more convenient to consider the process
{Zt, t ≥ 0} where

Zt = log Xt.

Exercise 24.1. Suppose that {Xt, t ≥ 0} satisfies the associated risk-neutral SDE

dXt = σ(t, Xt)Xt dBt + rXt dt.

Use Itô’s formula to determine the SDE satisfied by {Zt, t ≥ 0} where Zt = log Xt.

We will now write the strike price E as ek (so that k = log E) and XT = eZT . Therefore,

V (0, S0) = e−rT E[(XT − E)+|X0 = S0] = e−rT E[(eZT − ek)+]

where Z0 = log X0 = log S0 is known.

Suppose further that we are able to determine the density function of the random variable ZT

which we write as fZT
(z) so that

V (0, S0) = e−rT E[(eZT − ek)+] = e−rT

∫ ∞

−∞
(ez − ek)+fZT

(z) dz = e−rT

∫ ∞

k
(ez − ek)fZT

(z) dz.

We will now view the fair price at time 0 as a function of the logarithm of the strike price k so
that

V (k) = e−rT

∫ ∞

k
(ez − ek)fZT

(z) dz.

As k → −∞ (so that E → 0) we see that V (k) → S0 which implies that V (k) is not integrable:∫ ∞

−∞
V (k) dk does not exist.

It necessarily follows that V (k) is not square-integrable:∫ ∞

−∞
V 2(k) dk does not exist.

However, if we consider

W (k) = eckV (k), (24.1)

then W is square-integrable for a suitable c > 0 which may depend on the model for {St, t ≥ 0}.
The Fourier transform of W is the function Ŵ defined by

Ŵ (ξ) =
∫ ∞

−∞
eiξkW (k) dk. (24.2)

Remark. The existence of the Fourier transform requires that the function W (k) be in L2.

Therefore, substituting in for W (k) gives

Ŵ (ξ) = e−rT

∫ ∞

−∞

∫ ∞

k
eiξkeck(ez − ek)fZT

(z) dz dk

= e−rT

∫ ∞

−∞

∫ ∞

k

(
eze(iξ+c)k − e(iξ+c+1)k

)
fZT

(z) dz dk.
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Switching the order of integration, we find

Ŵ (ξ) = e−rT

∫ ∞

−∞
fZT

(z)
∫ z

−∞

(
eze(iξ+c)k − e(iξ+c+1)k

)
dk dz.

Since ∫ z

−∞

(
eze(iξ+c)k − e(iξ+c+1)k

)
dk =

eze(iξ+c)z

iξ + c
− e(iξ+c+1)z

iξ + c + 1
=

e(iξ+c+1)z

(iξ + c)(iξ + c + 1)
,

we conclude that

Ŵ (ξ) = e−rT

∫ ∞

−∞
fZT

(z)
e(iξ+c+1)z

(iξ + c)(iξ + c + 1)
dz

=
e−rT

(iξ + c)(iξ + c + 1)

∫ ∞

−∞
e(iξ+c+1)zfZT

(z) dz

=
e−rT

(iξ + c)(iξ + c + 1)

∫ ∞

−∞
ei(ξ−i(c+1))zfZT

(z) dz

=
e−rT

(iξ + c)(iξ + c + 1)
E[ei(ξ−i(c+1))ZT ]

=
e−rT

(iξ + c)(iξ + c + 1)
ϕZT

(ξ − i(c + 1)). (24.3)

Remark. It can be shown that a sufficient condition for W (k) to be square-integrable is for
Ŵ (0) to be finite. This is equivalent to

E(Sc+1
T ) < ∞.

The choice c = 0.75 can be shown to work for the Heston model.

Given the Fourier transform Ŵ (ξ), one recovers the original function W (k) via the inverse
Fourier transform defined by

W (k) =
1
π

∫ ∞

0
e−iξkŴ (ξ) dξ. (24.4)

Substituting (24.1) and (24.3) into (24.4) implies

eckV (k) =
1
π

∫ ∞

0
e−iξk e−rT

(iξ + c)(iξ + c + 1)
ϕZT

(ξ − i(c + 1)) dξ

so that

V (0, S0) = V (k) =
e−cke−rT

π

∫ ∞

0

e−iξk

(iξ + c)(iξ + c + 1)
ϕZT

(ξ − i(c + 1)) dξ (24.5)

is the fair price at time t = 0 of a European call option with strike price E = ek and expiry date
T assuming the risk-free interest rate is r > 0.

Remark. Notice that (24.5) expresses the required price of a European call option in terms
of ϕZT

(θ), the characteristic function of ZT = log XT , the logarithm of XT defined via the
risk-neutral SDE. The usefulness of this formula is that it can be approximated numerically in
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an extremely efficient manner using the fast Fourier transform (FFT). In fact, it is shown in [5]
that the FFT approach to option pricing for Heston’s model is over 300 times faster than by
pricing options using Monte Carlo simulations. There are, however, a number of other practical
issues to implementation that the FFT approach to option pricing raises; for further details,
see [5].

