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Statistics 441 (Winter 2009) January 5, 2009
Prof. Michael Kozdron

Lecture #1: Introduction to Financial Derivatives

The primary goal of this course is to develop the Black-Scholes option pricing formula with
a certain amount of mathematical rigour. This will require learning some stochastic calculus
which is fundamental to the solution of the option pricing problem. The tools of stochastic
calculus can then be applied to solve more sophisticated problems in finance and economics.
As we will learn, the general Black-Scholes formula for pricing options has had a profound
impact on the world of finance. In fact, trillions of dollars worth of options trades are
executed each year using this model and its variants. In 1997, Myron S. Scholes (originally
from Timmins, ON) and Robert C. Merton were awarded the Nobel Prize in Economics1 for
this work. (Fischer S. Black had died in 1995.)

Exercise 1.1. Read about these Nobel laureates at

http://nobelprize.org/nobel prizes/economics/laureates/1997/index.html

and read the prize lectures Derivatives in a Dynamic Environment by Scholes and Applic-
ations of Option-Pricing Theory: Twenty-Five Years Later by Merton also available from
this website.

As noted by McDonald in the Preface of his book Derivative Markets [18],

“Thirty years ago the Black-Scholes formula was new, and derivatives was an eso-
teric and specialized subject. Today, a basic knowledge of derivatives is necessary
to understand modern finance.”

Before we proceed any further, we should be clear about what exactly a derivative is.

Definition 1.2. A derivative is a financial instrument whose value is determined by the
value of something else.

That is, a derivative is a financial object derived from other, usually more basic, financial
objects. The basic objects are known as assets. According to Higham [11], the term asset is
used to describe any financial object whose value is known at present but is liable to change
over time. A stock is an example of an asset.

A bond is used to indicate cash invested in a risk-free savings account earning continuously
compounded interest at a known rate.

Note. The term asset does not seem to be used consistently in the literature. There are
some sources that consider a derivative to be an asset, while others consider a bond to be
an asset. We will follow Higham [11] and use it primarily to refer to stocks (and not to
derivatives or bonds).

1Technically, Scholes and Merton won The Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel.
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Example 1.3. A mutual fund can be considered as a derivative since the mutual fund is
composed of a range of investments in various stocks and bonds. Mutual funds are often seen
as a good investment for people who want to hedge their risk (i.e., diversify their portfolio)
and/or do not have the capital or desire to invest heavily in a single stock. Chartered banks,
such as TD Canada Trust, sell mutual funds as well as other investments; see

http://www.tdcanadatrust.com/mutualfunds/mffh.jsp

for further information.

Other examples of derivatives include options, futures, and swaps. As you probably guessed,
our goal is to develop a theory for pricing options.

Example 1.4. An example that is particularly relevant to residents of Saskatchewan is the
Guaranteed Delivery Contract of the Canadian Wheat Board (CWB). See

http://www.cwb.ca/public/en/farmers/contracts/guaranteed/

for more information. The basic idea is that a farmer selling, say, barley can enter into a
contract in August with the CWB whereby the CWB agrees to pay the farmer a fixed price
per tonne of barley in December. The farmer is, in essence, betting that the price of barley
in December will be lower that the contract price, in which case the farmer earns more for
his barley than the market value. On the other hand, the CWB is betting that the market
price per tonne of barley will be higher than the contract price, in which case they can
immediately sell the barely that they receive from the farmer for the current market price
and hence make a profit. This is an example of an option, and it is a fundamental problem
to determine how much this option should be worth. That is, how much should the CWB
charge the farmer for the opportunity to enter into an option contract. The Black-Scholes
formula will tell us how to price such an option.

Thus, an option is a contract entered at time 0 whereby the buyer has the right, but not the
obligation, to purchase, at time T , shares of a stock for the fixed value $E. If, at time T , the
actual price of the stock is greater than $E, then the buyer exercises the option, buys the
stocks for $E each, and immediately sells them to make a profit. If, at time T , the actual
price of the stock is less than $E, then the buyer does not exercise the option and the option
becomes worthless. The question, therefore, is “How much should the buyer pay at time 0
for this contract?” Put another way, “What is the fair price of this contract?”

Technically, there are call options and put options depending on one’s perspective.

Definition 1.5. A European call option gives its holder the right (but not the obligation)
to purchase from the writer a prescribed asset for a prescribed price at a prescribed time in
the future.

Definition 1.6. A European put option gives its holder the right (but not the obligation) to
sell to the writer a prescribed asset for a prescribed price at a prescribed time in the future.
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The prescribed price is known as the exercise price or the strike price. The prescribed time
in the future is known as the expiry date.

The adjective European is to be contrasted with American. While a European option can be
exercised only on the expiry date, an American option can be exercised at any time between
the start date and the expiry date. In Chapter 18 of Higham [11], we will see that American
call options have the same value as European call options. American put options, however,
are more complicated.

Hence, our primary goal will be to systematically develop a fair value of a European call
option at time t = 0. (The so-called put-call parity for European options means that our
solution will also apply to European put options.)

Finally, we will use the term portfolio to describe a combination of

(i) assets (i.e., stocks),

(ii) options, and

(iii) cash invested in a bank, i.e., bonds.

We assume that it is possible to hold negative amounts of each at no penalty. In other words,
we will be allowed to short sell stocks and bonds freely and for no cost.

To conclude these introductory remarks, I would like to draw your attention to the recent
book Quant Job Interview Questions and Answers by M. Joshi, A. Downes, and N. Den-
son [14]. To quote from the book description,

“Designed to get you a job in quantitative finance, this book contains over 225
interview questions taken from actual interviews in the City and Wall Street.
Each question comes with a full detailed solution, discussion of what the inter-
viewer is seeking and possible follow-up questions. Topics covered include option
pricing, probability, mathematics, numerical algorithms and C++, as well as a
discussion of the interview process and the non-technical interview.”

The “City” refers to “New York City” which is, arguably, the financial capital of the world.
(And yes, at least one University of Regina actuarial science graduate has worked in New
York City.) You can see a preview of this book at

http://www.lulu.com/content/2436045

and read questions (such as these ones on page 17).

• In the Black-Scholes world, price a European option with a payoff of max{S2
T −K, 0}

at time T .

• Develop a formula for the price of a derivative paying max{ST (ST − K), 0} in the
Black-Scholes model.

By the end of the course, you will know how to answer these questions!
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Prof. Michael Kozdron

Lecture #2: Financial Option Valuation Preliminaries

Recall that a portfolio describes a combination of

(i) assets (i.e., stocks),

(ii) options, and

(iii) cash invested in a bank, i.e., bonds.

We will write S(t) to denote the value of an asset at time t ≥ 0. Since an asset is defined
as a financial object whose value is known at present but is liable to change over time, we
see that it is reasonable to model the asset price (i.e., stock price) by a stochastic process
{St, t ≥ 0}. There will be much to say about this later.

Suppose that D(t) denotes the value at time t of an investment which grows according to a
continuously compounded interest rate r. That is, suppose that an amount D0 is invested
at time 0. Its value at time t ≥ 0 is given by

D(t) = ertD0. (2.1)

There are a couple of different ways to derive this formula for compound interest. One way
familiar to actuarial science students is as the solution of a constant force of interest equation.
That is, D(t) is the solution of the equation

δt = r with r > 0

where

δt =
d

dt
log D(t)

and initial condition D(0) = D0. In other words,

d

dt
log D(t) = r implies

D′(t)

D(t)
= r

so that D′(t) = rD(t). This differential equation can then be solved by separation-of-
variables giving (2.1).

Remark. We will use D(t) as our model of the risk-free savings account, or bond. Assuming
that such a bond exists means that having $1 at time 0 or $ert at time t are both of equal
value. Equivalently, having $1 at time t or $e−rt at time 0 are both of equal value. This is
sometimes known as the time value of money. Transferring money in this way is known as
discounting for interest or discounting for inflation.
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The word arbitrage is a fancy way of saying “money for nothing.” One of the fundamental
assumptions that we will make is that of no arbitrage (informally, we might call this the no
free lunch assumption).

The form of the no arbitrage assumption given in Higham [11] is as follows.

There is never an opportunity to make a risk-free profit that gives a greater
return than that provided by interest from a bank deposit.

Note that this only applies to risk-free profit.

Example 2.1. Suppose that a company has offices in Toronto and London. The exchange
rate between the dollar and the pound must be the same in both cities. If the exchange
rate were $1.60 = £1 in Toronto but only $1.58 = £1 in London, then the company could
instantly sell pounds in Toronto for $1.60 each and buy them back in London for only $1.58
making a risk-free profit of $0.02 per pound. This would lead to unlimited profit for the
company. Others would then execute the same trades leading to more unlimited profit and
a total collapse of the market! Of course, the market would never allow such an obvious
discrepancy to exist for any period of time.

The scenario described in the previous example is an illustration of an economic law known
as the law of one price which states that “in an efficient market all identical goods must
have only one price.” An obvious violation of the efficient market assumption is found in the
pricing of gasoline. Even in Regina, one can often find two gas stations on opposite sides of
the street selling gas at different prices! (Figuring out how to legally take advantage of such
a discrepancy is another matter altogether!)

The job of arbitrageurs is to scour the markets looking for arbitrage opportunities in order
to make risk-free profit. The website

http://www.arbitrageview.com/riskarb.htm

lists some arbitrage opportunities in pending merger deals in the U.S. market. The following
quote from this website is also worth including.

“It is important to note that merger arbitrage is not a complete risk free strategy.
Profiting on the discount spread may look like the closest thing to a free lunch
on Wall Street, however there are number of risks such as the probability of a
deal failing, shareholders voting down a deal, revising the terms of the merger,
potential lawsuits, etc. In addition the trading discount captures the time value
of money for the period between the announcement and the closing of the deal.
Again the arbitrageurs face the risk of a deal being prolonged and achieving
smaller rate of return on an annualized basis.”

Nonetheless, in order to derive a reasonable mathematical model of a financial market we
must not allow for arbitrage opportunities.
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A neat little argument gives the relationship between the value (at time 0) of a European
call option C and the value (at time 0) of a European put option P (with both options being
on the same asset S at the same expiry date T and same strike price E). This is known as
the so-called put-call parity for European options.

Consider two portfolios Π1 and Π2 where (at time 0)

• Π1 consists of one call option plus Ee−rT invested in a risk-free bond, and

• Π2 consists of one put option plus one unit of the asset S(0).

At the expiry date T , the portfolio Π1 is worth max{S(T ) − E, 0} + E = max{S(T ), E},
and the portfolio Π2 is worth max{E − S(T ), 0} + S(T ) = max{S(T ), E}. Hence, since
both portfolios always give the same payoff, the no arbitrage assumption (or simply common
sense) dictates that they have the same value at time 0. Thus,

C + Ee−rT = P + S(0). (2.2)

It is important to note that we have not figured out a fair value at time 0 for a European
call option (or a European put option). We have only concluded that it is sufficient to price
the European call option, because the value of the European put option follows immediately
from (2.2). We will return to this result in Lecture #18.

Summary. We assume that it is possible to hold a portfolio of stocks and bonds. Both can
be freely traded, and we can hold negative amounts of each without penalty. (That is, we
can short-sell either instrument at no cost.) The stock is a risky asset which can be bought
or sold (or even short-sold) in arbitrary units. Furthermore, it does not pay dividends. The
bond, on the other hand, is a risk-free investment. The money invested in a bond is secure
and grows according to a continuously compounded interest rate r. Trading takes place
in continuous time, there are no transaction costs, and we will not be concerned with the
bid-ask spread when pricing options. We trade in an efficient market in which arbitrage
opportunities do not exist.

Example 2.2 (Pricing a forward contract). As already noted, our primary goal is to de-
termine the fair price to pay (at time 0) for a European call option. The call option is only
one example of a financial derivative. The oldest derivative, and arguably the most natural
claim on a stock, is the forward.

If two parties enter into a forward contract (at time 0), then one party (the seller) agrees to
give the other party (the holder) the specified stock at some prescribed time in the future
for some prescribed price.

Suppose that T denotes the expiry date, F denotes the strike price, and the value of the
stock at time t > 0 is S(t).

Note that a forward is not the same as a European call option. The stock must change hands
at time T for $F . The contract dictates that the seller is obliged to produce the stock at
time T and that the holder is obliged to pay $F for the stock. Thus, the time T value of the
forward contract for the holder is S(T )−F , and the time T value for the seller is F −S(T ).
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Since money will change hands at time T , to determine the fair value of this contract means
to determine the value of F .

Suppose that the distribution of the stock at time T is known. That is, suppose that S(T )
is a random variable having a known continuous distribution with density function f . The
expected value of S(T ) is therefore

E[S(T )] =

∫ ∞

−∞
xf(x) dx.

Thus, the expected value at time T of the forward contract is

E[S(T )− F ]

(which is calculable exactly since the distribution of S(T ) is known). This suggests that the
fair value of the strike price should satisfy

0 = E[S(T )− F ] so that F = E[S(T )].

In fact, the strong law of large numbers justifies this calculation—in the long run, the average
of outcomes tends towards the expected value of a single outcome. In other words, the law
of large numbers suggests that the fair strike price is F = E[S(T )].

The problem is that this price is not enforceable. That is, although our calculation is not
incorrect, it does lead to an arbitrage opportunity. Thus, in order to show that expectation
pricing is not enforceable, we need to construct a portfolio which allows for an arbitrage
opportunity.

Consider the seller of the contract obliged to deliver the stock at time T in exchange for $F .
The seller borrows S0 now, buys the stock, puts it in a drawer, and waits. At time T , the
seller then repays the loan for S0e

rT but has the stock ready to deliver. Thus, if the strike
price is less that S0e

rT , the seller will lose money with certainty. If the strike price is more
than S0e

rT , the seller will make money with certainty.

Of course, the holder of the contract can run this scheme in reverse. Thus, writing more
than S0e

rT will mean that the holder will lose money with certainty.

Hence, the only fair value for the strike price is F = S0e
rT .

Remark. To put it quite simply, if there is an arbitrage price, then any other price is too
dangerous to quote. Notice that the no arbitrage price for the forward contract completely
ignores the randomness in the stock. If E(ST ) > F , then the holder of a forward contract
expects to make money. However, so do holders of the stock itself!

Remark. Both a forward contract and a futures contract are contracts whereby the seller is
obliged to deliver the prescribed asset to the holder at the prescribed time for the prescribed
price. There are, however, two main differences. The first is that futures are traded on
an exchange, while forwards are traded over-the-counter. The second is that futures are
margined, while forwards are not. These matters will not concern us in this course.
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Prof. Michael Kozdron

Lecture #3: Introduction to MATLAB and Computer Simulation

Today we met in the lab to briefly discuss how to use MATLAB. In particular, we completed
the following sections from Higham [11]:

• Section 1.7: Plot a simple payoff diagram,

• Section 2.8: Illustrate compound interest, and

• Section 3.8: Illustrate normal distribution.

3–1



Statistics 441 (Winter 2009) January 12, 2009
Prof. Michael Kozdron

Lecture #4: Normal and Lognormal Random Variables

The purpose of this lecture is to remind you of some of the key properties of normal and
lognormal random variables which are basic objects in the mathematical theory of finance.
(Of course, you already know of the ubiquity of the normal distribution from your elementary
probability classes since it arises in the central limit theorem, and if you have studied any
actuarial science you already realize how important lognormal random variables are.)

Recall that a continuous random variable Z is said to have a normal distribution with mean
0 and variance 1 if the density function of Z is

fZ(z) =
1√
2π

e−
z2

2 , −∞ < z < ∞.

If Z has such a distribution, we write Z ∼ N (0, 1).

Exercise 4.1. Show directly that if Z ∼ N (0, 1), then E(Z) = 0 and Var(Z) = 1. That is,
calculate

1√
2π

∫ ∞

−∞
ze−

z2

2 dz and
1√
2π

∫ ∞

−∞
z2e−

z2

2 dz

using only results from elementary calculus. This calculation justifies the use of the “mean
0 and variance 1” phrase in the definition above.

Let µ ∈ R and let σ > 0. We say that a continuous random variable X has a normal
distribution with mean µ and variance σ2 if the density function of X is

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x < ∞.

If X has such a distribution, we write X ∼ N (µ, σ2).

Shortly, you will be asked to prove the following result which establishes the relationship
between the random variables Z ∼ N (0, 1) and X ∼ N (µ, σ2).

Theorem 4.2. Suppose that Z ∼ N (0, 1), and let µ ∈ R, σ > 0 be constants. If the random
variable X is defined by X = σZ + µ, then X ∼ N (µ, σ2). Conversely, if X ∼ N (µ, σ2),
and the random variable Z is defined by

Z =
X − µ

σ
,

then Z ∼ N (0, 1).

Let

Φ(z) =

∫ z

−∞

1√
2π

e−
x2

2 dx

denote the standard normal cumulative distribution function. That is, Φ(z) = P{Z ≤ z} =
FZ(z) is the distribution function of a random variable Z ∼ N (0, 1).
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Remark. Higham [11] writes N instead of Φ for the standard normal cumulative distribution
function. The notation Φ is far more common in the literature, and so we prefer to use it
instead of N .

Exercise 4.3. Show that 1− Φ(z) = Φ(−z).

Exercise 4.4. Show that if X ∼ N (µ, σ2), then the distribution function of X is given by

FX(x) = Φ

(
x− µ

σ

)
.

Exercise 4.5. Use the result of Exercise 4.4 to complete the proof of Theorem 4.2.

The next two exercises are extremely important for us. In fact, these exercises ask you to
prove special cases of the Black-Scholes formula.

Notation. We write x+ = max{0, x} to denote the positive part of x.

Exercise 4.6. Suppose that Z ∼ N (0, 1), and let c > 0 be a constant. Compute

E[ (eZ − c)+ ].

You will need to express your answer in terms of Φ.

Answer. e1/2 Φ(1− log c)− c Φ(− log c)

Exercise 4.7. Suppose that Z ∼ N (0, 1), and let a > 0, b > 0, and c > 0 be constants.
Compute

E[ (aebZ − c)+ ].

You will need to express your answer in terms of Φ.

Answer. aeb2/2 Φ
(
b + 1

b
log a

c

)
− c Φ

(
1
b

log a
c

)
Recall that the characteristic function of a random variable X is the function ϕX : R → C
given by ϕX(t) = E(eitX).

Exercise 4.8. Show that if Z ∼ N (0, 1), then the characteristic function of Z is

ϕZ(t) = exp

{
−t2

2

}
.

Exercise 4.9. Show that if X ∼ N (µ, σ2), then the characteristic function of X is

ϕX(t) = exp

{
iµt− σ2t2

2

}
.

The importance of characteristic functions is that they completely characterize the distri-
bution of a random variable since the characteristic function always exists (unlike moment
generating functions which do not always exist).
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Theorem 4.10. Suppose that X and Y are random variables. The characteristic functions
ϕX and ϕY are equal if and only if X and Y are equal in distribution (that is, FX = FY ).

Proof. For a proof, see Theorem 4.1.2 on page 160 of [9].

Exercise 4.11. One consequence of this theorem is that it allows for an alternative solution
to Exercise 4.5. That is, use characteristic functions to complete the proof of Theorem 4.2.

We will have occasion to analyze sums of normal random variables. The purpose of the next
several exercises and results is to collect all of the facts that we will need. The first exercise
shows that a linear combination of independent normals is again normal.

Exercise 4.12. Suppose that X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are independent. Show

that for any a, b ∈ R,

aX1 + bX2 ∼ N
(
aµ1 + bµ2, a

2σ2
1 + b2σ2

2

)
.

Of course, whenever two random variables are independent, they are necessarily uncorrelated.
However, the converse is not true in general, even in the case of normal random variables. As
the following example shows, uncorrelated normal random variables need not be independent.

Example 4.13. Suppose that X1 ∼ N (0, 1) and suppose further that Y is independent
of X1 with P{Y = 1} = P{Y = −1} = 1/2. If we set X2 = Y X1, then it follows that
X2 ∼ N (0, 1). (Verify this fact.) Furthermore, X1 and X2 are uncorrelated since

Cov(X1, X2) = E(X1X2) = E(X2
1Y ) = E(X2

1 )E(Y ) = 1 · 0 = 0

using the fact that X1 and Y are independent. However, X1 and X2 are not independent
since

P{X1 ≥ 1, X2 ≥ 1} = P{X1 ≥ 1, Y = 1} = P{X1 ≥ 1}P{Y = 1} =
1

2
P{X1 ≥ 1}

whereas
P{X1 ≥ 1}P{X2 ≥ 1} = [P{X1 ≥ 1}]2.

Since P{X1 ≥ 1} does not equal either 0 or 1/2 (it actually equals
.
= 0.1587) we see that

1

2
P{X1 ≥ 1} 6= [P{X1 ≥ 1}]2.

An extension of this same example also shows that the sum of uncorrelated normal random
variables need not be normal.

Example 4.13 (continued). We will now show that X1 + X2 is not normally distributed.
If X1 + X2 were normally distributed, then it would necessarily be the case that for any
x ∈ R, we would have P{X1 + X2 = x} = 0. Indeed, this is true for any continuous random
variable. But we see that P{X1 + X2 = 0} = P{Y = −1} = 1/2 which shows that X1 + X2

cannot be a normal random variable (let alone a continuous random variable).

However, if we have a bivariate normal random vector X = (X1, X2)
′, then independence of

the components and no correlation between them are equivalent.
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Theorem 4.14. Suppose that X = (X1, X2)
′ has a bivariate normal distribution so that the

components of X, namely X1 and X2, are each normally distributed. Furthermore, X1 and
X2 are uncorrelated if and only if they are independent.

Proof. For a proof, see Theorem V.7.1 on page 133 of Gut [8].

Two important variations on the previous results are worth mentioning.

Theorem 4.15 (Cramér). If X and Y are independent random variables such that X + Y
is normally distributed, then X and Y themselves are each normally distributed.

Proof. For a proof of this result, see Theorem 19 on page 53 of [6].

In the special case when X and Y are also identically distributed, Cramér’s theorem is easy
to prove.

Exercise 4.16. Suppose that X and Y are independent and identically distributed random
variables such that X + Y ∼ N (2µ, 2σ2). Prove that X ∼ N (µ, σ2) and Y ∼ N (µ, σ2).

Example 4.13 showed that uncorrelated normal random variables need not be independent
and need not have a normal sum. However, if uncorrelated normal random variables are
known to have a normal sum, then it must be the case that they are independent.

Theorem 4.17. If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are normally distributed random

variables with Cov(X1, X2) = 0, and if X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2), then X1 and X2 are
independent.

Proof. In order to prove that X1 and X2 are independent, it is sufficient to prove that the
characteristic function of X1 + X2 equals the product of the characteristic functions of X1

and X2. Since X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2) we see using Exercise 4.9 that

ϕX1+X2(t) = exp

{
i(µ1 + µ2)t−

(σ2
1 + σ2

2)t2

2

}
.

Furthermore, since X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) we see that

ϕX1(t)ϕX2(t) = exp

{
iµ1t−

σ2
1t

2

2

}
· exp

{
iµ2t−

σ2
2t

2

2

}
= exp

{
i(µ1 + µ2)t−

(σ2
1 + σ2

2)t2

2

}
.

In other words,
ϕX1(t)ϕX2(t) = ϕX1+X2(t)

which establishes the result.

Remark. Actually, the assumption that Cov(X1, X2) = 0 is unnecessary in the previous
theorem. The same proof shows that if X1 ∼ N (µ1, σ

2
1) and X2 ∼ N (µ2, σ

2
2) are normally

distributed random variables, and if X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2), then X1 and X2 are
independent. It is now a consequence that Cov(X1, X2) = 0.
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A variation of the previous result can be proved simply by equating variances.

Exercise 4.18. If X1 ∼ N (µ1, σ
2
1) and X2 ∼ N (µ2, σ

2
2) are normally distributed random

variables, and if X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2 + 2ρσ1σ2), then Cov(X1, X2) = ρσ1σ2 and
Corr(X1, X2) = ρ.

Our final result gives conditions under which normality is preserved for limits in distribution.
Before stating this theorem, we need to recall the definition of convergence in distribution.

Definition 4.19. Suppose that X1, X2, . . . and X are random variables with distribution
functions Fn, n = 1, 2, . . ., and F , respectively. We say that Xn converges in distribution to
X as n →∞ if

lim
n→∞

Fn(x) = F (x)

for all x ∈ R at which F is continuous.

The relationship between convergence in distribution and characteristic functions is ex-
tremely important for us.

Theorem 4.20. Suppose that X1, X2, . . . are random variables with characteristic functions
ϕXn, n = 1, 2, . . .. It then follows that ϕXn(t) → ϕX(t) as n → ∞ for all t ∈ R if and only
if Xn converges in distribution to X.

Proof. For a proof of this result, see Theorem 5.9.1 on page 238 of [9].

It is worth noting that in order to apply the result of the previous theorem we must know
a priori what the limiting random variable X is. In the case when we only know that the
characteristic functions converge to something, we must be a bit more careful.

Theorem 4.21. Suppose that X1, X2, . . . are random variables with characteristic functions
ϕXn, n = 1, 2, . . .. If ϕXn(t) converges to some function ϕ(t) as n → ∞ for all t ∈ R and
ϕ(t) is continuous at 0, then there exists a random variable X with characteristic function
ϕ such that Xn converges in distribution to X.

Proof. For a proof of this result, see Theorem 5.9.2 on page 238 of [9].

Remark. The statement of the central limit theorem is really a statement about convergence
in distribution, and its proof follows after a careful analysis of characteristic functions from
Theorems 4.10 and 4.21.

We are now ready to prove that normality is preserved under convergence in distribution.
The proof uses a result known as Slutsky’s theorem, and so we will state and prove this first.

Theorem 4.22 (Slutsky). Suppose that the random variables Xn, n = 1, 2, . . ., converge in
distribution to X and that the sequence of real numbers an, n = 1, 2, . . ., converges to the
finite real number a. It then follows that Xn +an converges in distribution to X +a and that
anXn converges in distribution to aX.
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Proof. We begin by observing that for ε > 0 fixed, we have

P{Xn + an ≤ x} = P{Xn + an ≤ x, |an − a| < ε}+ P{Xn + an ≤ x, |an − a| > ε}
≤ P{Xn + an ≤ x, |an − a| < ε}+ P{|an − a| > ε}
≤ P{Xn ≤ x− a + ε}+ P{|an − a| > ε}

That is,
FXn+an(x) ≤ FXn(x− a + ε) + P{|an − a| > ε}.

Since an → a as n →∞ we see that P{|an − a| > ε} → 0 as n →∞ and so

lim sup
n→∞

FXn+an(x) ≤ FX(x− a + ε)

for all points x− a + ε at which F is continuous. Similarly,

lim inf
n→∞

FXn+an(x) ≥ FX(x− a− ε)

for all points x− a− ε at which F is continuous. Since ε > 0 can be made arbitrarily small
and since FX has at most countably many points of discontinuity, we conclude that

lim
n→∞

FXn+an(x) = FX(x− a) = FX+a(x)

for all x ∈ R at which FX+a is continuous. The proof that anXn converges in distribution to
aX is similar.

Exercise 4.23. Complete the details to show that anXn converges in distribution to aX.

Theorem 4.24. Suppose that X1, X2, . . . is a sequence of random variables with Xi ∼
N (µi, σ

2
i ), i = 1, 2, . . .. If the limits

lim
n→∞

µn and lim
n→∞

σ2
n

each exist and are finite, then the sequence {Xn, n = 0, 1, 2, . . .} converges in distribution to
a random variable X. Furthermore, X ∼ N (µ, σ2) where

µ = lim
n→∞

µn and σ2 = lim
n→∞

σ2
n.

Proof. For each n, let

Zn =
Xn − µn

σn

so that Zn ∼ N (0, 1) by Theorem 4.2. Clearly, Zn converges in distribution to some random
variable Z with Z ∼ N (0, 1). By Slutsky’s theorem, since Zn converges in distribution to
Z, it follows that Xn = σnZn + µn converges in distribution to σZ + µ. If we now define
X = σZ + µ, then Xn converges in distribution to X and it follows from Theorem 4.2 that
X ∼ N (µ, σ2).
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We end this lecture with a brief discussion of lognormal random variables. Recall that if
X ∼ N (µ, σ2), then the moment generating function of X is

mX(t) = E(etX) = exp

{
µt +

σ2t2

2

}
.

Exercise 4.25. Suppose that X ∼ N (µ, σ2) and let Y = eX .

(a) Determine the density function for Y

(b) Determine the distribution function for Y . You will need to express your answer in
terms of Φ.

(c) Compute E(Y ) and Var(Y ). Hint: Use the moment generating function of X.

Answer. (c) E(Y ) = exp{µ + σ2

2
} and Var(Y ) = e2µ+σ2

(eσ2 − 1).

Definition 4.26. We say that a random variable Y has a lognormal distribution with para-
meters µ and σ2, written

Y ∼ LN (µ, σ2),

if log(Y ) is normally distributed with mean µ and variance σ2. That is, Y ∼ LN (µ, σ2) iff
log(Y ) ∼ N (µ, σ2). Equivalently, Y ∼ LN (µ, σ2) iff Y = eX with X ∼ N (µ, σ2).

Exercise 4.27. Suppose that Y1 ∼ LN (µ1, σ
2
1) and Y2 ∼ LN (µ2, σ

2
2) are independent

lognormal random variables. Prove that Z = Y1 ·Y2 is lognormally distributed and determine
the parameters of Z.

Remark. As shown in STAT 351, if a random variable Y has a lognormal distribution, then
the moment generating function of Y does not exist.
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Prof. Michael Kozdron

Lecture #5: Discrete-Time Martingales

The concept of a martingale is fundamental to modern probability and is one of the key
tools needed to study mathematical finance. Although we saw the definition in STAT 351,
we are now going to need to be a little more careful than we were in that class. This will be
especially true when we study continuous-time martingales.

Definition 5.1. A sequence X0, X1, X2, . . . of random variables is said to be a martingale if

E(Xn+1|X0, X1, . . . , Xn) = Xn

for every n = 0, 1, 2, . . ..

Technically, we need all of the random variables to have finite expectation in order that
conditional expectations be defined. Furthermore, we will find it useful to introduce the
following notation. Let Fn = σ(X0, X1, . . . , Xn) denote the information contained in the
sequence {X0, X1, . . . , Xn} up to (and including) time n. We then call the sequence {Fn, n =
0, 1, 2, . . .} = {F0,F1,F2, . . .} a filtration.

Definition 5.2. A sequence {Xn, n = 0, 1, 2 . . .} of random variables is said to be a martin-
gale with respect to the filtration {Fn, n = 0, 1, 2, . . .} if

(i) Xn ∈ Fn for every n = 0, 1, 2, . . .,

(ii) E|Xn| < ∞ for every n = 0, 1, 2, . . ., and

(iii) E(Xn+1|Fn) = Xn for every n = 0, 1, 2, . . ..

If Xn ∈ Fn, then we often say that Xn is adapted. The intuitive idea is that if Xn is adapted,
then Xn is “known” at time n. In fact, you are already familiar with this notion from
STAT 351.

Remark. Suppose that n is fixed, and let Fn = σ(X0, . . . , Xn). Clearly Fn−1 ⊂ Fn and so
X1 ∈ Fn, X2,∈ Fn, . . . , Xn ∈ Fn.

Moreover, the following theorem is extremely useful to know when working with martingales.

Theorem 5.3. Let X1, X2, . . . , Xn, Y be random variables, let g : Rn → R be a function,
and let Fn = σ(X1, . . . , Xn). It then follows that

• E(g(X1, X2, . . . , Xn) Y |Fn) = g(X1, X2, . . . , Xn)E(Y |Fn) (taking out what is known),

• E(Y |Fn) = E(Y ) if Y is independent of Fn, and

• E(E(Y |Fn)) = E(Y ).
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One useful fact about martingales is that they have stable expectation.

Theorem 5.4. If {Xn, n = 0, 1, 2, . . .} is a martingale, then E(Xn) = E(X0) for every
n = 0, 1, 2, . . ..

Proof. Since
E(Xn+1) = E(E(Xn+1|Fn)) = E(Xn),

we can iterate to conclude that

E(Xn+1) = E(Xn) = E(Xn−1) = · · · = E(X0)

as required.

Exercise 5.5. Suppose that {Xn, n = 1, 2, . . .} is a discrete-time stochastic process. Show
that {Xn, n = 1, 2, . . .} is a martingale with respect to the filtration {Fn, n = 0, 1, 2, . . .} if
and only if

(i) Xn ∈ Fn for every n = 0, 1, 2, . . .,

(ii) E|Xn| < ∞ for every n = 0, 1, 2, . . ., and

(iii) E(Xn|Fm) = Xm for every integer m with 0 ≤ m < n.

We are now going to study several examples of martingales. Most of them are variants of
simple random walk which we define in the next example.

Example 5.6. Suppose that Y1, Y2, . . . are independent, identically distributed random vari-
ables with P{Y1 = 1} = P{Y = −1} = 1/2. Let S0 = 0, and for n = 1, 2, . . ., define
Sn = Y1 + Y2 + · · · + Yn. The sequence {Sn, n = 0, 1, 2, . . .} is called a simple random walk
(starting at 0). Before we show that {Sn, n = 0, 1, 2, . . .} is a martingale, it will be useful to
calculate E(Sn), Var(Sn), and Cov(Sn, Sn+1). Observe that

(Y1 + Y2 + · · ·+ Yn)2 = Y 2
1 + Y 2

2 + · · ·+ Y 2
n +

∑
i6=j

YiYj.

Since E(Y1) = 0 and Var(Y1) = E(Y 2
1 ) = 1, we find

E(Sn) = E(Y1 + Y2 + · · ·+ Yn) = E(Y1) + E(Y2) + · · ·+ E(Yn) = 0

and

Var(Sn) = E(S2
n) = E(Y1 + Y2 + · · ·+ Yn)2 = E(Y 2

1 ) + E(Y 2
2 ) + · · ·+ E(Y 2

n ) +
∑
i6=j

E(YiYj)

= 1 + 1 + · · ·+ 1 + 0

= n

since E(YiYj) = E(Yi)E(Yj) when i 6= j because of the assumed independence of Y1, Y2, . . ..
Since Sn+1 = Sn + Yn+1 we see that

Cov(Sn, Sn+1) = Cov(Sn, Sn + Yn+1) = Cov(Sn, Sn) + Cov(Sn, Yn+1) = Var(Sn) + 0

using the fact that Yn+1 is independent of Sn. Furthermore, since Var(Sn) = n, we conclude
Cov(Sn, Sn+1) = n.
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Exercise 5.7. As a generalization of this covariance calculation, show that Cov(Sn, Sm) =
min{n, m}.