Example 24.2. The Heston model assumes that the asset price process {St, t ≥ 0} satisfies the
SDE

dSt =
√

vt St dB̃
(1)
t + µSt dt

where the variance process {vt, t ≥ 0} satisfies

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt

and the two driving Brownian motions {B̃(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are correlated with rate
ρ, i.e.,

d〈B̃(1), B(2)〉t = ρ dt.

Although this is a two-dimensional example, the risk-neutral process can be worked out in a
similar manner to the one-dimensional case. The result is that

dXt =
√

vt Xt dB
(1)
t + rXt dt.

If we now consider

Zt = log(Xt),

then

dZt =
√

vt dB
(1)
t +

(
r − vt

2

)
dt,

and so

ϕZT
(θ)

exp
{

iθx− (iθ+θ2)y

γ coth γT
2

+(a−iσρθ)
+ abT (a−iσρθ)

σ2 + iθrT

}
(

cosh γT
2 + a−iσρθ

γ sinh γT
2

) 2ab
σ2

where x = Z0 = log(X0) and y = v0.
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An Introduction to Functional Analysis for
Financial Applications

For the remainder of the course, we are going to discuss some approaches to risk analysis. We
will do this, however, with some formality. As such, we need to learn a little bit of functional
analysis.

In calculus, we analyze individual functions and study particular properties of these individual
functions.

Example 25.1. Consider the function f(x) = x2. We see that the domain of f is all real
numbers, and the range of f is all non-negative real numbers. The graph of f is a parabola with
its vertex at (0, 0) and opening up. We can also compute

f ′(x) =
d

dx
x2 = 2x and

∫
f(x) dx =

∫
x2 dx =

x3

3
+ C.

In functional analysis we study sets of functions with a view to properties possessed by every
function in the set. Actually, you would have seen a glimpse of this in calculus.

Example 25.2. Let X be the set of all differentiable functions with domain R. If f ∈ X , then
f is necessarily (i) continuous, and (ii) Riemann integrable on every finite interval [a, b].

In order to describe a function acting on a set of functions such as X in the previous example,
we use the word functional (or operator).

Example 25.3. As in the previous example, let X denote the set of differentiable functions on
R. Define the functional D by setting D(f) = f ′ for f ∈ X . That is,

f ∈ X 7→ f ′.

Formally, we define D by

(Df)(x) = f ′(x)

for every x ∈ R, f ∈ X .

Example 25.4. We have already seen a number of differential operators in the context of
the Feynman-Kac representation theorem. If we let X denote the space of all functions f of
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two variables, say f(t, x), such that f ∈ C1([0,∞)) × C2(R), and a(t, x) and b(t, x) are given
functions, then we can define the functional A by setting

(Af)(t, x) = b(t, x)f ′(t, x) +
1
2
a2(t, x)f ′′(t, x) + ḟ(t, x).

The next definition is of fundamental importance to functional analysis.

Definition 25.5. Let X be a space. A norm on X is a function ||·|| : X → R satisfying the
following properties:

(i) ||x|| ≥ 0 for every x ∈ X ,
(ii) ||x|| = 0 if and only if x = 0,
(iii) ||αx|| = |α|||x|| for every α ∈ R and x ∈ X , and
(iv) ||x + y|| ≤ ||x||+ ||y|| for every x, y ∈ X .

Remark. We often call (iv) the triangle inequality.

Example 25.6. The idea of a norm is that it generalizes the usual absolute value on R. Indeed,
let X = R and for x ∈ X define ||x|| = |x|. Properties of absolute value immediately imply that

(i) ||x|| = |x| ≥ 0 for every x ∈ X ,
(ii) ||x|| = |x| = 0 if and only if x = 0, and
(iii) ||αx|| = |αx| = |α||x| = |α|||x|| for every α ∈ R and x ∈ X .

The triangle inequality |x + y| ≤ |x| + |y| is essentially a fact about right-angle triangles. The
proof is straightforward. Observe that xy ≤ |x||y|. Therefore,

x2 + 2xy + y2 ≤ x2 + 2|x||y|+ y2 or, equivalently, (x + y)2 ≤ x2 + 2|x||y|+ y2.

Using the fact that x2 = |x|2 implies

|x + y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

Taking square roots of both sides yields the result.

Exercise 25.7. Assume that x, y ∈ R. Show that the triangle inequality |x + y| ≤ |x| + |y| is
equivalent to the following statements:

(i) |x− y| ≤ |x|+ |y|,
(ii) |x + y| ≥ |x| − |y|,
(iii) |x− y| ≥ |x| − |y|, and
(iv) |x− y| ≥ |y| − |x|.

Example 25.8. Let X = R2. If x ∈ R2, we can write x = (x1, x2). If we define

||x|| =
√

x2
1 + x2

2,

then ||·|| is a norm on X .

Exercise 25.9. Verify that ||x|| =
√

x2
1 + x2

2 is, in fact, a norm on R2.