Example 5.6 (continued). We now show that the simple random walk {Sn, n =
0, 1, 2, . . .} is a martingale. This also illustrates the usefulness of the Fn notation since

Fn = σ(S0, S1, . . . , Sn) = σ(Y1, . . . , Yn).

Notice that
E(Sn+1|Fn) = E(Yn+1 + Sn|Fn) = E(Yn+1|Fn) + E(Sn|Fn).

Since Yn+1 is independent of Fn we conclude that

E(Yn+1|Fn) = E(Yn+1) = 0.

If we condition on Fn, then Sn is known, and so

E(Sn|Fn) = Sn.

Combined we conclude

E(Sn+1|Fn) = E(Yn+1|Fn) + E(Sn|Fn) = 0 + Sn = Sn

which proves that {Sn, n = 0, 1, 2, . . .} is a martingale.

Example 5.6 (continued). Next we show that {S2
n−n, n = 0, 1, 2, . . .} is also a martingale.

Let Mn = S2
n − n. We must show that E(Mn+1|Fn) = Mn since

Fn = σ(M0, M1, . . . ,Mn) = σ(S0, S1, . . . , Sn).

Notice that

E(S2
n+1|Fn) = E((Yn+1 + Sn)2|Fn) = E(Y 2

n+1|Fn) + 2E(Yn+1Sn|Fn) + E(S2
n|Fn).

However,

• E(Y 2
n+1|Fn) = E(Y 2

n+1) = 1,

• E(Yn+1Sn|Fn) = SnE(Yn+1|Fn) = SnE(Yn+1) = 0, and

• E(S2
n|Fn) = S2

n

from which we conclude that
E(S2

n+1|Fn) = S2
n + 1.

Therefore,

E(Mn+1|Fn) = E(S2
n+1 − (n + 1)|Fn) = E(S2

n+1|Fn)− (n + 1) = S2
n + 1− (n + 1)

= S2
n − n

= Mn

and so we conclude that {Mn, n = 0, 1, 2, . . .} = {S2
n − n, n = 0, 1, 2, . . .} is a martingale.
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Example 5.6 (continued). We are now going to construct one more martingale related
to simple random walk. Suppose that θ ∈ R and let

Zn = (sech θ)neθSn , n = 0, 1, 2, . . . ,

where the hyperbolic secant is defined as

sech θ =
2

eθ + e−θ
.

We will show that {Zn, n = 0, 1, 2, . . .} is a martingale. Thus, we must verify that

E(Zn+1|Fn) = Zn

since
Fn = σ(Z0, Z1, . . . , Zn) = σ(S0, S1, . . . , Sn).

Notice that Sn+1 = Sn + Yn+1 which implies

Zn+1 = (sech θ)n+1eθSn+1 = (sech θ)n+1eθ(Sn+Yn+1) = (sech θ)neθSn · (sech θ)eθYn+1

= Zn · (sech θ)eθYn+1 .

Therefore,

E(Zn+1|Fn) = E(Zn · (sech θ)eθYn+1|Fn) = ZnE((sech θ)eθYn+1 |Fn) = ZnE((sech θ)eθYn+1)

where the second equality follows by “taking out what is known” and the third equality
follows by independence. The final step is to compute E((sech θ)eθYn+1). Note that

E(eθYn+1) = eθ·1 · 1

2
+ eθ·−1 · 1

2
=

eθ + e−θ

2
=

1

sech θ

and so

E((sech θ)eθYn+1) = (sech θ)E(eθYn+1) = (sech θ) · 1

sech θ
= 1.

In other words, we have shown that

E(Zn+1|Fn) = Zn

which implies that {Zn, n = 0, 1, 2 . . .} is a martingale.

The following two examples give more martingales derived from simple random walk.

Example 5.8. As in the previous example, let Y1, Y2, . . . be independent and identically
distributed random variables with P{Y1 = 1} = P{Y1 = −1} = 1

2
, set S0 = 0, and for

n = 1, 2, 3, . . ., define the random variable Sn by Sn = Y1+· · ·+Yn so that {Sn, n = 0, 1, 2, . . .}
is a simple random walk starting at 0. Define the process {Mn, n = 0, 1, 2, . . .} by setting

Mn = S3
n − 3nSn.

Show that {Mn, n = 0, 1, 2, . . .} is a martingale.
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Solution. If Mn = S3
n − 3nSn, then

Mn+1 = S3
n+1 − 3(n + 1)Sn+1

= (Sn + Yn+1)
3 − 3(n + 1)(Sn + Yn+1)

= S3
n + 3S2

nYn+1 + 3SnY
2
n+1 + Y 3

n+1 − 3(n + 1)Sn − 3(n + 1)Yn+1

= Mn + 3Sn(Y 2
n+1 − 1) + 3S2

nYn+1 − 3(n + 1)Yn+1 + Y 3
n+1.

Thus, we see that we will be able to conclude that {Mn, n = 0, 1, . . .} is a martingale if we
can show that

E
(
3Sn(Y 2

n+1 − 1) + 3S2
nYn+1 − 3(n + 1)Yn+1 + Y 3

n+1|Fn

)
= 0.

Now

3E(Sn(Y 2
n+1 − 1)|Fn) = 3SnE(Y 2

n+1 − 1) and 3E(S2
nYn+1|Fn) = 3S2

nE(Yn+1)

by “taking out what is known,” and using the fact that Yn+1 and Fn are independent.
Furthermore,

3(n + 1)E(Yn+1|Fn) = 3(n + 1)E(Yn+1) and E(Y 3
n+1|Fn) = E(Y 3

n+1)

using the fact that Yn+1 and Fn are independent. Since E(Yn+1) = 0, E(Y 2
n+1) = 1, and

E(Y 3
n+1) = 0, we see that

E(Mn+1|Fn) = Mn + 3SnE(Y 2
n+1 − 1) + 3S2

nE(Yn+1)− 3(n + 1)E(Yn+1) + E(Y 3
n+1)

= Mn + 3Sn · (1− 1) + 3S2
n · 0− 3(n + 1) · 0 + 0

= Mn

which proves that {Mn, n = 0, 1, 2, . . .} is, in fact, a martingale.

The following example is the most important discrete-time martingale calculation that you
will do. The process {Ij, j = 0, 1, 2, . . .} defined below is an example of a discrete stochastic
integral. In fact, stochastic integration is one of the greatest achievements of 20th century
probability and, as we will see, is fundamental to the mathematical theory of finance and
option pricing.

Example 5.9. As in the previous example, let Y1, Y2, . . . be independent and identically
distributed random variables with P{Y1 = 1} = P{Y1 = −1} = 1

2
, set S0 = 0, and for

n = 1, 2, 3, . . ., define the random variable Sn by Sn = Y1+· · ·+Yn so that {Sn, n = 0, 1, 2, . . .}
is a simple random walk starting at 0. Now suppose that I0 = 0 and for j = 1, 2, . . . define
Ij to be

Ij =

j∑
n=1

Sn−1(Sn − Sn−1).

Prove that {Ij, j = 0, 1, 2, . . .} is a martingale.
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Solution. If

Ij =

j∑
n=1

Sn−1(Sn − Sn−1).

then
Ij+1 = Ij + Sj(Sj+1 − Sj).

Therefore,

E(Ij+1|Fj) = E(Ij + Sj(Sj+1 − Sj)|Fj) = E(Ij|Fj) + E(Sj(Sj+1 − Sj)|Fj)

= Ij + SjE(Sj+1|Fj)− S2
j

where we have “taken out what is known” three times. Furthermore, since {Sj, j = 0, 1, . . .}
is a martingale,

E(Sj+1|Fj) = Sj.

Combining everything gives

E(Ij+1|Fj) = Ij + SjE(Sj+1|Fj)− S2
j = Ij + S2

j − S2
j = Ij

which proves that {Ij, j = 0, 1, 2, . . .} is, in fact, a martingale.

Exercise 5.10. Suppose that {Ij, j = 0, 1, 2, . . .} is defined as in the previous example.
Show that

Var(Ij) =
j(j − 1)

2

for all j = 0, 1, 2, . . ..

This next example gives several martingales derived from biased random walk.

Example 5.11. Suppose that Y1, Y2, . . . are independent and identically distributed random
variables with P{Y1 = 1} = p, P{Y1 = −1} = 1 − p for some 0 < p < 1/2. Let Sn =
Y1 + · · ·+ Yn denote their partial sums so that {Sn, n = 0, 1, 2, . . .} is a biased random walk.
(Note that {Sn, n = 0, 1, 2, . . .} is no longer a simple random walk.)

(a) Show that Xn = Sn − n(2p− 1) is a martingale.

(b) Show that Mn = X2
n − 4np(1− p) = [Sn − n(2p− 1)]2 − 4np(1− p) is a martingale.

(c) Show that Zn =
(

1−p
p

)Sn

is a martingale.

Solution. We begin by noting that

Fn = σ(Y1, . . . , Yn) = σ(S0, . . . , Sn) = σ(X0, . . . , Xn) = σ(M0, . . . ,Mn) = σ(Z0, . . . , Zn).

(a) The first step is to calculate E(Y1). That is,

E(Y1) = 1 ·P{Y = 1}+ (−1) ·P{Y = −1} = p− (1− p) = 2p− 1.
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Since Sn+1 = Sn + Yn+1, we see that

E(Sn+1|Fn) = E(Sn + Yn+1|Fn) = E(Sn|Fn) + E(Yn+1|Fn)

= Sn + E(Yn+1)

= Sn + 2p− 1

by “taking out what is known” and using the fact that Yn+1 and Fn are independent. This
implies that

E(Xn+1|Fn) = E(Sn+1 − (n + 1)(2p− 1)|Fn) = E(Sn+1|Fn)− (n + 1)(2p− 1)

= Sn + 2p− 1− (n + 1)(2p− 1)

= Sn − n(2p− 1)

= Xn,

and so we conclude that {Xn, n = 1, 2, . . .} is, in fact, a martingale.

(b) Notice that we can write Xn+1 as

Xn+1 = Sn+1 − (n + 1)(2p− 1) = Sn + Yn+1 − n(2p− 1)− (2p− 1)

= Xn + Yn+1 − (2p− 1)

and so

X2
n+1 = (Xn + Yn+1)

2 + (2p− 1)2 − 2(2p− 1)(Xn + Yn+1)

= X2
n + Y 2

n+1 + 2XnYn+1 + (2p− 1)2 − 2(2p− 1)(Xn + Yn+1).

Thus,

E(X2
n+1|Fn)

= E(X2
n|Fn) + E(Y 2

n+1|Fn) + 2E(XnYn+1|Fn) + (2p− 1)2 − 2(2p− 1)E(Xn + Yn+1|Fn)

= X2
n + E(Yn+1)

2 + 2XnE(Yn+1) + (2p− 1)2 − 2(2p− 1)(Xn + E(Yn+1))

= X2
n + 1 + 2(2p− 1)Xn + (2p− 1)2 − 2(2p− 1)(Xn + (2p− 1))

= X2
n + 1 + 2(2p− 1)Xn + (2p− 1)2 − 2(2p− 1)Xn − 2(2p− 1)2

= X2
n + 1− (2p− 1)2,

by again “taking out what is known” and using the fact that Yn+1 and Fn are independent.
Hence, we find

E(Mn+1|Fn) = E(X2
n+1|Fn)− 4(n + 1)p(1− p)

= X2
n + 1− (2p− 1)2 − 4(n + 1)p(1− p)

= X2
n + 1− (4p2 − 4p + 1)− 4np(1− p)− 4p(1− p)

= X2
n + 1− 4p2 + 4p− 1− 4np(1− p)− 4p + 4p2

= X2
n − 4np(1− p)

= Mn
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so that {Mn, n = 1, 2, . . .} is, in fact, a martingale.

(c) Notice that

Zn+1 =

(
1− p

p

)Sn+1

=

(
1− p

p

)Sn+Yn+1

=

(
1− p

p

)Sn
(

1− p

p

)Yn+1

= Zn

(
1− p

p

)Yn+1

.

Therefore,

E(Zn+1|Fn) = E

(
Zn

(
1− p

p

)Yn+1
∣∣∣∣Fn

)
= ZnE

((
1− p

p

)Yn+1
∣∣∣∣Fn

)

= ZnE

((
1− p

p

)Yn+1
)

where the second equality follows from “taking out what is known” and the third equality
follows from the fact that Yn+1 and Fn are independent. We now compute

E

((
1− p

p

)Yn+1
)

= p

(
1− p

p

)1

+ (1− p)

(
1− p

p

)−1

= (1− p) + p = 1

and so we conclude
E(Zn+1|Fn) = Zn.

Hence, {Zn, n = 0, 1, 2, . . .} is, in fact, a martingale.

We now conclude this section with one final example. Although it is unrelated to simple
random walk, it is an easy martingale calculation and is therefore worth including. In fact,
it could be considered as a generalization of (c) of the previous example.

Example 5.12. Suppose that Y1, Y2, . . . are independent and identically distributed random
variables with E(Y1) = 1. Suppose further that X0 = Y0 = 1 and for n = 1, 2, . . ., let

Xn = Y1 · Y2 · · ·Yn =
n∏

j=1

Yj.

Verify that {Xn, n = 0, 1, 2, . . .} is a martingale with respect to {Fn = σ(Y0, . . . , Yn), n =
0, 1, 2, . . .}.

Solution. We find

E(Xn+1|Fn) = E(Xn · Yn+1|Fn)

= XnE(Yn+1|Fn) (by taking out what is known)

= XnE(Yn+1) (since Yn+1 is independent of Fn)

= Xn · 1
= Xn

and so {Xn, n = 0, 1, 2, . . .} is, in fact, a martingale.
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Lecture #6: Continuous-Time Martingales

Let {Xt, t ≥ 0} be a continuous-time stochastic process. Recall that this implies that there
are uncountably many random variables, one for each value of the time index t.

For t ≥ 0, let Ft denote the information contained in the process up to (and including) time
t. Formally, let

Ft = σ(Xs, 0 ≤ s ≤ t).

We call {Ft, t ≥ 0} a filtration, and we say that Xt is adapted if Xt ∈ Ft. Notice that if
s ≤ t, then Fs ⊂ Ft so that Xs ∈ Ft as well.

The definition of a continuous-time martingale is analogous to the definition in discrete time.

Definition 6.1. A collection {Xt, t ≥ 0} of random variables is said to be a martingale with
respect to the filtration {Ft, t ≥ 0} if

(i) Xt ∈ Ft for every t ≥ 0,

(ii) E|Xt| < ∞ for every t ≥ 0, and

(iii) E(Xt|Fs) = Xs for every 0 ≤ s < t.

Note that in the third part of the definition, the present time t must be strictly larger than
the past time s. (This is clearer in discrete time since the present time n+1 is always strictly
larger than the past time n.)

The theorem from discrete time about independence and “taking out what is known” is also
true in continuous time.

Theorem 6.2. Let {Xt, t ≥ 0} be a stochastic process and consider the filtration {Ft, t ≥ 0}
where Ft = σ(Xs, 0 ≤ s ≤ t). Let Y be a random variable, and let g : Rn → R be a function.
Suppose that 0 ≤ t1 < t2 < · · · < tn are n times, and let s be such that 0 ≤ s < t1. (Note
that if t1 = 0, then s = 0.) It then follows that

• E(g(Xt1 , . . . , Xtn) Y |Fs) = g(Xt1 , . . . , Xtn)E(Y |Fs) (taking out what is known),

• E(Y |Fs) = E(Y ) if Y is independent of Fs, and

• E(E(Y |Fs)) = E(Y ).

As in the discrete case, continuous-time martingales have stable expectation.

Theorem 6.3. If {Xt, t ≥ 0} is a martingale, then E(Xt) = E(X0) for every t ≥ 0.

Proof. Since
E(Xt) = E(E(Xt|Fs)) = E(Xs)

for any 0 ≤ s < t, we can simply choose s = 0 to complete the proof.
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You are already familiar with one example of a continuous-time stochastic process, namely
the Poisson process. This will lead us to our first continuous-time martingale.

Example 6.4. As in STAT 351, the Poisson process with intensity λ is a continuous-time
stochastic process {Xt, t ≥ 0} satisfying the following properties.

• The increments {Xtk −Xtk−1
, k = 1, . . . , n} are independent for all 0 ≤ t0 < · · · < tn <

∞ and all n;

• X0 = 0 and there exists a λ > 0 such that

Xt −Xs ∈ Po(λ(t− s))

for 0 ≤ s < t.

Consider the filtration {Ft, t ≥ 0} where Ft = σ(Xs, 0 ≤ s ≤ t). In order to show that
{Xt, t ≥ 0} is a martingale, we must verify that

E(Xt|Fs) = Xs

for every 0 ≤ s < t. The trick, much like for simple random walk in the discrete case, is to
add-and-subtract the correct thing. Notice that Xt = Xt −Xs + Xs so that

E(Xt|Fs) = E(Xt −Xs + Xs|Fs) = E(Xt −Xs|Fs) + E(Xs|Fs).

By assumption, Xt −Xs is independent of Fs so that

E(Xt −Xs|Fs) = E(Xt −Xs) = λ(t− s)

since Xt −Xs ∈ Po(λ(t− s)). Furthermore, since Xs is “known” at time s we have

E(Xs|Fs) = Xs.

Combined, this shows that

E(Xt|Fs) = Xs + λ(t− s) = λt + Xs − λs.

In other words, {Xt, t ≥ 0} is NOT a martingale. However, if we consider {Xt − λt, t ≥ 0}
instead, then this IS a martingale since

E(Xt − λt|Fs) = Xs − λs.

The process {Nt, t ≥ 0} given by Nt = Xt− λt is sometimes called the compensated Poisson
process with intensity λ. (In other words, the compensated Poisson process is what you need
to compensate the Poisson process by in order to have a martingale!)

Remark. In some sense, this result is like the biased random walk. If S0 = 0 and Sn =
Y1 + · · ·+Yn where P{Y1 = 1} = 1−P{Y1 = −1} = p, 0 < p < 1/2, then E(Sn) = (2p−1)n.
Hence, Sn does NOT have stable expectation so that {Sn, n = 0, 1, 2, . . .} cannot be a
martingale. However, if we consider {Sn − (2p − 1)n, n = 0, 1, . . .} instead, then this is a
martingale. Similarly, since Xt has mean E(Xt) = λt which depends on t (and is therefore
not stable), it is not possible for {Xt, t ≥ 0} to be a martingale. By subtracting this mean
we get {Xt − λt, t ≥ 0} which is a martingale.
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Remark. Do not let this previous remark fool you into thinking you can always take a
stochastic process and subtract the mean to get a martingale. This is NOT TRUE. The
previous remark is meant to simply provide some intuition. There is no substitute for
checking the definition of martingale.

Exercise 6.5. Suppose that {Nt, t ≥ 0} is a compensated Poisson process with intensity λ.
Let 0 ≤ s < t. Show that the moment generating function of the random variable Nt−Ns is

mNt−Ns(θ) = E[ eθ(Nt−Ns) ] = exp
{
λ(t− s)(eθ − 1− θ)

}
.

Conclude that

E(Nt −Ns) = 0, E[ (Nt −Ns)
2 ] = λ(t− s), E[ (Nt −Ns)

3 ] = λ(t− s),

and
E[ (Nt −Ns)

4 ] = λ(t− s) + 3λ2(t− s)2.

Exercise 6.6. Suppose that {Nt, t ≥ 0} is a compensated Poisson process with intensity
λ. Define the process {Mt, t ≥ 0} by setting Mt = N2

t − λt. Show that {Mt, t ≥ 0} is a
martingale with respect to the filtration {Ft, t ≥ 0} = {σ(Ns, 0 ≤ s ≤ t), t ≥ 0}.

We are shortly going to learn about Brownian motion, the most important of all stochastic
processes. Brownian motion will lead us to many, many more examples of martingales. (In
fact, there is a remarkable theorem which tells us that any continuous-time martingale with
continuous paths must be Brownian motion in disguise!)

In particular, for a simple random walk {Sn, n = 0, 1, 2, . . .}, we have seen that

• {Sn, n = 0, 1, 2, . . .} is a martingale,

• {Mn, n = 0, 1, 2, . . .} where Mn = S2
n − n is a martingale, and

• {Ij, j = 0, 1, 2, . . .} where

Ij =

j∑
n=1

Sn−1(Sn − Sn−1) (6.1)

is a martingale.

As we will soon see, there are natural Brownian motion analogues of each of these martin-
gales, particularly the stochastic integral (6.1).
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Example 6.7. Suppose that the distribution of the random variable X0 is

P{X0 = 2} = P{X0 = 0} =
1

2

so that E(X0) = 1. For n = 1, 2, 3, . . . define the random variable Xn by setting

Xn = nXn−1.

Now consider the stochastic process {Xn, n = 0, 1, 2, . . .}. The claim is that the process
{Mn, n = 0, 1, 2, . . .} defined by setting

Mn = Xn − E(Xn)

is NOT a martingale.

Notice that
E(Xn) = nE(Xn−1)

which implies that (just iterate) E(Xn) = n!.

Furthermore,
E(Xn|Fn−1) = E(nXn−1|Fn−1) = nXn−1.

Now, if we consider Mn = Xn − E(Xn) = Xn − n!, then

E(Mn|Fn−1) = E(Xn|Fn−1)− n! = nXn−1 − n! = n[Xn−1 − (n− 1)!] = nMn−1.

This shows that {Mn, n = 0, 1, 2, . . .} is NOT a martingale.
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Lecture #7: Brownian Motion as a Model of a Fair Game

Suppose that we are interested in setting up a model of a fair game, and that we are going to
place bets on the outcomes of the individual rounds of this game. If we assume that a round
takes place at discrete times, say at times 1, 2, 3, . . ., and that the game pays even money
on unit stakes per round, then a reasonable probability model for encoding the outcome of
the jth game is via a sequence {Xj, j = 1, 2, . . .} of independent and identically distributed
random variables with

P{X1 = 1} = P{X1 = −1} =
1

2
.

That is, we can view Xj as the outcome of the jth round of this fair game. Although we
will assume that there is no game played at time 0, it will be necessary for our notation to
consider what “happens” at time 0; therefore, we will simply define X0 = 0.

Notice that the sequence {Xj, j = 1, 2, . . .} tracks the outcomes of the individual games. We
would also like to track our net number of “wins”; that is, we care about

n∑
j=1

Xj,

the net number of “wins” after n rounds. (If this sum is negative, we realize that a negative
number of “wins” is an interpretation of a net “loss.”) Hence, we define the process {Sn, n =
0, 1, 2, . . .} by setting

Sn =
n∑

j=0

Xj.

Of course, we know that {Sn, n = 0, 1, 2, . . .} is called a simple random walk, and so we use
a simple random walk as our model of a fair game being played in discrete time.

If we write Fn = σ(X0, X1, . . . , Xn) to denote the information contained in the first n rounds
of this game, then we showed in Lecture #5 that {Sn, n = 0, 1, 2, . . .} is a martingale with
respect to the filtration {Fn, n = 0, 1, 2, . . .}.
Notice that Sj − Sj−1 = Xj and so the increment Sj − Sj−1 is exactly the outcome of the
jth round of this fair game.

Suppose that we bet on the outcome of the jth round of this game and that (as assumed
above) the game pays even money on unit stakes; for example, if we flip a fair coin betting
$5 on “heads” and “heads” does, in fact, appear, then we win $5 plus our original $5, but if
“tails” appears, then we lose our original $5.

If we denote our betting strategy by Yj−1, j = 1, 2, . . ., so that Yj−1 represents the bet we
make on the jth round of the game, then In, our fortune after n rounds, is given by

In =
n∑

j=1

Yj−1(Sj − Sj−1). (7.1)
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We also define I0 = 0. The process {In, n = 0, 1, 2, . . .} is called a discrete stochastic integral
(or the martingale transform of Y by S).

Remark. If we choose unit bets each round so that Yj−1 = 1, j = 1, 2, . . ., then

In =
n∑

j=1

(Sj − Sj−1) = Sn

and so our “fortune” after n rounds is simply the position of the random walk Sn. We are
interested in what happens when Yj−1 is not constant in time, but rather varies with j.

Note that it is reasonable to assume that the bet you make on the jth round can only depend
on the outcomes of the previous j− 1 rounds. That is, you cannot “look into the future and
make your bet on the jth round based on what the outcome of the jth round will be.” In
mathematical language, we say that Yj−1 must be previsible (also called predictable).

Remark. The concept of a previsible stochastic process was intensely studied in the 1950s
by the French school of probability that included P. Lévy. Since the French word prévisible
is translated into English as foreseeable, there is no consistent English translation. Most
probabilists use previsible and predictable interchangeably. (Although, unfortunately, not
all do!)

A slight modification of Example 5.9 shows that {In, n = 0, 1, 2, . . .} is a martingale with
respect to the filtration {Fn, n = 0, 1, . . .}. Note that the requirement that Yj−1 be previsible
is exactly the requirement that allows {In, n = 0, 1, 2, . . .} to be a martingale.

It now follows from Theorem 5.4 that E(In) = 0 for all n since {In, n = 0, 1, 2, . . .} is a
martingale with I0 = 0. As we saw in Exercise 5.10, calculating the variance of the random
variable In is more involved. The following exercise generalizes that result and shows precisely
how the variance depends on the choice of the sequence Yj−1, j = 1, 2, . . ..

Exercise 7.1. Consider the martingale transform of Y by S given by (7.1). Show that

Var(In) =
n∑

j=1

E(Y 2
j−1).

Suppose that instead of playing a round of the game at times 1, 2, 3, . . ., we play rounds more
frequently, say at times 0.5, 1, 1.5, 2, 2.5, 3, . . ., or even more frequently still. In fact, we can
imagine playing a round of the game at every time t ≥ 0.

If this is hard to visualize, imagine the round of the game as being the price of a (fair) stock
at time t. The stock is assumed, equally likely, to move an infinitesmal amount up or an
infinitesmal amount down in every infinitesmal period of time.

Hence, if we want to model a fair game occurring in continuous time, then we need to find a
continuous limit of the simple random walk. This continuous limit is Brownian motion, also
called the scaling limit of simple random walk. To explain what this means, suppose that
{Sn, n = 0, 1, 2, . . .} is a simple random walk. For N = 1, 2, 3, . . ., define the scaled random
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walk B
(N)
t , 0 ≤ t ≤ 1, to be the continuous process on the time interval [0, 1] whose value at

the fractional times 0, 1
N

, 2
N

, . . . , N−1
N

, 1 is given by setting

B
(N)
j
N

=
1√
N

Sj, j = 0, 1, 2, . . . , N,

and for other times is defined by linear interpolation. As N → ∞, the distribution of the
process {B(N)

t , 0 ≤ t ≤ 1} converges to the distribution of a process {Bt, 0 ≤ t ≤ 1} satisfying
the following properties:

• B0 = 0,

• for any 0 ≤ s ≤ t ≤ 1, the random variable Bt−Bs is normally distributed with mean
0 and variance t− s; that is, Bt −Bs ∼ N (0, t− s),

• for any integer k and any partition 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1, the random variables
Btk −Btk−1

, . . . , Bt2 −Bt1 , Bt1 are independent, and

• the trajectory t 7→ Bt is continuous.

By piecing together independent copies of this process, we can construct a Brownian motion
{Bt, t ≥ 0} defined for all times t ≥ 0 satisfying the above properties (without, of course, the
restriction in (b) that t ≤ 1 and the restriction in (c) that tk ≤ 1). Thus, we now suppose
that {Bt, t ≥ 0} is a Brownian motion with B0 = 0.

Exercise 7.2. Deduce from the definition of Brownian motion that for each t > 0, the
random variable Bt is normally distributed with mean 0 and variance t. Why does this
imply that E(B2

t ) = t?

Exercise 7.3. Deduce from the definition of Brownian motion that for 0 ≤ s < t, the
distribution of the random variable Bt − Bs is the same as the distribution of the random
variable Bt−s.

Exercise 7.4. Show that if {Bt, t ≥ 0} is a Brownian motion, then E(Bt) = 0 for all t, and
Cov(Bs, Bt) = min{s, t}. Hint: Suppose that s < t and write BsBt = (BsBt − B2

s ) + B2
s .

The result of this exercise actually shows that Brownian motion is not a stationary process,
although it does have stationary increments.

Note. One of the problems with using either simple random walk or Brownian motion as a
model of an asset price is that the value of a real stock is never allowed to be negative—it
can equal 0, but can never be strictly less than 0. On the other hand, both a random walk
and a Brownian motion can be negative. Hence, neither serves as an adequate model for a
stock. Nonetheless, Brownian motion is the key ingredient for building a reasonable model
of a stock and the stochastic integral that we are about to construct is fundamental to the
analysis. At this point, we must be content with modelling (and betting on) fair games
whose values can be either positive or negative.
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If we let Ft = σ(Bs, 0 ≤ s ≤ t) denote the “information” contained in the Brownian motion
up to (and including) time t, then it easily follows that {Bt, t ≥ 0} is a continuous-time
martingale with respect to the Brownian filtration {Ft, t ≥ 0}. That is, suppose that s < t,
and so

E(Bt|Fs) = E(Bt −Bs + Bs|Fs) = E(Bt −Bs|Fs) + E(Bs|Fs) = E(Bt −Bs) + Bs = Bs

since the Brownian increment Bt−Bs has mean 0 and is independent of Fs, and Bs is “known”
at time s (using the “taking out what is known” property of conditional expectation).

In analogy with simple random walk, we see that although {B2
t , t ≥ 0} is not a martingale

with respect to {Ft, t ≥ 0}, the process {B2
t − t, t ≥ 0} is one.

Exercise 7.5. Let the process {Mt, t ≥ 0} be defined by setting Mt = B2
t − t. Show

that {Mt, t ≥ 0} is a (continuous-time) martingale with respect to the Brownian filtration
{Ft, t ≥ 0}.

Exercise 7.6. The same “trick” used to solve the previous exercise can also be used to show
that both {B3

t − 3tBt, t ≥ 0} and {B4
t − 6tB2

t + 3t2, t ≥ 0} are martingales with respect
to the Brownian filtration {Ft, t ≥ 0}. Verify that these are both, in fact, martingales.
(Once we have learned Itô’s formula, we will discover a much easier way to “generate” such
martingales.)

Assuming that our fair game is modelled by a Brownian motion, we need to consider appro-
priate betting strategies. For now, we will allow only deterministic betting strategies that
do not “look into the future” and denote such a strategy by {g(t), t ≥ 0}. This notation
might look a little strange, but it is meant to be suggestive for when we allow certain random
betting strategies. Hence, at this point, our betting strategy is simply a real-valued function
g : [0,∞) → R. Shortly, for technical reasons, we will see that it is necessary for g to be at
least bounded, piecewise continuous, and in L2([0,∞)). Recall that g ∈ L2([0,∞)) means
that ∫ ∞

0

g2(s) ds < ∞.

Thus, if we fix a time t > 0, then, in analogy with (7.1), our “fortune process” up to time t
is given by the (yet-to-be-defined) stochastic integral

It =

∫ t

0

g(s) dBs. (7.2)

Our goal, now, is to try and define (7.2) in a reasonable way. A natural approach, therefore,
is to try and relate the stochastic integral (7.2) with the discrete stochastic integral (7.1)
constructed earlier. Since the discrete stochastic integral resembles a Riemann sum, that
seems like a good place to start.
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Lecture #8: Riemann Integration

Suppose that g : [a, b] → R is a real-valued function on [a, b]. Fix a positive integer n, and
let

πn = {a = t0 < t1 < · · · < tn−1 < tn = b}

be a partition of [a, b]. For i = 1, · · · , n, define ∆ti = ti − ti−1 and let t∗i ∈ [ti−1, ti] be
distinguished points; write τ ∗n = {t∗1, . . . , t∗n} for the set of distinguished points. If πn is a
partition of [a, b], define the mesh of πn to be the width of the largest subinterval; that is,

mesh(πn) = max
1≤i≤n

∆ti = max
1≤i≤n

(ti − ti−1).

Finally, we call

S(g; πn; τ ∗n) =
n∑

i=1

g(t∗i )∆ti

the Riemann sum for g corresponding to the partition πn with distinguished points τ ∗n.

We say that π = {πn, n = 1, 2, . . .} is a refinement of [a, b] if π is a sequence of partitions of
[a, b] with πn ⊂ πn+1 for all n.

Definition 8.1. We say that g is Riemann integrable over [a, b] and define the Riemann
integral of g to be I if for every ε > 0 and for every refinement π = {πn, n = 1, 2, . . .} with
mesh(πn) → 0 as n →∞, there exists an N such that

|S(g; πm; τ ∗m)− I| < ε

for all choices of distinguished points τ ∗m and for all m ≥ N . We then define∫ b

a

g(s) ds

to be this limiting value I.

Remark. There are various equivalent definitions of the Riemann integral including Dar-
boux’s version using upper and lower sums. The variant given in Definition 8.1 above will
be the most useful one for our construction of the stochastic integral.

The following theorem gives a sufficient condition for a function to be Riemann integrable.

Theorem 8.2. If g : [a, b] → R is bounded and piecewise continuous, then g is Riemann
integrable on [a, b].

Proof. For a proof, see Theorem 6.10 on page 126 of Rudin [22].
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The previous theorem is adequate for our purposes. However, it is worth noting that, in fact,
this theorem follows from a more general result which completely characterizes the class of
Riemann integrable functions.

Theorem 8.3. Suppose that g : [a, b] → R is bounded. The function g is Riemann integrable
on [a, b] if and only if the set of discontinuities of g has Lebesgue measure 0.

Proof. For a proof, see Theorem 11.33 on page 323 of Rudin [22].

There are two particular Riemann sums that are studied in elementary calculus—the so-
called left-hand Riemann sum and right-hand Riemann sum.