An Introduction to Functional Analysis for Financial Applications 111

Example 25.10. More generally, let X = Rn. If x ∈ Rn, we can write x = (x1, . . . , xn). If we
define

||x|| =
√

x2
1 + · · ·+ x2

n,

then ||·|| is a norm on X .

Example 25.11. Let X denote the space of continuous functions on [0, 1]. In calculus, we
would write such a function as f(x), 0 ≤ x ≤ 1. In functional analysis, we prefer to write such a
function as x(t), 0 ≤ t ≤ 1. That is, it is traditional to use a lower case x to denote an arbitrary
point in a space. It so happens that our space X consists of individual points x which happen
themselves to be functions. If we define

||x|| = max
0≤t≤1

|x(t)|,

then ||·|| is a norm on X . Indeed,

(i) |x(t)| ≥ 0 for every 0 ≤ t ≤ 1 and x ∈ X so that ||x|| ≥ 0,
(ii) ||x|| = 0 if and only if x(t) = 0 for every 0 ≤ t ≤ 1 (i.e., x = 0), and
(iii) ||αx|| = max

0≤t≤1
|αx(t)| = |α| max

0≤t≤1
|x(t)| = |α|||x|| for every α ∈ R and x ∈ X .

As for (iv), notice that

||x + y|| = max
0≤t≤1

|x(t) + y(t)| ≤ max
0≤t≤1

(|x(t)|+ |y(t)|)

by the usual triangle inequality. Since

max
0≤t≤1

(|x(t)|+ |y(t)|) ≤ max
0≤t≤1

|x(t)|+ max
0≤t≤1

|y(t)| = ||x||+ ||y||,

we conclude ||x + y|| ≤ ||x||+ ||y|| as required. Note that we sometimes write C[0, 1] for the space
of continuous functions on [0, 1].

Example 25.12. Let X denote the space of all random variables with finite variance. In
keeping with the traditional notation for random variables, we prefer to write X ∈ X instead of
the traditional functional analysis notation x ∈ X . As we will see next lecture, if we define

||X|| =
√

E(X2),

then this defines a norm on X . (Actually, this is not quite precise. We will be more careful next
lecture.) A risk measure will be a functional ρ : X → R satisfying certain natural properties.
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A Linear Space of Random Variables

Let X denote the space of all random variables with finite variance. If X ∈ X , define

||X|| =
√

E(X2).

Question. Is ||·|| a norm on X ?

In order to answer this question, we need to verify four properties, namely

(i) ||X|| ≥ 0 for every X ∈ X ,
(ii) ||X|| = 0 if and only if X = 0,
(iii) ||αX|| = |α|||X|| for every α ∈ R and X ∈ X , and
(iv) ||X + Y || ≤ ||X||+ ||Y || for every X, Y ∈ X .

We see that (i) is obviously true since X2 ≥ 0 for any X ∈ X . (Indeed the square of any real
number is non-negative.) As for (iii), we see that if α ∈ R, then

||αX|| =
√

E[(αX)2] =
√

α2E(X2) = |α|
√

E(X2) = |α|||X||.

The trouble comes when we try to verify (ii). One direction is true, namely that if X = 0, then
E(X2) = 0 so that ||X|| = 0. However, if ||X|| = 0 so that E(X2) = 0, then it need not be the
case that X = 0.

Here is one such counterexample. Suppose that we define the random variable X to be 0 if a
head appears on a toss of a fair coin and to be 0 if a tail appears. If the coin lands on its side,
define X to be 1. It then follows that

E(X2) = 02 ·P{head}+ 02 ·P{tail}+ 12 ·P{side} = 0 · 1
2

+ 0 · 1
2

+ 1 · 0 = 0.

This shows that it is theoretically possible to define a random variable X 6= 0 such that ||X|| = 0.
In other words, X = 0 with probability 1, but X is not identically 0. Since (ii) fails, we see
that ||·|| is not a norm.

However, it turns out that (iv) actually holds. In order to verify that this is so, we need the
following lemma.
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Lemma. If a, b ∈ R, then

ab ≤ a2

2
+

b2

2
.

Proof. Clearly (a − b)2 ≥ 0. Expanding gives a2 + b2 − 2ab ≥ 0 so that a2 + b2 ≥ 2ab as
required.

Let X, Y ∈ X and consider

X̃ =
X

||X||
and Ỹ =

Y

||Y ||
so that

||X̃|| =
√

E(X̃2) =

√
E
(

X2

||X||2

)
=

√
E(X2)
||X||2

=

√
E(X2)
||X||

=
||X||
||X||

= 1

and, similarly, ||Ỹ || = 1. By the lemma,

X̃Ỹ ≤ X̃2

2
+

Ỹ 2

2
so that

E(X̃Ỹ ) ≤ 1
2

[
E(X̃2) + E(Ỹ 2)

]
=

1
2

(1 + 1) = 1

since ||X̃||2 = E(X̃2) = 1 and ||Ỹ ||2 = E(Ỹ 2) = 1. In other words,

E(X̃Ỹ ) = E
[

X

||X||
Y

||Y ||

]
≤ 1

implies

E(XY ) ≤ ||X||||Y ||. (26.1)

We now use the fact that (X + Y )2 = X2 + Y 2 + 2XY so that

E[(X + Y )2] = E(X2) + E(Y 2) + 2E(XY ),

or equivalently, ||X + Y ||2 = ||X||2 + ||Y ||2 + 2E(XY ). Using (26.1) we find

||X + Y ||2 ≤ ||X||2 + ||Y ||2 + 2||X||||Y || = (||X||+ ||Y ||)2.