For i = 0, 1, . . . , n, let ti = a + i(b−a)
n

. If t∗i = ti−1, then

b− a

n

n∑
i=1

g

(
a +

(i− 1)(b− a)

n

)
is called the left-hand Riemann sum. The right-hand Riemann sum is obtained by choosing
t∗i = ti and is given by

b− a

n

n∑
i=1

g

(
a +

i(b− a)

n

)
.

Remark. It is a technical matter that if ti = a + i(b−a)
n

, then π = {πn, n = 1, 2, . . .} with
πn = {t0 = a < t1 < · · · < tn−1 < tn = b} is not a refinement. To correct this, we simply
restrict to those n of the form n = 2k for some k in order to have a refinement of [a, b].
Hence, from now on, we will not let this concern us.

The following example shows that even though the limits of the left-hand Riemann sums
and the right-hand Riemann sums might both exist and be equal for a function g, that is
not enough to guarantee that g is Riemann integrable.

Example 8.4. Suppose that g : [0, 1] → R is defined by

g(x) =

{
0, if x ∈ Q ∩ [0, 1],

1, if x 6∈ Q ∩ [0, 1].

Let πn = {0 < 1
n

< 2
n

< · · · < n−1
n

< 1} so that ∆ti = 1
n

and mesh(πn) = 1
n
. The limit of the

left-hand Riemann sums is therefore given by

lim
n→∞

1

n

n∑
i=1

g

(
i− 1

n

)
= lim

n→∞

1

n

n∑
i=1

g(0) = 0

since i−1
n

is necessarily rational. Similarly, the limit of the right-hand Riemann sums is given
by

lim
n→∞

1

n

n∑
i=1

g

(
i

n

)
= lim

n→∞

1

n

n∑
i=1

g(0) = 0.

8–2



However, define a sequence of partitions as follows:

πn =

{
0 <

1

n
√

2
< · · · < n− 1

n
√

2
<

1√
2

<
1√
2

+

√
2− 1

n
√

2
< · · · < 1√

2
+

(n− 1)(
√

2− 1)

n
√

2
< 1

}
.

In this case, mesh(πn) =
√

2−1
n
√

2
so that mesh(πn) → 0 as n → ∞. If t∗i is chosen to be the

mid-point of each interval, then t∗i is necessarily irrational so that g(t∗i ) = 1. Therefore,

n∑
i=1

g(t∗i )∆ti =
n∑

i=1

∆ti =
n∑

i=1

(ti − ti−1) = tn − t0 = 1− 0 = 1

for each n. Hence, we conclude that g is not Riemann integrable on [0, 1] since there is no
unique limiting value.

However, we can make the following postive assertion about the limits of the left-hand
Riemann sums and the right-hand Riemann sums.

Remark. Suppose that g : [a, b] → R is Riemann integrable on [a, b] so that

I =

∫ b

a

g(s) ds

exists. Then, the limit of the left-hand Riemann sums and the limit of the right-hand
Riemann sums both exist, and furthermore

lim
n→∞

1

n

n∑
i=1

g

(
i

n

)
= lim

n→∞

1

n

n∑
i=1

g

(
i− 1

n

)
= I.
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Lecture #9: The Riemann Integral of Brownian Motion

Before integrating with respect to Brownian motion it seems reasonable to try and integrate
Brownian motion itself. This will help us get a feel for some of the technicalities involved
when the integrand/integrator in a stochastic process.

Suppose that {Bt, 0 ≤ t ≤ 1} is a Brownian motion. Since Brownian motion is continuous
with probability one, it follows from Theorem 8.2 that Brownian motion is Riemann integ-
rable. Thus, at least theoretically, we can integrate Brownian motion, although it is not
so clear what the Riemann integral of it is. To be a bit more precise, suppose that Bt(ω),
0 ≤ t ≤ 1, is a realization of Brownian motion (a so-called sample path or trajectory) and let

I =

∫ 1

0

Bs(ω) ds

denote the Riemann integral of the function B(ω) on [0, 1]. (By this notation, we mean that
B(ω) is the function and B(ω)(t) = Bt(ω) is the value of this function at time t. This is
analogous to our notation in calculus in which g is the function and g(t) is the value of this
function at time t.)

Question. What can be said about I?

On the one hand, we know from elementary calculus that the Riemann integral represents
the area under the curve, and so we at least have that interpretation of I. On the other
hand, since Brownian motion is nowhere differentiable with probability one, there is no hope
of using the fundamental theorem of calculus to evaluate I. Furthermore, since the value of
I depends on the realization B(ω) observed, we should really be viewing I as a function of
ω; that is,

I(ω) =

∫ 1

0

Bs(ω) ds.

It is now clear that I is itself a random variable, and so the best that we can hope for in
terms of “calculating” the Riemann integral I is to determine its distribution.

As noted above, the Riemann integral I necessarily exists by Theorem 8.2, which means
that in order to determine its distribution, it is sufficient to determine the distribution of
the limit of the right-hand sums

I = lim
n→∞

1

n

n∑
i=1

Bi/n.

(See the final remark of Lecture #8.) Therefore, we begin by calculating the distribution of

I(n) =
1

n

n∑
i=1

Bi/n. (9.1)
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We know that for each i = 1, . . . , n, the distribution of Bi/n is N (0, i/n). The problem, how-
ever, is that the sum in (9.1) is not a sum of independent random variables—only Brownian
increments are independent. However, we can use a little algebraic trick to express this as
the sum of independent increments. Notice that

n∑
i=1

Yi = nY1 + (n− 1)(Y2 − Y1) + (n− 2)(Y3 − Y2) + · · ·+ 2(Yn−1 − Yn−2) + (Yn − Yn−1).

We now let Yi = Bi/n so that Yi ∼ N (0, i/n). Furthermore, Yi − Yi−1 ∼ N (0, 1/n), and
the sum above is the sum of independent normal random variables, so it too is normal. Let
Xi = Yi − Yi−1 ∼ N (0, 1/n) so that X1, X2, . . . , Xn are independent and

n∑
i=1

Yi = nX1 +(n−1)X2 + · · ·+2Xn−1 +Xn =
n∑

i=1

(n− i+1)Xi ∼ N

(
0,

1

n

n∑
i=1

(n− i + 1)2

)

by Exercise 4.12. Since

n∑
i=1

(n− i + 1)2 = n2 + (n− 1)2 + · · ·+ 22 + 1 =
n(n + 1)(2n + 1)

6
,

we see that
n∑

i=1

Yi ∼ N
(

0,
(n + 1)(2n + 1)

6

)
,

and so finally piecing everything together we have

I(n) =
1

n

n∑
i=1

Bi/n ∼ N
(

0,
(n + 1)(2n + 1)

6n2

)
= N

(
0,

1

3
+

1

2n
+

1

6n2

)
.

Hence, we now conclude that as n → ∞, the variance of I(n) approaches 1/3 so by The-
orem 4.24, the distribution of I is

I ∼ N
(
0, 1

3

)
.

In summary, this result says that if we consider the area under a Brownian path up to time
1, then that (random) area is normally distributed with mean 0 and variance 1/3. Weird.

Remark. Theorem 8.2 tells us that for any fixed t > 0 we can, in theory, “compute” (i.e.,
determine the distribution of) any Riemann integral of the form∫ t

0

h(Bs) ds

where h : R → R is a continuous function. Unless h is relatively simple, however, it is not
so straightforward to determine the resulting distribution. Exercise 11.5 outlines one case in
which such a calculation is possible.
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Lecture #10: Wiener Integration

Having successfully determined the Riemann integral of Brownian motion, we will now learn
how to integrate with respect to Brownian motion; that is, we will study the (yet-to-be-
defined) stochastic integral

It =

∫ t

0

g(s) dBs.

Our experience with integrating Brownian motion suggests that It is really a random variable,
and so one of our goals will be to determine the distribution of It.

Assume that g is bounded, piecewise continuous, and in L2([0,∞)), and suppose that we
partition the interval [0, t] by 0 = t0 < t1 < · · · < tn = t. Consider the left-hand Riemann
sum

n∑
j=1

g(tj−1)(Btj −Btj−1
).

Notice that our experience with the discrete stochastic integral suggests that we should
choose a left-hand Riemann sum; that is, our discrete-time betting strategy Yj−1 needed
to be previsible and so our continuous-time betting strategy g(t) should also be previsible.
When working with the Riemann sum, the previsible condition translates into taking the
left-hand Riemann sum. We do, however, remark that when following a deterministic betting
strategy, this previsible condition will turn out to not matter at all. On the other hand, when
we follow a random betting strategy, it will be of the utmost importance.

To begin, let

I
(n)
t =

n∑
j=1

g(tj−1)(Btj −Btj−1
)

and notice that as in the discrete case, we can easily calculate E(I
(n)
t ) and Var(I

(n)
t ). Since

Btj −Btj−1
∼ N (0, tj − tj−1), we have

E(I
(n)
t ) =

n∑
j=1

g(tj−1)E(Btj −Btj−1
) = 0,

and since the increments of Brownian motion are independent, we have

Var(I
(n)
t ) =

n∑
j=1

g2(tj−1)E(Btj −Btj−1
)2 =

n∑
j=1

g2(tj−1)(tj − tj−1).

We now make a crucial observation. The variance of I
(n)
t , namely

n∑
j=1

g2(tj−1)(tj − tj−1),
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should look familiar. Since 0 = t0 < t1 < · · · < tn = t is a partition of [0, t] we see that this
sum is the left-hand Riemann sum approximating the Riemann integral∫ t

0

g2(s) ds.

We also see the reason to assume that g is bounded, piecewise continuous, and in L2([0,∞)).
By Theorem 8.2, this condition is sufficient to guarantee that the limit

lim
n→∞

n∑
j=1

g2(tj−1)(tj − tj−1)

exists and equals ∫ t

0

g2(s) ds.

(Although by Theorem 8.3 it is possible to weaken the conditions on g, we will not concern
ourselves with such matters.)

In summary, we conclude that
lim

n→∞
E(I

(n)
t ) = 0

and

lim
n→∞

Var(I
(n)
t ) =

∫ t

0

g2(s) ds.

Therefore, if we can somehow construct It as an appropriate limit of I
(n)
t , then it seems

reasonable that E(It) = 0 and

Var(It) =

∫ t

0

g2(s) ds.

As in the previous section, however, examining the Riemann sum

I
(n)
t =

n∑
j=1

g(tj−1)(Btj −Btj−1
)

suggests that we can determine more than just the mean and variance of I
(n)
t . Since disjoint

Brownian increments are independent and normally distributed, and since I
(n)
t is a sum

of disjoint Brownian increments, we conclude that I
(n)
t is normally distributed. In fact,

combined with our earlier calculations, we see from Exercise 4.12 that

I
(n)
t ∼ N

(
0,

n∑
j=1

g2(tj−1)(tj − tj−1)

)
.

It now follows from Theorem 4.24 that I
(n)
t converges in distribution to the random variable

It where

It ∼ N
(

0,

∫ t

0

g2(s) ds

)
10–2



since the limit in distribution of normal random variables whose means and variances con-
verge must itself be normal. Hence, we define∫ t

0

g(s) dBs

to be this limit It so that

It =

∫ t

0

g(s) dBs ∼ N
(

0,

∫ t

0

g2(s) ds

)
.

Definition 10.1. Suppose that g : [0,∞) → R is a bounded, piecewise continuous function
in L2([0,∞)). The Wiener integral of g with respect to Brownian motion {Bt, t ≥ 0}, written∫ t

0

g(s) dBs,

is a random variable which has a

N
(

0,

∫ t

0

g2(s) ds

)
distribution.

Remark. We have taken the approach of defining the Wiener integral in a distributional
sense. It is possible, with a lot more technical machinery, to define it as the L2 limit
of a sequence of random variables. In the case of a random g, however, in order to the
define the Itô integral of g with respect to Brownian motion, we will need to follow the L2

approach. Furthermore, we will see that the Wiener integral is actually a special case of the
Itô integral. Thus, it seems pedagogically more appropriate to define the Wiener integral
in the distributional sense since this is a much simpler construction and, arguably, more
intuitive.
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Lecture #11: Calculating Wiener Integrals

Now that we have defined the Wiener integral of a bounded, piecewise continuous determin-
istic function in L2([0,∞)) with respect to Brownian motion as a normal random variable,
namely ∫ t

0

g(s) dBs ∼ N
(

0,

∫ t

0

g2(s) ds

)
,

it might seem like we are done. However, as our ultimate goal is to be able to integrate
random functions with respect to Brownian motion, it seems useful to try and develop a
calculus for Wiener integration. The key computational tool that we will develop is an
integration-by-parts formula. But first we need to complete the following exercise.

Exercise 11.1. Verify that the Wiener integral is a linear operator. That is, show that if α,
β ∈ R are constants, and g and h are bounded, piecewise continuous functions in L2([0,∞)),
then ∫ t

0

[αg(s) + βh(s)] dBs = α

∫ t

0

g(s) dBs + β

∫ t

0

h(s) dBs.

Theorem 11.2. Let g : [0,∞) → R be a bounded, continuous function in L2([0,∞)). If g
is differentiable with g′ also bounded and continuous, then the integration-by-parts formula∫ t

0

g(s) dBs = g(t)Bt −
∫ t

0

g′(s)Bs ds

holds.

Remark. Since all three objects in the above expression are random variables, the equality
is interpreted to mean that the distribution of the random variable on the left side and the
distribution of the random variable on the right side are the same, namely

N
(

0,

∫ t

0

g2(s) ds

)
.

Also note that the second integral on the right side, namely∫ t

0

g′(s)Bs ds, (11.1)

is the Riemann integral of a function of Brownian motion. Using the notation of the final
remark of Lecture #9, we have h(Bs) = g′(s)Bs. In Exercise 11.5 you will determine the
distribution of (11.1).

Proof. We begin by writing

n∑
j=1

g(tj−1)(Btj −Btj−1
) =

n∑
j=1

g(tj−1)Btj −
n∑

j=1

g(tj−1)Btj−1
. (11.2)
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Since g is differentiable, the mean value theorem implies that there exists some value t∗j ∈
[tj−1, tj] such that

g′(t∗j)(tj − tj−1) = g(tj)− g(tj−1).

Substituting this for g(tj−1) in the previous expression (11.2) gives

n∑
j=1

g(tj−1)Btj −
n∑

j=1

g(tj−1)Btj−1
=

n∑
j=1

g(tj)Btj −
n∑

j=1

g′(t∗j)(tj − tj−1)Btj −
n∑

j=1

g(tj−1)Btj−1

=
n∑

j=1

[g(tj)Btj − g(tj−1)Btj−1
]−

n∑
j=1

g′(t∗j)(tj − tj−1)Btj

= g(tn)Btn − g(t0)Bt0 −
n∑

j=1

g′(t∗j)Btj (tj − tj−1)

= g(t)Bt −
n∑

j=1

g′(t∗j)Btj (tj − tj−1)

since tn = t and t0 = 0. Notice that we have established an equality between random
variables, namely that

n∑
j=1

g(tj−1)(Btj −Btj−1
) = g(t)Bt −

n∑
j=1

g′(t∗j)Btj (tj − tj−1). (11.3)

The proof will be completed if we can show that the distribution of the limiting random
variable on the left-side of (11.3) and the distribution of the limiting random variable on the
right-side of (11.3) are the same. Of course, we know that

n∑
j=1

g(tj−1)(Btj −Btj−1
) → It =

∫ t

0

g(s) dBs ∼ N
(

0,

∫ t

0

g2(s) ds

)
from our construction of the Wiener integral in Lecture #10. Thus, we conclude that

g(t)Bt −
n∑

j=1

g′(t∗j)Btj (tj − tj−1) → It ∼ N
(

0,

∫ t

0

g2(s) ds

)
in distribution as well. We now observe that since g′ is bounded and piecewise continu-
ous, and since Brownian motion is continuous, the function g′(t)Bt is necessarily Riemann
integrable. Thus,

lim
n→∞

n∑
j=1

g′(t∗j)Btj (tj − tj−1) =

∫ t

0

g′(s)Bs ds

in distribution as in Lecture #9. In other words, we have shown that the distribution of∫ t

0

g(s) dBs
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and the distribution of

g(t)Bt −
∫ t

0

g′(s)Bs ds

are the same, namely

N
(

0,

∫ t

0

g2(s) ds

)
and so the proof is complete.

Example 11.3. Suppose that t > 0. It might seem obvious that

Bt =

∫ t

0

dBs.

However, since Brownian motion is nowhere differentiable, and since we have only defined the
Wiener integral as a normal random variable, this equality needs a proof. Since Bt ∼ N (0, t)
and since ∫ t

0

dBs ∼ N
(

0,

∫ t

0

12 ds

)
= N (0, t),

we conclude that

Bt =

∫ t

0

dBs

in distribution. Alternatively, let g ≡ 1 so that the integration-by-parts formula implies∫ t

0

dBs = g(t)Bt −
∫ t

0

g′(s)Bs ds = Bt − 0 = Bt.

Example 11.4. Suppose that we choose t = 1 and g(s) = s. The integration-by-parts
formula implies that ∫ 1

0

s dBs = B1 −
∫ 1

0

Bs ds.

If we now write

B1 =

∫ 1

0

dBs

and use linearity of the stochastic integral, then we find∫ 1

0

Bs ds = B1 −
∫ 1

0

s dBs =

∫ 1

0

dBs −
∫ 1

0

s dBs =

∫ 1

0

(1− s) dBs.