Taking square roots of both sides gives

||X + Y || ≤ ||X||+ ||Y ||

which establishes the triangle inequality (iv).

Remark. We have shown that ||X|| =
√

E(X2) satisfies properties (i), (iii), and (iv) only.
As a result, we call ||·|| a seminorm. If we identify random variables X1 and X2 whenever
P{X1 = X2} = 1, then ||·|| also satisfies (ii) and is truly a norm.

It is common to write L2 to denote the space of random variables of finite variance. In fact, if
L2 is equipped with the norm ||X|| =

√
E(X2), then it can be shown that L2 is a both a Banach

space and a Hilbert space.
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Value at Risk

Suppose that Ω denotes the set of all possible financial scenarios up to a given expiry date T .
In other words, if we write {St, t ≥ 0} to denote the underlying asset price process that we care
about, then Ω consists of all possible trajectories on [0, T ]. We will abbreviate such a trajectory
simply by ω.

Therefore, we will let the random variable X denote our financial position at time T . In other
words, X : Ω → R is given by ω 7→ X(ω) where X(ω) describes our financial position at time T

(or our resulting net worth already discounted) assuming the trajectory ω was realized.

Our goal is to quantify the risk associated with the financial position X. Arbitrarily, we could
use Var(X) to measure risk. Although this is easy to work with, it is symmetric. This is not
desirable in a financial context since upside risk is fine; it is perfectly acceptable to make more
money than expected!

As a first example, we will consider the so-called value at risk at level α. Recall that X denotes
the space of all random variables of finite variance. As we saw in Lecture #26, if we define
||X|| =

√
E(X2) for X ∈ X , then ||·|| defines a norm on X as long as we identify random

variables which are equal with probability one.

Example 27.1. Let X be a given financial position and suppose that α ∈ (0, 1). We will say
that X is acceptable if and only if

P{X < 0} ≤ α.

We then define VaRα(X), the value at risk of the position X at level α ∈ (0, 1), to be

VaRα(X) = inf{m : P{X + m < 0} ≤ α}.

In other words, if X is not acceptable, then the value at risk is the minimal amount m of capital
that is required to be added to X in order to make it acceptable. For instance, suppose that we
declare X to be acceptable if P{X < 0} ≤ 0.1. If X is known to have a N (1, 1) distribution,
then X is not acceptable since P{X < 0} = 0.1587. However, we find (accurate to 4 decimal
places) that P{X < −0.2816} = 0.1. Therefore, if X ∼ N (1, 1), then

VaR0.1(X) = inf{m : P{X + m < 0} ≤ 0.1} = 0.2816.

Since X was not acceptable, we see that the minimal capital we must add to make it acceptable
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is 0.2816. On the other hand, if X ∼ N (3, 1), then X is already acceptable and so

VaR0.1(X) = inf{m : P{X + m < 0} ≤ 0.1} = −1.7184

since P{X < 1.7184} = 0.1. Since X was already acceptable, our value at risk is negative. This
indicates that we could afford to lower our capital by 1.7184 and our position would still be
acceptable. We can write VaRα(X) in terms of the distribution function FX of X as follows.
Let c = −m so that P{X + m < 0} = P{X − c < 0}, and so

P{X − c < 0} = P{X < c} = P{X ≤ c} −P{X = c} = FX(c−)

where c− denotes the limit from the left. Therefore,

VaRα(X) = inf{−c : FX(c−) ≤ α} = − sup{c : FX(c−) ≤ α}.

Although value at risk is widely used, it has a number of drawbacks. For instance, it pays
attention only to shortfalls (X < 0), but never to how bad they are. It may also penalize
diversification. Mathematically, value at risk requires a probability measure P to be known in
advance, and it does not behave in a convex manner.

Exercise 27.2. Show that if X ≤ Y , then VaRα(X) ≥ VaRα(Y ).

Exercise 27.3. Show that if r ∈ R, then VaRα(X + r) = VaRα(X)− r.

As we will learn next lecture, any functional satisfying the properties given in the previous
two exercises will be called a monetary risk measure. That is, value at risk is an example of
a monetary risk measure. As we will see in Lecture #31, however, it is not a coherent risk
measure.
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Monetary Risk Measures

As we saw last lecture, value at risk has a number of drawbacks, including the fact that it
requires a probability measure P to be known in advance.

Instead of using value at risk, we would like to have a measure of risk that does not require
an a priori probability measure. Motivated by the point-of-view of functional analysis, we will
consider a risk measure to be a functional on a space of random variables.

Unfortunately, we cannot work with the space of all random variables of finite variance. This
is because the calculation of the variance of a random variable X requires one to compute
E(X2). However, expectation is computed with respect to a given probability measure, and so
to compute E(X2), one is required to know P in advance.

Thus, we need a more general setup. Suppose that Ω is the set of all possible financial scenarios,
and let X : Ω → R be a function. Denote by X the space of all real-valued bounded functions
on Ω. That is, if we define

||X||∞ = sup
ω∈Ω

|X(ω)|,

then

X = {X : ||X||∞ < ∞}.

It follows from Example 25.11 that ||·||∞ defines a norm on the space of bounded functions which
is sometimes called the sup norm.

Since X with the sup norm does not require a probability to be known, this is the space that
we will work with from now on.

Definition 28.1. We will call a functional ρ : X → R a monetary risk measure if it satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ), and
(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R.

Remark. Notice that ρ(X) ∈ R so that translation invariance implies (with r = ρ(X))

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0.

116



Monetary Risk Measures 117

Furthermore, translation invariance implies (with X = 0)

ρ(r) = ρ(0)− r.

In many situations, there is no loss of generality in assuming that ρ(0) = 0. In fact, we say that
a monetary risk measure is normalized if ρ(0) = 0. Notice that if ρ is normalized, then

ρ(r) = −r

for any r ∈ R.

Example 28.2. Define the worst-case risk measure ρmax by

ρmax(X) = − inf
ω∈Ω

X(ω)

for all X ∈ X . The value ρmax(X) is the least upper bound for the potential loss that can occur
in any scenario. Clearly

inf
ω∈Ω

X(ω) ≤ X.

If ρ is any monetary risk measure, then monotonicity implies

ρ

(
inf
ω∈Ω

X(ω)
)
≥ ρ(X).

As in the previous remark, translation invariance invariance implies

ρ

(
inf
ω∈Ω

X(ω)
)

= ρ(0)− inf
ω∈Ω

X(ω) = ρ(0) + ρmax(X).

Combined, we see

ρ(X) ≤ ρ(0) + ρmax(X).

Thus, if ρ is a normalized monetary risk measure, then

ρ(X) ≤ ρmax(X).

In this sense, ρmax is the most conservative measure of risk.

Exercise 28.3. Verify that ρmax is a monetary risk measure.

Theorem 28.4. Suppose that ρ : X → R is a monetary risk measure. If X, Y ∈ X , then

|ρ(X)− ρ(Y )| ≤ ||X − Y ||∞.

Proof. Clearly X ≤ Y + |X − Y | so that

X ≤ Y + sup
ω∈Ω

|X(ω)− Y (ω)| = Y + ||X − Y ||∞.

Since ||X − Y ||∞ ∈ R, we can use monotonicity and translation invariance to conclude

ρ(X) ≥ ρ(Y + ||X − Y ||∞) = ρ(Y )− ||X − Y ||∞.

In other words,

ρ(Y )− ρ(X) ≤ ||X − Y ||∞.
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Switching X and Y implies ρ(X)− ρ(Y ) ≤ ||X − Y ||∞. from which we conclude

|ρ(X)− ρ(Y )| ≤ ||X − Y ||∞.

as required.

One of the basic tenets of measuring risk is that diversification should not increase risk. This is
expressed through the idea of convexity.

Definition 28.5. We say that the monetary risk measure ρ is convex if

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) (28.1)

for any 0 < λ ≤ 1.

Remark. If ρ is a normalized, convex risk measure, then choosing Y = 0 in (28.1) implies

ρ(λX) ≤ λρ(X) (28.2)

for any 0 < λ ≤ 1.

Remark. If λ > 1, then λ−1 ∈ (0, 1). This means that (28.2) can be written as

ρ(λ−1X) ≤ λ−1ρ(X) or, equivalently, λρ(λ−1X) ≤ ρ(X) (28.3)

for any λ > 1. If we now replace X in (28.3) by λX, then we obtain

ρ(λX) ≥ λρ(X) (28.4)

for any λ > 1.

If we want to replace the inequalities in (28.2) and (28.4) with equalities, then we need something
more than just convexity.

Definition 28.6. A monetary risk measure ρ : X → R is called positively homogeneous if

ρ(λX) = λρ(X)

for any λ > 0.

Remark. Suppose that ρ is positively homogeneous. It then follows that ρ(0) = 0; in other
words, ρ is normalized. Indeed, let λ > 0 be arbitrary and take X = 0 so that ρ(0) = λρ(0). The
only way that this equality can be true is if either λ = 1 or ρ(0) = 0. Since λ > 0 is arbitrary,
we must have ρ(0) = 0.

We now say that a convex, positively homogeneous monetary risk measure is a coherent risk
measure.