Since ∫ 1

0

(1− s) dBs

is normally distributed with mean 0 and variance∫ 1

0

(1− s)2 ds =
1

3
,

we conclude that ∫ 1

0

Bs ds ∼ N (0, 1/3).

Thus, we have a different derivation of the fact that we proved in Lecture #9.
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Exercise 11.5. Show that ∫ 1

0

g′(s)Bs ds =

∫ 1

0

[g(1)− g(s)] dBs

where g is any antiderivative of g′. Conclude that∫ 1

0

g′(s)Bs ds ∼ N
(

0,

∫ 1

0

[g(1)− g(s)]2 ds

)
.

In general, this exercise shows that for fixed t > 0, we have∫ t

0

g′(s)Bs ds ∼ N
(

0,

∫ t

0

[g(t)− g(s)]2 ds

)
.

Exercise 11.6. Use the result of Exercise 11.5 to establish the following generalization of
Example 11.4. Show that if n = 0, 1, 2, . . . is a non-negative integer, then∫ 1

0

snBs ds ∼ N
(

0,
2

(2n + 3)(n + 2)

)
.
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Lecture #12: Further Properties of the Wiener Integral

Recall that we have defined the Wiener integral of a bounded, piecewise continuous determ-
inistic function in L2([0,∞)) with respect to Brownian motion as a normal random variable,
namely ∫ t

0

g(s) dBs ∼ N
(

0,

∫ t

0

g2(s) ds

)
,

and that we have derived the integration-by-parts formula. That is, if g : [0,∞) → R is a
bounded, continuous function in L2([0,∞)) such that g is differentiable with g′ also bounded
and continuous, then ∫ t

0

g(s) dBs = g(t)Bt −
∫ t

0

g′(s)Bs ds

holds as an equality in distribution of random variables. The purpose of today’s lecture is
to give some further properties of the Wiener integral.

Example 12.1. Recall from Example 11.4 that∫ 1

0

Bs ds = B1 −
∫ 1

0

s dBs.

We know from that example (or from Lecture #9) that∫ 1

0

Bs ds ∼ N (0, 1/3).

Furthermore, we know that B1 ∼ N (0, 1), and we can easily calculate that∫ 1

0

s dBs ∼ N
(

0,

∫ 1

0

s2 ds

)
= N (0, 1/3).

If B1 and ∫ 1

0

s dBs

were independent random variables, then from Exercise 4.12 the distribution of

B1 −
∫ 1

0

s dBs

would be N (0, 1 + 1/3) = N (0, 4/3). However,

B1 −
∫ 1

0

s dBs =

∫ 1

0

Bs ds

which we know is N (0, 1/3). Thus, we are forced to conclude that B1 and∫ 1

0

s dBs

are not independent.
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Suppose that g and h are bounded, piecewise continuous functions in L2([0,∞)) and consider
the random variables

It(g) =

∫ t

0

g(s) dBs

and

It(h) =

∫ t

0

h(s) dBs.

As the previous example suggests, these two random variables are not, in general, independ-
ent. Using linearity of the Wiener integral, we can now calculate their covariance. Since

It(g) =

∫ t

0

g(s) dBs ∼ N
(

0,

∫ t

0

g2(s) ds

)
,

It(h) =

∫ t

0

h(s) dBs ∼ N
(

0,

∫ t

0

h2(s) ds

)
,

and

It(g + h) =

∫ t

0

[g(s) + h(s)] dBs ∼ N
(

0,

∫ t

0

[g(s) + h(s)]2 ds

)
,

and since

Var(It(g + h)) = Var(It(g) + It(h)) = Var(It(g)) + Var(It(h)) + 2 Cov(It(g), It(h)),

we conclude that∫ t

0

[g(s) + h(s)]2 ds =

∫ t

0

g2(s) ds +

∫ t

0

h2(s) ds + 2 Cov(It(g), It(h)).

Expanding the square on the left-side and simplifying implies that

Cov(It(g), It(h)) =

∫ t

0

g(s)h(s) ds.

Note that taking g = h gives

Var(It(g)) = Cov(It(g), It(g)) =

∫ t

0

g(s)g(s) ds =

∫ t

0

g2(s) ds

in agreement with our previous work. This suggests that the covariance formula should not
come as a surprise to you!

Exercise 12.2. Suppose that g(s) = sin s, 0 ≤ s ≤ π, and h(s) = cos s, 0 ≤ s ≤ π.

(a) Show that Cov(Iπ(g), Iπ(h)) = 0.

(b) Prove that Iπ(g) and Iπ(h) are independent. Hint: Theorem 4.17 will be useful here.

The same proof you used for (b) of the previous exercise holds more generally.
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Theorem 12.3. If g and h are bounded, piecewise continuous functions in L2([0,∞)) with∫ t

0

g(s)h(s) ds = 0,

then the random variables It(g) and It(h) are independent.

Exercise 12.4. Prove this theorem.

We end this lecture with two extremely important properties of the Wiener integral It,
namely that {It, t ≥ 0} is a martingale and that the trajectories t 7→ It are continuous. The
proof of the following theorem requires some facts about convergence in L2 and is therefore
beyond our present scope.

Theorem 12.5. Suppose that g : [0,∞) → R is a bounded, piecewise continuous function
in L2([0,∞)). If the process {It, t ≥ 0} is defined by setting I0 = 0 and

It =

∫ t

0

g(s) dBs

for t > 0, then

(a) {It, t ≥ 0} is a continuous-time martingale with respect to the Brownian filtration
{Ft, t ≥ 0}, and

(b) the trajectory t 7→ It is continuous.

That is, {It, t ≥ 0} is a continuous-time continuous martingale.
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Lecture #13: Itô Integration (Part I)

Recall that for bounded, piecewise continuous deterministic L2([0,∞)) functions, we have
defined the Wiener integral

It =

∫ t

0

g(s) dBs

which satisfied the following properties:

• I0 = 0,

• for fixed t > 0, the random variable It is normally distributed with mean 0 and variance∫ t

0

g2(s) ds,

• the stochastic process {It, t ≥ 0} is a martingale with respect to the Brownian filtration
{Ft, t ≥ 0}, and

• the trajectory t 7→ It is continuous.

Our goal for the next two lectures is to define the integral

It =

∫ t

0

g(s) dBs. (13.1)

for random functions g.

We understand from our work on Wiener integrals that for fixed t > 0 the stochastic in-
tegral It must be a random variable depending on the Brownian sample path. Thus, the
interpretation of (13.1) is as follows. Fix a realization (or sample path) of Brownian motion
{Bt(ω), t ≥ 0} and a realization (depending on the Brownian sample path observed) of the
stochastic process {g(t, ω), t ≥ 0} so that, for fixed t > 0, the integral (13.1) is really a
random variable, namely

It(ω) =

∫ t

0

g(s, ω) dBs(ω).

We begin with the example where g is a Brownian motion. This seemingly simple example
will serve to illustrate more of the subtleties of integration with respect to Brownian motion.

Example 13.1. Suppose that {Bt, t ≥ 0} is a Brownian motion with B0 = 0. We would
like to compute

It =

∫ t

0

Bs dBs
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for this particular realization {Bt, t ≥ 0} of Brownian motion. If Riemann integration were
valid, we would expect, using the fundamental theorem of calculus, that

It =

∫ t

0

Bs dBs =
1

2
(B2

t −B2
0) =

1

2
B2

t . (13.2)

Motivated by our experience with Wiener integration, we expect that It has mean 0. How-
ever, if It is given by (13.2), then

E(It) =
1

2
E(B2

t ) =
t

2
.

We might also expect that the stochastic process {It, t ≥ 0} is a martingale; of course,
{B2

t /2, t ≥ 0} is not a martingale, although,{
1

2
B2

t −
t

2
, t ≥ 0

}
(13.3)

is a martingale. Is it possible that the value of It is given by (13.3) instead? We will now
show that yes, in fact, ∫ t

0

Bs dBs =
1

2
B2

t −
t

2
.

Suppose that πn = {0 = t0 < t1 < t2 < · · · < tn = t} is a partition of [0, t] and let

Ln =
n∑

i=1

Bti−1
(Bti −Bti−1

) and Rn =
n∑

i=1

Bti(Bti −Bti−1
)

denote the left-hand and right-hand Riemann sums, respectively. Observe that

Rn − Ln =
n∑

i=1

Bti(Bti −Bti−1
)−

n∑
i=1

Bti−1
(Bti −Bti−1

) =
n∑

i=1

(Bti −Bti−1
)2. (13.4)

The next theorem shows that

(Rn − Ln) 6→ 0 as mesh(πn) = max
i≤i≤n

(ti − ti−1) → 0

which implies that the attempted Riemann integration (13.2) is not valid for Brownian
motion.

Theorem 13.2. If {πn, n = 1, 2, 3, . . .} is a refinement of [0, t] with mesh(πn) → 0, then

n∑
i=1

(
Bti −Bti−1

)2 → t in L2

as mesh(πn) → 0.
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Proof. To begin, notice that
n∑

i=1

(ti − ti−1) = t.

Let

Yn =
n∑

i=1

(
Bti −Bti−1

)2 − t =
n∑

i=1

[(
Bti −Bti−1

)2 − (ti − ti−1)
]

=
n∑

i=1

Xi

where
Xi =

(
Bti −Bti−1

)2 − (ti − ti−1),

and note that

Y 2
n =

n∑
i=1

n∑
j=1

Xi Xj =
n∑

i=1

X2
i + 2

∑
i<j

Xi Xj.

The independence of the Brownian increments implies that E(XiXj) = 0 for i 6= j; hence,

E(Y 2
n ) =

n∑
i=1

E(X2
i ).

But

E(X2
i ) = E

[
(Bti −Bti−1

)4
]
− 2(ti − ti−1)E

[
(Bti −Bti−1

)2
]

+ (ti − ti−1)
2

= 3(ti − ti−1)
2 − 2(ti − ti−1)

2 + (ti − ti−1)
2

= 2(ti − ti−1)
2

since the fourth moment of a normal random variable with mean 0 and variance ti − ti−1 is
3(ti − ti−1)

2. Therefore,

E(Y 2
n ) =

n∑
i=1

E(X2
i ) = 2

n∑
i=1

(ti − ti−1)
2 ≤ 2 mesh(πn)

n∑
i=1

(ti − ti−1) = 2t mesh(πn) → 0

as mesh(πn) → 0 from which we conclude that E(Y 2
n ) → 0 as mesh(πn) → 0. However, this

is exactly what it means for Yn → 0 in L2 as mesh(πn) → 0, and the proof is complete.

As a result of this theorem, we define the quadratic variation of Brownian motion to be this
limit in L2.

Definition 13.3. The quadratic variation of a Brownian motion {Bt, t ≥ 0} on the interval
[0, t] is defined to be

Q2(B[0, t]) = t (in L2).

Since
(Rn − Ln) → t in L2 as mesh(πn) → 0

we see that Ln and Rn cannot possibly have the same limits in L2. This is not necessarily
surprising since Bti−1

is independent of Bti − Bti−1
from which it follows that E(Ln) = 0

while E(Rn) = t.
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Exercise 13.4. Show that E(Ln) = 0 and E(Rn) = t.

On the other hand,

Rn + Ln =
n∑

i=1

Bti(Bti −Bti−1
) +

n∑
i=1

Bti−1
(Bti −Bti−1

) =
n∑

i=1

(Bti + Bti−1
)(Bti −Bti−1

)

=
n∑

i=1

(B2
ti
−B2

ti−1
)

= B2
tn −B2

t0

= B2
t −B2

0

= B2
t . (13.5)

Thus, from (13.4) and (13.5) we conclude that

Ln =
1

2

(
B2

t −
n∑

i=1

(Bti −Bti−1
)2

)
and Rn =

1

2

(
B2

t +
n∑

i=1

(Bti −Bti−1
)2

)

and so

Ln →
1

2
(B2

t − t) in L2 and Rn →
1

2
(B2

t + t) in L2.

Unlike the usual Riemann integral, the limit of these sums does depend on the intermediate
points used (i.e., left– or right-endpoints). However, {B2

t + t, t ≥ 0} is not a martingale,
although {B2

t − t, t ≥ 0} is a martingale. Therefore, while both of these limits are valid
ways to define the integral It, it is reasonable to use as the definition the limit for which a
martingale is produced. And so we make the following definition:∫ t

0

Bs dBs = lim Ln in L2

=
1

2
B2

t −
t

2
. (13.6)
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Lecture #14: Itô Integration (Part II)

Recall from last lecture that we defined the Itô integral of Brownian motion as∫ t

0

Bs dBs = lim Ln in L2

=
1

2
B2

t −
t

2
. (14.1)

where {πn, n = 1, 2, . . .} is a refinement of [0, t] with mesh(πn) → 0 and

Ln =
n∑

i=1

Bti−1
(Bti −Bti−1

)

denotes the left-hand Riemann sum corresponding to the partition πn = {0 = t0 < t1 <
· · · < tn = t}.
We saw that the definition of It depended on the intermediate point used in the Riemann
sum, and that the reason for choosing the left-hand sum was that it produced a martingale.

We now present another example which shows some of the dangers of a näıve attempt at
stochastic integration.

Example 14.1. Let {Bt, t ≥ 0} be a realization of Brownian motion with B0 = 0, and
suppose that for any fixed 0 ≤ t < 1 we define the random variable It by

It =

∫ t

0

B1 dBs.

Since B1 is constant (for a given realization), we might expect that

It =

∫ t

0

B1 dBs = B1

∫ t

0

dBs = B1(Bt −B0) = B1Bt.

However,
E(It) = E(B1Bt) = min{1, t} = t

which is not constant. Therefore, if we want to obtain martingales, this is not how we should
define the integral It. The problem here is that the random variable B1 is not adapted to
Ft = σ(Bs, 0 ≤ s ≤ t) for any fixed 0 ≤ t < 1.

From the previous example, we see that in order to define

It =

∫ t

0

g(s) dBs

the stochastic process {g(s), 0 ≤ s ≤ t} will necessarily need to be adapted to the Brownian
filtration {Fs, 0 ≤ s ≤ t} = {σ(Br, 0 ≤ r ≤ s), 0 ≤ s ≤ t}.
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Definition 14.2. Let L2
ad denote the space of stochastic processes g = {g(t), t ≥ 0} such

that

• g is adapted to the Brownian filtration {Ft, t ≥ 0} (i.e., g(t) ∈ Ft for every t > 0),
and

•
∫ T

0

E[g2(t)] dt < ∞ for every T > 0.

Our goal is to now define

It(g) =

∫ t

0

g(s) dBs

for g ∈ L2
ad. This is accomplished in a more technical manner than the construction of the

Wiener integral, and the precise details will therefore be omitted. Complete details may by
found in [12], however.

The first step involves defining the integral for step stochastic processes, and the second step
is to then pass to a limit.

Suppose that g = {g(t), t ≥ 0} is a stochastic process. We say that g is a step stochastic
process if for every t ≥ 0 we can write

g(s, ω) =
n−1∑
i=1

Xi−1(ω)1[ti−1,ti)(s) + Xn−1(ω)1[tn−1,tn](s) (14.2)

for 0 ≤ s ≤ t where {0 = t0 < t1 < · · · < tn = t} is a partition of [0, t] and {Xj, j =
0, 1, . . . , n− 1} is a finite collection of random variables. Define the integral of such a g as

It(g)(ω) =

∫ t

0

g(s, ω) dBs(ω) =
n∑

i=1

Xi−1(ω)(Bti(ω)−Bti−1
(ω)), (14.3)

and note that (14.3) is simply a discrete stochastic integral as in (7.1), the so-called martin-
gale transform of X by B.

The second, and more difficult, step is show that it is possible to approximate an arbitrary
g ∈ L2

ad by a sequence of step processes gn ∈ L2
ad such that

lim
n→∞

∫ t

0

E(|gn(s)− g(s)|2) ds = 0.

We then define It(g) to be the limit in L2 of the approximating Itô integrals It(gn) defined
by (14.3), and show that the limit does not depend of the choice of step processes {gn}; that
is,

It(g) = lim
n→∞

It(gn) in L2 (14.4)

and so we have the following definition.
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Definition 14.3. If g ∈ L2
ad, define the Itô integral of g to be

It(g) =

∫ t

0

g(s) dBs

where It(g) is defined as the limit in (14.4).

Notice that the definition of the Itô integral did not use any approximating Riemann sums.
However, in Lecture #13 we calculated

∫ t

0
Bs dBs directly by taking the limit in L2 of the

approximating Riemann sums. It is important to know when both approaches give the same
answer which is the content of the following theorem. For a proof, see Theorem 4.7.1 of [12].

Theorem 14.4. If the stochastic process g ∈ L2
ad and E(g(s)g(t)) is a continuous function

of s and t, then ∫ t

0

g(s) dBs = lim
n∑

i=1

g(ti−1)(Bti −Bti−1
) in L2.

Example 14.5. For example, if the stochastic process g is a Brownian motion, then Bt is
necessarily Ft-measurable with E(B2

t ) = t < ∞ for every t > 0. Since E(BsBt) = min{s, t} is
a continuous function of s and t, we conclude that Theorem 14.4 can be applied to calculate∫ t

0
Bs dBs. This is exactly what we did in (13.6).

The following result collects together a number of properties of the Itô integral. It is relatively
straightforward to prove all of these properties when g is a step stochastic process. It is rather
more involved to pass to the appropriate limits to obtain these results for general g ∈ L2

ad.