Definition 28.7. We will call a functional ρ : X → R a coherent risk measure if it satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ),
(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R,
(iii) convexity, namely ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for any 0 < λ ≤ 1, and
(iv) positive homogeneity, namely ρ(λX) = λρ(X) for any λ > 0.
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Remark. It is possible to replace (iii) in the definition of coherent risk measure with the
following:

(iii)′ subadditivity, namely ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Exercise 28.8. Show that a convex, positively homogeneous monetary risk measure is subad-
ditive.

Exercise 28.9. Show that a subadditive, positively homogeneous monetary risk measure is
convex.

As a result we have the following equivalent definition of coherent risk measure.

Definition 28.10. We will call a functional ρ : X → R a coherent risk measure if it satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ),
(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R,
(iii)′ subadditivity, namely ρ(X + Y ) ≤ ρ(X) + ρ(Y ), and
(iv) positive homogeneity, namely ρ(λX) = λρ(X) for any λ > 0.
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Risk Measures and Their Acceptance Sets

Recall. We write X to denote the space of all bounded random variables X : Ω → R with norm

||X|| = sup
ω∈Ω

|X(ω)|.

A monetary risk measure ρ : X → R is a functional which satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ), and
(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R.

If ρ also satisfies

(iii) convexity, namely ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for any 0 < λ ≤ 1, and
(iv) positive homogeneity, namely ρ(λX) = λρ(X) for any λ > 0,

then we say that ρ is a coherent risk measure.

Given a monetary risk measure ρ, we can define its associated acceptance set Aρ to be

Aρ = {X ∈ X : ρ(X) ≤ 0}.

In other words, Aρ ⊆ X consists of those financial positions X for which no extra capital is
needed to make them acceptable when ρ is used to measure risk.

Theorem 29.1. If ρ is a monetary risk measure with associated acceptance set Aρ, then the
following properties hold:

(a) if X ∈ Aρ and Y ∈ X with Y ≥ X, then Y ∈ Aρ,
(b) inf{m ∈ R : m ∈ Aρ} > −∞, and
(c) if X ∈ Aρ and Y ∈ X , then

{λ ∈ [0, 1] : λX + (1− λ)Y ∈ Aρ}

is a closed subset of [0, 1].
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Proof. The verification of both (a) and (b) is straightforward. As for (c), consider the function

λ 7→ ρ(λX + (1− λ)Y ).

It follows from Theorem 28.4 that this function is continuous. That is, for λ ∈ [0, 1], let

f(λ) = ρ(λX + (1− λ)Y ),

and note that if λ1, λ2 ∈ [0, 1], then

|f(λ1)− f(λ2)| = |ρ(λ1X + (1− λ1)Y )− ρ(λ2X + (1− λ2)Y )|
≤ ||(λ1 − λ2)X + (λ2 − λ1)Y ||∞
≤ ||(λ1 − λ2)X||∞ + ||(λ2 − λ1)Y ||∞
= |λ1 − λ2|||X||∞ + |λ2 − λ1|||Y ||∞
= |λ1 − λ2|(||X||∞ + ||Y ||∞)

where the first inequality follows from Theorem 28.4 and the second inequality follows from the
triangle inequality. Since X, Y ∈ X , we have ||X||∞ + ||Y ||∞ < ∞. Therefore, if λ2 is fixed and
λ1 → λ2, then f(λ1) → f(λ2) so that f is indeed continuous. We now note that the inverse
image of a closed set under a continuous function is closed. Hence, the set of λ ∈ [0, 1] such that
ρ(λX + (1− λ)Y ) ≤ 0 is closed.

Remark. The intuition for (b) is that some negative constants might be acceptable, but we
cannot go arbitrarily far to −∞.

Alternatively, suppose that we are given a set A ⊆ X with the following two properties:

(a) if X ∈ A and Y ∈ X with Y ≥ X, then Y ∈ A, and
(b) inf{m ∈ R : m ∈ A} > −∞.

If we then define ρA : X → R by setting

ρA(X) = inf{m ∈ R : X + m ∈ A},

then ρA is a monetary risk measure.

Exercise 29.2. Verify that ρA(X) = inf{m ∈ R : X + m ∈ A} is, in fact, a monetary risk
measure. Both monotonicity and translation invariance are relatively straightforward to verify.
The only tricky part is showing that ρA(X) is finite.

Theorem 29.3. If ρ : X → R is a monetary risk measure, then

ρAρ = ρ.

Proof. Suppose that ρ : X → R is given and let Aρ = {X ∈ X : ρ(X) ≤ 0} be its acceptance
set. By definition, if X ∈ X , then

ρAρ(X) = inf{m ∈ R : X + m ∈ Aρ}.

However, by definition again

inf{m ∈ R : X + m ∈ Aρ} = inf{m ∈ R : ρ(X + m) ≤ 0}.
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Translation invariance implies ρ(X + m) = ρ(X)−m so that

inf{m ∈ R : ρ(X + m) ≤ 0} = inf{m ∈ R : ρ(X) ≤ m}.

However, inf{m ∈ R : ρ(X) ≤ m} is precisely equal to ρ(X). In other words,

ρAρ(X) = ρ(X)

for every X ∈ X and the proof is complete.