Theorem 14.6. Suppose that g, h ∈ L2
ad, and let

It(g) =

∫ t

0

g(s) dBs and It(h) =

∫ t

0

h(s) dBs.

• If α, β ∈ R are constants, then It(αg + βh) = αIt(g) + βIt(h).

• It(g) is a random variable with I0(g) = 0, E(It(g)) = 0 and

Var(It(g)) = E[I2
t (g)] =

∫ t

0

E[g2(s)] ds. (14.5)

• The covariance of It(g) and It(h) is given by

E[It(g)It(h)] =

∫ t

0

E[g(s)h(s)] ds.

• The process {It, t ≥ 0} is a martingale with respect to the Brownian filtration.

• The trajectory t 7→ It is a continuous function of t.
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Remark. The equality (14.5) in the second part of this theorem is sometimes known as the
Itô isometry.

Remark. It is important to observe that the Wiener integral is a special case of the Itô
integral. That is, if g is a bounded, piecewise continuous deterministic L2([0,∞)) function,
then g ∈ L2

ad and so the Itô integral of g with respect to Brownian motion can be constructed.
The fact that g is deterministic means that we recover the properties for the Wiener integral
from the properties in Theorem 14.6 for the Itô integral. Theorem 11.2, the integration-by-
parts formula for Wiener integration, will follow from Theorem 16.1, the generalized version
of Itô’s formula.

Remark. It is also important to observe that, unlike the Wiener integral, there is no general
form of the distribution of It(g). In general, the Riemann sum approximations to It(g)
contain terms of the form

g(ti−1)(Bti −Bti−1
). (14.6)

When g is deterministic, the distribution of the It(g) is normal as a consequence of the fact
that the sum of independent normals is normal. However, when g is random, the distribution
of (14.6) is not necessarily normal. The following exercises illustrates this point.

Exercise 14.7. Consider

I =

∫ 1

0

Bs dBs =
B2

1

2
− 1

2
.

Since B1 ∼ N (0, 1), we know that B2
1 ∼ χ2(1), and so we conclude that

2I + 1 ∼ χ2(1).

Simulate 10000 realizations of I and plot a histogram of 2I + 1. Does your simulation match
the theory?

Exercise 14.8. Suppose that {Bt, t ≥ 0} is a standard Brownian motion, and let the
stochastic process {g(t), t ≥ 0} be defined as follows. At time t = 0, flip a fair coin and let
g(0) = 2 if the coin shows heads, and let g(0) = 3 if the coin shows tails. At time t =

√
2,

roll a fair die and let g(
√

2 ) equal the number of dots showing on the die. If 0 < t <
√

2,
define g(t) = g(0), and if t >

√
2, define g(t) = g(

√
2 ). Note that {g(t), t ≥ 0} is a step

stochastic process.

(a) Express g in the form (14.2).

(b) Sketch a graph of the stochastic process {g(t), t ≥ 0}.

(c) Determine the mean and the variance of∫ 5

0

g(s) dBs.

(d) If possible, determine the distribution of∫ 5

0

g(s) dBs.
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Lecture #15: Itô’s Formula (Part I)

In this section, we develop Itô’s formula which may be called the “fundamental theorem of
stochastic integration.” It allows for the explicit calculation of certain Itô integrals in much
the same way that the fundamental theorem of calculus gives one a way to compute definite
integrals. In fact, recall that if f : R → R and g : R → R are differentiable functions, then

d

dt
(f ◦ g)(t) = f ′(g(t)) · g′(t),

which implies that ∫ t

0

f ′(g(s)) · g′(s) ds = (f ◦ g)(t)− (f ◦ g)(0). (15.1)

Our experience with the Itô integral that we computed earlier, namely∫ t

0

Bs dBs =
1

2
(B2

t − t),

tells us that we do not expect a formula quite like the fundamental theorem of calculus given
by (15.1).

In order to explain Itô’s formula, we begin by recalling Taylor’s theorem. That is, if f : R →
R is infinitely differentiable, then f can be expressed as an infinite polynomial expanded
around a ∈ R as

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · .

We now let x = t + ∆t and a = t so that

f(t + ∆t) = f(t) + f ′(t)∆t +
f ′′(t)

2!
(∆t)2 +

f ′′′(t)

3!
(∆t)3 + · · ·

which we can write as

f(t + ∆t)− f(t)

∆t
= f ′(t) +

f ′′(t)

2!
∆t +

f ′′′(t)

3!
(∆t)2 + · · · .

At this point we see that if ∆t → 0, then

lim
∆t→0

f(t + ∆t)− f(t)

∆t
= lim

∆t→0

[
f ′(t) +

f ′′(t)

2!
∆t +

f ′′′(t)

3!
(∆t)2 + · · ·

]
= f ′(t)

which is exactly the definition of derivative.
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The same argument can be used to prove the chain rule. That is, suppose that f and g are
infinitely differentiable. Let x = g(t) + ∆g(t) and a = g(t) so that Taylor’s theorem takes
the form

f(g(t) + ∆g(t)) = f(g(t)) + f ′(g(t))∆g(t) +
f ′′(g(t))

2!
(∆g(t))2 +

f ′′′(g(t))

3!
(∆g(t))3 + · · · .

We now write ∆g(t) = g(t + ∆t)− g(t) so that

f(g(t + ∆t))− f(g(t)) = f ′(g(t))(g(t + ∆t)− g(t)) +
f ′′(g(t))

2!
(g(t + ∆t)− g(t))2

+
f ′′′(g(t))

3!
(g(t + ∆t)− g(t))3 + · · · .

Dividing both sides by ∆t implies

f(g(t + ∆t))− f(g(t))

∆t
= f ′(g(t)) · g(t + ∆t)− g(t)

∆t
+

f ′′(g(t))

2!
· (g(t + ∆t)− g(t))2

∆t

+
f ′′′(g(t))

3!
· (g(t + ∆t)− g(t))3

∆t
+ · · · . (15.2)

The question now is what happens when ∆t → 0. Notice that the limit of the left-side of
the previous equation (15.2) is

lim
∆t→0

f(g(t + ∆t))− f(g(t))

∆t
= lim

∆t→0

(f ◦ g)(t + ∆t)− (f ◦ g)(t)

∆t
=

d

dt
(f ◦ g)(t).

As for the right-side of (15.2), we find for the first term that

lim
∆t→0

[
f ′(g(t)) · g(t + ∆t)− g(t)

∆t

]
= f ′(g(t)) · lim

∆t→0

g(t + ∆t)− g(t)

∆t
= f ′(g(t)) · g′(t).

For the second term, however, we have

lim
∆t→0

[
f ′′(g(t))

2!
· (g(t + ∆t)− g(t))2

∆t

]
=

f ′′(g(t))

2!
· lim

∆t→0

g(t + ∆t)− g(t)

∆t
· lim

∆t→0
[g(t + ∆t)− g(t)]

=
f ′′(g(t))

2!
· g′(t) · 0 = 0

which follows since g is differentiable (and therefore continuous). Similarly, the higher order
terms all approach 0 in the ∆t → 0 limit. Combining everything gives

d

dt
(f ◦ g)(t) = f ′(g(t)) · g′(t).

In fact, this proof of the chain rule illustrates precisely why the fundamental theorem of
calculus fails for Itô integrals. Brownian motion is nowhere differentiable, and so the step
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of the proof of the chain rule where the second order term vanishes as ∆t → 0 is not valid.
Indeed, if we take g(t) = Bt and divide by ∆t, then we find

∆f(Bt)

∆t
=

f(Bt+∆t)− f(Bt)

∆t

= f ′(Bt)
∆Bt

∆t
+

f ′′(Bt)

2!
· (∆Bt)

2

∆t
+

f ′′′(Bt)

3!
· (∆Bt)

3

∆t
+ · · · .

In the limit as ∆t → 0, the left-side of the previous equation is

lim
∆t→0

∆f(Bt)

∆t
=

d

dt
f(Bt).

As for the right-side, we are tempted to say that the first term approaches

lim
∆t→0

[
f ′(Bt) ·

∆Bt

∆t

]
= f ′(Bt) ·

dBt

dt

so that

d

dt
f(Bt) = f ′(Bt) ·

dBt

dt
+

f ′′(Bt)

2!
·
[

lim
∆t→0

(∆Bt)
2

∆t

]
+

f ′′′(Bt)

3!
·
[

lim
∆t→0

(∆Bt)
3

∆t

]
+ · · · .

(Even though Brownian motion is nowhere differentiable so that dBt/ dt does not exist, bear
with us.) We know that ∆Bt = Bt+∆t −Bt ∼ N (0, ∆t) so that

Var(∆Bt) = E
[
(∆Bt)

2
]

= ∆t

or, approximately,
(∆Bt)

2 ≈ ∆t.

This suggests that

lim
∆t→0

(∆Bt)
2

∆t
= lim

∆t→0

∆t

∆t
= 1

but if k ≥ 3, then

lim
∆t→0

(∆Bt)
k

∆t
= lim

∆t→0

(√
∆t
)k

∆t
= lim

∆t→0

∆t
(√

∆t
)k−2

∆t
= 0.

(In fact, these approximations can be justified using our result on the quadratic variation of
Brownian motion.) Hence, we conclude that

d

dt
f(Bt) = f ′(Bt) ·

dBt

dt
+

f ′′(Bt)

2!
.

Multiplying through by dt gives

df(Bt) = f ′(Bt) dBt +
f ′′(Bt)

2
dt
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and so if we integrate from 0 to T , then∫ T

0

df(Bt) =

∫ T

0

f ′(Bt) dBt +
1

2

∫ T

0

f ′′(Bt) dt.

Since ∫ T

0

df(Bt) = f(BT )− f(B0)

we have motivated the following result.

Theorem 15.1 (K. Itô, 1944). If f(x) ∈ C2(R), then

f(Bt)− f(B0) =

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds. (15.3)

Notice that the first integral in (15.3) is an Itô integral, while the second integral is a Riemann
integral.

Example 15.2. Let f(x) = x2 so that f ′(x) = 2x and f ′′(x) = 2. Therefore, Itô’s formula
implies

B2
t −B2

0 =

∫ t

0

2Bs dBs +
1

2

∫ t

0

2 ds = 2

∫ t

0

Bs dBs + t.

Rearranging we conclude ∫ t

0

Bs dBs =
1

2
(B2

t − t)

which agrees with our earlier result for this integral.

Example 15.3. Let f(x) = x3 so that f ′(x) = 3x2 and f ′′(x) = 6x. Therefore, Itô’s formula
implies

B3
t −B3

0 =

∫ t

0

3B2
s dBs +

1

2

∫ t

0

6Bs ds

so that rearranging yields ∫ t

0

B2
s dBs =

1

3
B3

t −
∫ t

0

Bs ds, (15.4)

and hence we are able to evaluate another Itô integral explictly. We can determine the
distribution of the Riemann integral in the above expression by recalling from the integration-
by-parts formula for Wiener integrals that (for fixed t > 0)∫ t

0

Bs ds =

∫ t

0

(t− s) dBs ∼ N
(

0,

∫ t

0

(t− s)2 ds

)
∼ N

(
0,

t3

3

)
.

Example 15.4. We can take another approach to the previous example by using the
integration-by-parts formula for Wiener integrals in a slightly different way, namely∫ t

0

s dBs = tBt −
∫ t

0

Bs ds.
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If we then substitute this into (15.4) we find∫ t

0

B2
s dBs =

1

3
B3

t − tBt +

∫ t

0

s dBs

and so using the linearity of the Itô integral we are able to evaluate another integral explicitly,
namely ∫ t

0

(B2
s − s) dBs =

1

3
B3

t − tBt.

Example 15.5. Let f(x) = x4 so that f ′(x) = 4x3 and f ′′(x) = 12x2. Therefore, Itô’s
formula implies

B4
t −B4

0 =

∫ t

0

4B3
s dBs +

1

2

∫ t

0

12B2
s ds (15.5)

and so we can rearrange (15.5) to compute yet another Itô integral:∫ t

0

B3
s dBs =

1

4
B4

t −
3

2

∫ t

0

B2
s ds.
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Lecture #16: Itô’s Formula (Part II)

Recall from last lecture that we derived Itô’s formula, namely if f(x) ∈ C2(R), then

f(Bt)− f(B0) =

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds. (16.1)

The derivation of Itô’s formula involved carefully manipulating Taylor’s theorem for the
function f(x). (In fact, the actual proof of Itô’s formula follows a careful analysis of Taylor’s
theorem for a function of one variable.) As you may know from MATH 213, there is a version
of Taylor’s theorem for functions of two variables. Thus, by writing down Taylor’s theorem
for the function f(t, x) and carefully checking which higher order terms disappear, one can
derive the following generalized version of Itô’s formula.

Consider those functions of two variables, say f(t, x), which have one continuous derivative
in the “t-variable” for t ≥ 0, and two continuous derivatives in the “x-variable.” If f is such
a function, we say that f ∈ C1([0,∞))× C2(R).

Theorem 16.1 (Generalized Version of Itô’s Formula). If f ∈ C1([0,∞))× C2(R), then

f(t, Bt)− f(0, B0) =

∫ t

0

∂

∂x
f(s, Bs) dBs +

1

2

∫ t

0

∂2

∂x2
f(s, Bs) ds +

∫ t

0

∂

∂t
f(s, Bs) ds. (16.2)

Remark. It is traditional to use the variables t and x for the function f(t, x) of two variables
in the generalized version of Itô’s formula. This has the unfortunate consequence that the
letter t serves both as a dummy variable for the function f(t, x) and as a time variable in the
upper limit of integration. One way around this confusion is to use the prime (′) notation
for derivatives in the space variable (the x-variable) and the dot (·) notation for derivatives
in the time variable (the t-variable). That is,

f ′(t, x) =
∂

∂x
f(t, x), f ′′(t, x) =

∂2

∂x2
f(t, x), ḟ(t, x) =

∂

∂t
f(t, x),

and so (16.2) becomes

f(t, Bt)− f(0, B0) =

∫ t

0

f ′(s, Bs) dBs +
1

2

∫ t

0

f ′′(s, Bs) ds +

∫ t

0

ḟ(s, Bs) ds.

Example 16.2. Let f(t, x) = tx2 so that

f ′(t, x) = 2xt, f ′′(t, x) = 2t, and ḟ(t, x) = x2.

Therefore, the generalized version of Itô’s formula implies

tB2
t =

∫ t

0

2sBs dBs +
1

2

∫ t

0

2s ds +

∫ t

0

B2
s ds.

Upon rearranging we conclude∫ t

0

sBs dBs =
1

2

(
tB2

t −
t2

2
−
∫ t

0

B2
s ds

)
.
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Example 16.3. Let f(t, x) = 1
3
x3 − xt so that

f ′(t, x) = x2 − t, f ′′(t, x) = 2x, and ḟ(t, x) = −x.

Therefore, the generalized version of Itô’s formula implies

1

3
B3

t − tBt =

∫ t

0

(B2
s − s) dBs +

1

2

∫ t

0

2Bs ds−
∫ t

0

Bs ds =

∫ t

0

(B2
s − s) dBs

which gives the same result as was obtained in Example 15.4.

Example 16.4. If we combine our result of Example 15.5, namely∫ t

0

B3
s dBs =

1

4
B4

t −
3

2

∫ t

0

B2
s ds,

with our result of Example 16.2, namely∫ t

0

sBs dBs =
1

2

(
tB2

t −
t2

2
−
∫ t

0

B2
s ds

)
,

then we conclude that ∫ t

0

(B3
s − 3sBs) dBs =

1

4
B4

t −
3

2
tB2

t +
3

4
t2.

Example 16.5. If we re-write the results of Example 15.4 and Example 16.4 slightly differ-
ently, then we see that ∫ t

0

3(B2
s − s) dBs = B3

t − 3tBt

and ∫ t

0

4(B3
s − 3sBs) dBs = B4

t − 6tB2
t + 3t2.

The reason for doing this is that Theorem 14.6 tells us that Itô integrals are martingales.
Hence, we see that {B3

t − 3tBt, t ≥ 0} and {B4
t − 6tB2

t + 3t2, t ≥ 0} must therefore be
martingales with respect to the Brownian filtration {Ft, t ≥ 0}. Look back at Exercise 7.6;
you have already verified that these are martingales. Of course, using Itô’s formula makes
for a much easier proof.

Exercise 16.6. Prove that the process {Mt, t ≥ 0} defined by setting

Mt = exp

{
θBt −

θ2t

2

}
where θ ∈ R is a constant is a martingale with respect to the Brownian filtration {Ft, t ≥ 0}.
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Example 16.7. We will now show that Theorem 11.2, the integration-by-parts formula for
Wiener integrals, is a special case of the generalized version of Itô’s formula. Suppose that
g : [0,∞) → R is a bounded, continuous function in L2([0,∞)). Suppose further that g is
differentiable with g′ also bounded and continuous. Let f(t, x) = xg(t) so that

f ′(t, x) = g(t), f ′′(t, x) = 0, and ḟ(t, x) = xg′(t).