Theorem 29.4. If A ⊆ X is given, then A ⊆ AρA.

Proof. In order to prove A ⊆ AρA we must show that if X ∈ A, then X ∈ AρA . Therefore,
suppose that X ∈ A so that ρA(X) = inf{m : X + m ∈ A} ≤ 0. By definition

Aρ = {X ∈ X : ρ(X) ≤ 0}

for any monetary risk measure ρ. Thus, we must have X ∈ AρA since ρA(X) ≤ 0.

Remark. It turns out that the converse, however, is not necessarily true. In order to conclude
that A = AρA there must be more structure on A. It turns out that the closure property (c) is
sufficient.

Theorem 29.5. Suppose A ⊆ X satisfies the following properties:

(a) if X ∈ Aρ and Y ∈ X with Y ≥ X, then Y ∈ Aρ,
(b) inf{m ∈ R : m ∈ Aρ} > −∞, and
(c) if X ∈ Aρ and Y ∈ X , then

{λ ∈ [0, 1] : λX + (1− λ)Y ∈ Aρ}

is a closed subset of [0, 1].

It then follows that A = AρA.

Remark. As a consequence of Therorems 29.3 and 29.5, we have a dual view of risk measures
and their acceptance sets. Instead of proving a result directly for a monetary risk measure, it
might be easier to work with the corresponding acceptance set. For instance, it is proved in [8]
that ρA is a coherent risk measure if and only if A is a convex cone. Thus, if one can find an
acceptance set A which is a convex cone, then the resulting risk measure ρA is coherent.
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A Representation of Coherent Risk Measures

Recall from Example 28.2 that the worst-case risk measure ρmax was defined by

ρmax(X) = − inf
ω∈Ω

X(ω)

for X ∈ X where

X =
{

X : Ω → R such that ||X||∞ = sup
ω∈Ω

|X(ω)| < ∞
}

.

We then showed that if ρ is any normalized monetary risk measure, then

ρ(X) ≤ ρmax(X).

Fact. It turns out the corresponding acceptance set for ρmax is a convex cone so that ρmax is
actually a coherent risk measure. Since a coherent risk measure is necessarily normalized, we
conclude that if ρ is a coherent risk measure, then

ρ(X) ≤ ρmax(X)

for any X ∈ X .

We also recall that it was necessary to introduce the space X of bounded financial positions X

since we wanted to analyze risk without regard to any underlying distribution for X.

It turns out, however, that we can introduce distributions back into our analysis of risk! Using
two of the most important theorems in functional analysis, namely the Hahn-Banach theorem
and the Riesz-Markov theorem, it can be shown that ρmax(X) can be represented as

ρmax(X) = sup
P∈P

EP(−X)

where P denotes the class of all probability measures on Ω and EP denotes expectation assuming
that the distribution of X is induced by P.

In other words, the representation of ρmax(X) is

− inf
ω∈Ω

X(ω) = sup
P∈P

EP(−X). (30.1)
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In order to motivate this representation, we will assume that X ≤ 0 and show that both sides
of (30.1) actually equal ||X||∞. For the left side, notice that

− inf
ω∈Ω

X(ω) = sup
ω∈Ω

(−X(ω)) = sup
ω∈Ω

|X(ω)| = ||X||∞.

As for the right side, it is here that we need to use the Hahn-Banach and Riesz-Markov theorems.
The basic idea is the following. Suppose that the distribution P is given and consider EP(−X).
Since X ≤ 0, we see that

−X ≤ sup
ω∈Ω

(−X(ω)) = ||X||∞

as above, and so

EP(−X) ≤ EP(||X||∞) = ||X||∞EP(1) = ||X||∞.

If we now take the supremum over all P ∈ P, then

sup
P∈P

EP(−X) ≤ ||X||∞.

The Hahn-Banach and Riesz-Markov theorems say that the supremum is actually achieved.
That is, there exists some P ∈ P for which EP(−X) = ||X||∞; in other words,

sup
P∈P

EP(−X) = ||X||∞.

The extension to a general bounded function X (as opposed to just X ≤ 0) is similar, but more
technical.

This also motivates the representation theorem that we are about to state. Since any coherent
risk measure ρ is bounded above by the coherent risk measure ρmax, and since ρmax(X) can be
represented as the supremum of EP(−X) over all P ∈ P, it seems reasonable that ρ can be
represented as the supremum of EP(−X) over some suitable set of P ∈ P.

Theorem 30.1. A functional ρ : X → R is a coherent risk measure if and only if there exists
a subset Q ⊆ P such that

ρ(X) = sup
P∈Q

EP(−X)

for X ∈ X . Moreover, Q can be chosen as a convex set so that the supremum is attained.

This theorem says that if ρ is a given coherent risk measure, then there exists some subset Q of
P such that

ρ(X) = sup
P∈Q

EP(−X).

Of course, if Q ⊆ P, then

sup
P∈Q

EP(−X) ≤ sup
P∈P

EP(−X)

which just says that ρ(X) ≤ ρmax(X).
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Further Remarks on Value at Risk

We introduced the concept of value at risk in Lecture #27. One of the problems with value at
risk is that it requires a probability measure to be known in advance. This is the reason that
we studied monetary risk measures in general culminating with Theorem 30.1, a representation
theorem for coherent risk measures.

Assume for the rest of this lecture that a probability measure is known so that we can compute
the probabilities and expectations required for value at risk. Let X denote the space of random
variables of finite variance; that is,

X = {X : Ω → R such that ||X|| =
√

E(X2) < ∞}.

Recall that if X ∈ X , then

VaRα(X) = inf{−c : FX(c−) ≤ α} = − sup{c : FX(c−) ≤ α}.

If X is a continuous random variable, then FX(c−) = FX(c) and FX is strictly increasing so
that there exists a unique c such that FX(c) = α or, equivalently, c = F−1

X (α). Thus,

VaRα(X) = −F−1
X (α).

Example 31.1. If X ∼ N (µ, σ), then it follows from Exercise 3.4 that

FX(x) = Φ
(

x− µ

σ

)
.

Therefore, to determine VaRα(X) we begin by solving

Φ
(

c− µ

σ

)
= α

for c. Doing so gives c = µ + Φ−1(α)σ and so

VaRα(X) = −µ− Φ−1(α)σ.

We can write this in a slightly different way by noting that

−Φ−1(α) = Φ−1(1− α).
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Indeed Exercise 3.3 implies that

Φ(−Φ−1(1− α)) = 1− Φ(Φ−1(1− α)) = 1− (1− α) = α

and so −Φ−1(1− α)) = Φ−1(α) as required. That is,

VaRα(X) = −µ + Φ−1(1− α)σ.

Finally, since E(X) = µ and SD(X) = σ we have

VaRα(X) = E(−X) + Φ−1(1− α) SD(X).

Example 31.2. Suppose that X has a Pareto distribution with scale parameter θ > 0 and
shape parameter p > 1 so that

FX(x) = 1−
(

θ

x + θ

)p

for x > 0. Solving

1−
(

θ

c + θ

)p

= α

for c implies

c = θ(1− α)−1/p − θ

so that

VaRα(X) = θ − θ(1− α)−1/p.

Exercise 31.3. If X has a Raleigh distribution with parameter θ > 0 so that

fX(x) =
2
θ
xe−x2/θ, x > 0,

determine VaRα(X).

Exercise 31.4. If X has a binomial distribution with parameters n = 3 and p = 1/2, determine
VaRα(X) for α = 0.1 and α = 0.3.

If X is a random variable, we define the Sharpe ratio to be

E(X)
SD(X)

.

We will say that X is acceptable at level ` if

E(X)
SD(X)

≥ `

so that the corresponding acceptance set is

A` =
{

X ∈ L2 :
E(X)

SD(X)
≥ `

}
= {X ∈ L2 : E(X) ≥ ` SD(X)}.
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As in Lecture #29, the associated risk measure is

ρ`(X) = inf{m ∈ R : X + m ∈ A`} = inf{m ∈ R : E(X + m) ≥ ` SD(X + m)}
= inf{m ∈ R : m ≥ E(−X) + ` SD(X)}
= E(−X) + ` SD(X).

Remark. If X ∼ N (µ, σ2), then VaRα(X) is of the form specified by the Sharpe ratio, namely

ρ`(X) = E(−X) + ` SD(X)

with ` = Φ−1(1− α).

We will now show that ρ`(X) is not, in general, a monetary risk measure.

Let X = eZ with Z ∼ N (0, σ2) so that X has a lognormal distribution. Using Exercise 3.25, we
find

ρ`(X) = E(−X) + ` SD(X) = −eσ2/2 + `eσ2/2
√

eσ2 − 1 = −eσ2/2
[
1− `

√
eσ2 − 1

]
.

Monetary risk measures must satisfy monotonicity; in particular, if X ≥ 0, then ρ(X) ≤ 0.
However, with X = eZ we see that X ≥ 0, but we can choose σ sufficiently large to guarantee
ρ`(X) ≥ 0. That is,

1− `
√

eσ2 − 1 ≤ 0

if and only if

σ ≥
√

log(`−2 + 1).

Thus, ρ`(X) is not a monetary risk measure.

Remark. This does not show that value at risk is not a monetary risk measure. As we saw in
the exercises at the end of Lecture #27, value at risk is a monetary risk measure. However, it
can be shown that value at risk is not a coherent risk measure.

Finally, value at risk is the basis for the following coherent risk measure which has been called
tail value at risk, conditional tail expectation, tail conditional expectation, expected shortfall,
conditional value at risk, and average value at risk.

Let X ∈ X be given. For 0 < α ≤ 1, the average value at risk at level α is given by

AVaRα(X) =
1
α

∫ α

0
VaRx(X) dx.

It is shown in [8] that average value at risk is a coherent risk measure.

Exercise 31.5. If X ∼ N (µ, σ2), determine AVaRα(X).
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