Therefore, the generalized version of Itô’s formula implies

g(t)Bt =

∫ t

0

g(s) dBs +
1

2

∫ t

0

0 ds +

∫ t

0

g′(s)Bs ds.

Rearranging gives ∫ t

0

g(s) dBs = g(t)Bt −
∫ t

0

g′(s)Bs ds

as required.

There are a number of versions of Itô’s formula that we will use; the first two we have already
seen. The easiest way to remember all of the different versions is as a stochastic differential
equation (or SDE).

Theorem 16.8 (Version I). If f ∈ C2(R), then

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt.

Theorem 16.9 (Version II). If f ∈ C1([0,∞))× C2(R), then

df(t, Bt) = f ′(t, Bt) dBt +
1

2
f ′′(t, Bt) dt + ḟ(t, Bt) dt

= f ′(t, Bt) dBt +

[
ḟ(t, Bt) +

1

2
f ′′(t, Bt)

]
dt.

Example 16.10. Suppose that {Bt, t ≥ 0} is a standard Brownian motion. Determine the
SDE satisfied by

Xt = exp{σBt + µt}.

Solution. Consider the function f(t, x) = exp{σx + µt}. Since

f ′(t, x) = σ exp{σx + µt}, f ′′(t, x) = σ2 exp{σx + µt}, ḟ(t, x) = µ exp{σx + µt},

it follows from Version II of Itô’s formula that

df(t, Bt) = σ exp{σBt + µt} dBt +
σ2

2
exp{σBt + µt} dt + µ exp{σBt + µt} dt.

In other words,

dXt = σXt dBt +

(
σ2

2
+ µ

)
Xt dt.
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Suppose that the stochastic process {Xt, t ≥ 0} is defined by the stochastic differential
equation

dXt = a(t,Xt) dBt + b(t,Xt) dt

where a and b are suitably smooth functions. We call such a stochastic process a diffusion
(or an Itô diffusion or an Itô process).

Again, a careful analysis of Taylor’s theorem provides a version of Itô’s formula for diffusions.

Theorem 16.11 (Version III). Let Xt be a diffusion defined by the SDE

dXt = a(t,Xt) dBt + b(t,Xt) dt.

If f ∈ C2(R), then

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d〈X〉t

where d〈X〉t is computed as

d〈X〉t = (dXt)
2 = [a(t,Xt) dBt + b(t,Xt) dt]2 = a2(t,Xt) dt

using the rules (dBt)
2 = dt, (dt)2 = 0, (dBt)(dt) = (dt)(dBt) = 0. That is,

df(Xt) = f ′(Xt) [a(t,Xt) dBt + b(t,Xt) dt] +
1

2
f ′′(Xt)a

2(t,Xt) dt

= f ′(Xt)a(t,Xt) dBt + f ′(Xt)b(t,Xt) dt +
1

2
f ′′(Xt)a

2(t,Xt) dt

= f ′(Xt)a(t,Xt) dBt +

[
f ′(Xt)b(t,Xt) +

1

2
f ′′(Xt)a

2(t,Xt)

]
dt.

And finally we give the version of Itô’s formula for diffusions for functions f(t, x) of two
variables.

Theorem 16.12 (Version IV). Let Xt be a diffusion defined by the SDE

dXt = a(t,Xt) dBt + b(t,Xt) dt.

If f ∈ C1([0,∞))× C2(R), then

df(t,Xt) = f ′(t,Xt) dXt +
1

2
f ′′(t,Xt) d〈X〉t + ḟ(t,Xt) dt

= f ′(t,Xt)a(t,Xt) dBt +

[
ḟ(t,Xt) + f ′(t,Xt)b(t,Xt) +

1

2
f ′′(t,Xt)a

2(t,Xt)

]
dt

again computing d〈X〉t = (dXt)
2 using the rules (dBt)

2 = dt, (dt)2 = 0, (dBt)(dt) =
(dt)(dBt) = 0.
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Prof. Michael Kozdron

Lecture #17: Deriving the Black–Scholes Partial Differential
Equation

Our goal for today is to use Itô’s formula to derive the Black-Scholes partial differential
equation. We will then solve this equation next lecture.

Recall from Lecture #2 that D(t) denotes the value at time t of an investment which grows
according to a continuously compounded interest rate r. We know its value at time t ≥ 0 is
given by D(t) = ertD0 which is the solution to the differential equation D′(t) = rD(t) with
initial condition D(0) = D0. Written in differential form, this becomes

dD(t) = rD(t) dt. (17.1)

We now assume that our stock price is modelled by geometric Brownian motion. That is,
let St denote the price of the stock at time t, and assume that St satisfies the stochastic
differential equation

dSt = σSt dBt + µSt dt. (17.2)

We can check using Version II of Itô’s formula (Theorem 16.9) that the solution to this SDE
is geometric Brownian motion {St, t ≥ 0} given by

St = S0 exp

{
σBt +

(
µ− σ2

2

)
t

}
where S0 is the initial value.

Remark. There are two, equally common, ways to parametrize the drift of the geometric
Brownian motion. The first is so that the process is simpler,

St = S0 exp {σBt + µt} ,

and leads to the more complicated SDE

dSt = σSt dBt +

(
µ +

σ2

2

)
St dt.

The second is so that the SDE is simpler,

dSt = σSt dBt + µSt dt,

and leads to the more complicated process

St = S0 exp

{
σBt +

(
µ− σ2

2

)
t

}
.

We choose the parametrization given by (17.2) to be consistent with Higham [11].
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We also recall from Lecture #1 the definition of a European call option.

Definition 17.1. A European call option with strike price E at time T gives its holder an
opportunity (i.e., the right, but not the obligation) to buy from the writer one share of the
prescribed stock at time T for price E.

Notice that if, at time T , the value of the stock is less than E, then the option is worthless
and will not be exercised, but if the value of the stock is greater than E, then the option is
valuable and will therefore be exercised.

That is,

• if ST ≤ E, then the option is worthless, but

• if ST > E, then the option has the value ST − E.

Thus, the value of the option at time T is (ST −E)+ = max{0, ST −E}. Our goal, therefore,
is to determine the value of this option at time 0.

We will write V to denote the value of the option. Since V depends on both time and on the
underlying stock, we see that V (t, St) denotes the value of the option at time t, 0 ≤ t ≤ T .

Hence,

• V (T, ST ) = (ST − E)+ is the value of the option at the expiry time T , and

• V (0, S0) denotes the value of option at time 0.

Example 17.2. Assuming that the function V ∈ C1([0,∞))× C2(R), use Itô’s formula on
V (t, St) to compute dV (t, St).

Solution. By Version IV of Itô’s formula (Theorem 16.12), we find

dV (t, St) = V̇ (t, St) dt + V ′(t, St) dSt +
1

2
V ′′(t, St) d〈S〉t.

From (17.2), the SDE for geometric Brownian motion is

dSt = σSt dBt + µSt dt

and so we find
d〈S〉t = (dSt)

2 = σ2S2
t dt

using the rules (dBt)
2 = dt, (dt)2 = (dBt)(dt) = (dt)(dBt) = 0. Hence, we conclude

dV (t, St) = V̇ (t, St) dt + V ′(t, St)
[
σSt dBt + µSt dt

]
+

1

2
V ′′(t, St)

[
σ2S2

t dt
]

= σStV
′(t, St) dBt +

[
V̇ (t, St) + µStV

′(t, St) +
σ2

2
S2

t V
′′(t, St)

]
dt. (17.3)
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We now recall the no arbitrage assumption from Lecture #2 which states that “there is never
an opportunity to make a risk-free profit that gives a greater return than that provided by
interest from a bank deposit.”

Thus, to find the fair value of the option V (t, St), 0 ≤ t ≤ T , we will set up a replicating
portfolio of assets and bonds that has precisely the same risk at time t as the option does
at time t. The portfolio consists of a cash deposit D and a number A of assets.

We assume that we can vary the number of assets and the size of our cash deposit at time
t so that both D and A are allowed to be functions of both the time t and the asset price
St. (Technically, our trading strategy needs to be previsible; we can only alter our portfolio
depending on what has happened already.)

That is, if Π denotes our portfolio, then the value of our portfolio at time t is given by

Π(t, St) = A(t, St)St + D(t, St). (17.4)

Recall that we are allowed to short-sell both the stocks and the bonds and that there are no
transaction costs involved. Furthermore, it is worth noting that, although our strategy for
buying bonds may depend on both the time and the behaviour of the stock, the bond is still
a risk-free investment which evolves according to (17.1) as

dD(t, St) = rD(t, St) dt. (17.5)

The assumption that the portfolio is replicating means precisely that the portfolio is self-
financing ; in other words, the value of the portfolio one time step later is financed entirely
by the current wealth. In terms of stochastic differentials, the self-financing condition is

dΠ(t, St) = A(t, St) dSt + dD(t, St),

which, using (17.2) and (17.5), is equivalent to

dΠ(t, St) = A(t, St)
[
σSt dBt + µSt dt

]
+ rD(t, St) dt

= σA(t, St)St dBt +
[
µA(t, St)St + rD(t, St)

]
dt. (17.6)

The final step is to consider V (t, St)−Π(t, St). By the no arbitrage assumption, the change
in V (t, St) − Π(t, St) over any time step is non-random. Furthermore, it must equal the
corresponding growth offered by the continuously compounded risk-free interest rate. In
terms of differentials, if we write

Ut = V (t, St)− Π(t, St),

then Ut must be non-random and grow according to (17.1) so that

dUt = rUt dt.

That is,
d
[
V (t, St)− Π(t, St)

]
= r
[
V (t, St)− Π(t, St)

]
dt. (17.7)
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The logic is outlined by Higham [11] on page 79.

Using (17.3) for dV (t, St) and (17.6) for dΠ(t, St), we find

d
[
V (t, St)− Π(t, St)

]
=

(
σStV

′(t, St) dBt +

[
V̇ (t, St) + µStV

′(t, St) +
σ2

2
S2

t V
′′(t, St)

]
dt

)
−
(

σA(t, St)St dBt +
[
µA(t, St)St + rD(t, St)

]
dt

)
= σSt

[
V ′(t, St)− A(t, St)

]
dBt

+

[
V̇ (t, St) + µStV

′(t, St) +
σ2

2
S2

t V
′′(t, St)− µA(t, St)St − rD(t, St)

]
dt

= σSt

[
V ′(t, St)− A(t, St)

]
dBt

+

[
V̇ (t, St) +

σ2

2
S2

t V
′′(t, St)− rD(t, St) + µSt

[
V ′(t, St)− A(t, St)

]]
dt. (17.8)

Since we assume that the change over any time step is non-random, it must be the case that
the dBt term is 0. In order for the dBt term to be 0, we simply choose

A(t, St) = V ′(t, St).

This means that that dt term

V̇ (t, St) +
σ2

2
S2

t V
′′(t, St)− rD(t, St) + µSt

[
V ′(t, St)− A(t, St)

]
reduces to

V̇ (t, St) +
σ2

2
S2

t V
′′(t, St)− rD(t, St)

since we already need A(t, St) = V ′(t, St) for the dBt piece. Looking at (17.7) therefore gives

V̇ (t, St) +
σ2

2
S2

t V
′′(t, St)− rD(t, St) = r

[
V (t, St)− Π(t, St)

]
. (17.9)

Using the facts that
Π(t, St) = A(t, St)St + D(t, St)

and
A(t, St) = V ′(t, St)

therefore imply that (17.9) becomes

V̇ (t, St) +
σ2

2
S2

t V
′′(t, St)− rD(t, St) = rV (t, St)− rStV

′(t, St)− rD(t, St)

which, upon simplification, reduces to

V̇ (t, St) +
σ2

2
S2

t V
′′(t, St) + rStV

′(t, St)− rV (t, St) = 0.

17–4



In other words, we must find a function V (t, x) which satisfies the Black-Scholes partial
differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0. (17.10)

Remark. We have finally arrived at what Higham [11] calls “the famous Black-Scholes
partial differential equation (PDE)” given by equation (8.15) on page 79.

We now mention two important points.

• The drift parameter µ in the asset model does NOT appear in the Black-Scholes PDE.

• Actually, we have not yet specified what type of option is being valued. The PDE
given in (17.10) must be satisfied by ANY option on the asset S whose value can be
expressed as a smooth function, i.e., a function in C1([0,∞))× C2(R).

In view of the second item, we really want to price a European call option with strike price
E. This amounts to requiring V (T, ST ) = (ST −E)+. Our goal, therefore, in the next lecture
is to solve the Black-Scholes partial differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0

for V (t, x), 0 ≤ t ≤ T , x ∈ R, subject to the boundary condition

V (T, x) = (x− E)+.
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Lecture #18: Solving the Black–Scholes Partial Differential
Equation

Our goal for this lecture is to solve the Black-Scholes partial differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0 (18.1)

for V (t, x), 0 ≤ t ≤ T , x ∈ R, subject to the boundary condition

V (T, x) = (x− E)+.

The first observation is that it suffices to solve (18.1) when r = 0. That is, if W satisfies

Ẇ (t, x) +
σ2

2
x2W ′′(t, x) = 0, (18.2)

and V (t, x) = er(t−T )W (t, er(T−t)x), then V (t, x) satisfies (18.1) and V (T, x) = W (T, x).

This can be checked by differentiation. There is, however, an “obvious” reason why it is
true, namely due to the time value of money mentioned in Lecture #2. If money invested
in a cash deposit grows at continuously compounded interest rate r, then $x at time T is
equivalent to $er(t−T )x at time t.

Exercise 18.1. Verify (using the multivariate chain rule) that if W (t, x) satisfies (18.2) and
V (t, x) = er(t−T )W (t, er(T−t)x), then V (t, x) satisfies (18.1) and V (T, x) = W (T, x).

Since we have already seen that the Black-Scholes partial differential equation (18.1) does
not depend on µ, we can assume that µ = 0. We have also just shown that it suffices to
solve (18.1) when r = 0. Therefore, we will use W to denote the Black-Scholes solution in
the r = 0 case, i.e., the solution to (18.2), and we will then use V as the solution in the
r > 0 case, i.e., the solution to (18.1), where

V (t, x) = er(t−T )W (t, er(T−t)x). (18.3)

We now note from (17.3) that the SDE for W (t, St) is

dW (t, St) = σStW
′(t, St) dBt +

[
Ẇ (t, St) + µStW

′(t, St) +
σ2

2
S2

t W
′′(t, St)

]
dt.

We are assuming that µ = 0 so that

dW (t, St) = σStW
′(t, St) dBt +

[
Ẇ (t, St) +

σ2

2
S2

t W
′′(t, St)

]
dt.
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We are also assuming that W (t, x) satisfies the Black-Scholes PDE given by (18.2) which is
exactly what is needed to make the dt term equal to 0. Thus, we have reduced the SDE for
W (t, St) to

dW (t, St) = σStW
′(t, St) dBt.

We now have a stochastic differential equation with no dt term which means, using The-
orem 14.6, that W (t, St) is a martingale. Formally, if Mt = W (t, St), then the stochastic
process {Mt, t ≥ 0} is a martingale with respect to the Brownian filtration {Ft, t ≥ 0}.
Next, we use the fact that martingales have stable expectation (Theorem 6.3) to conclude
that

E(M0) = E(MT ).

Remark. The expiry date T is a fixed time (and not a random time). This allows us to use
Theorem 6.3 directly.

Since we know the value of the European call option at time T is W (T, ST ) = (ST − E)+,
we see that

MT = W (T, ST ) = (ST − E)+.

Furthermore, M0 = W (0, S0) is non-random (since S0, the stock price at time 0, is known),
and so we conclude that M0 = E(MT ) which implies

W (0, S0) = E[ (ST − E)+ ]. (18.4)

The final step is to actually calculate the expected value in (18.4). Since we are assuming
µ = 0, the stock price follows geometric Brownian motion {St, t ≥ 0} where

St = S0 exp

{
σBt −

σ2

2
t

}
.

Hence, at time T , we need to consider the random variable

ST = S0 exp

{
σBT −

σ2

2
T

}
.

We know BT ∼ N (0, T ) so that we can write

ST = S0 e−
σ2T

2 eσ
√

TZ

for Z ∼ N (0, 1). Thus, we can now use the result of Exercise 4.7, namely if a > 0, b > 0,
c > 0 are constants and Z ∼ N (0, 1), then

E[ (aebZ − c)+ ] = aeb2/2 Φ

(
b +

1

b
log

a

c

)
− c Φ

(
1

b
log

a

c

)
, (18.5)

with

a = S0 e−
σ2T

2 , b = σ
√

T , c = E
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to conclude

E[ (ST − E)+ ]

= S0 e−
σ2T

2 e
σ2T

2 Φ

(
σ
√

T +
1

σ
√

T
log

S0 e−
σ2T

2

E

)
− E Φ

(
1

σ
√

T
log

S0 e−
σ2T

2

E

)

= S0 Φ

(
1

σ
√

T
log

S0

E
+

σ
√

T

2

)
− E Φ

(
1

σ
√

T
log

S0

E
− σ

√
T

2

)
.

To account for the time value of money, we can use Exercise 18.1 to give the solution for
r > 0. That is, if V (0, S0) denotes the fair price (at time 0) of a European call option with
strike price E, then using (18.3) we conclude

V (0, S0) = e−rT W (0, erT S0)

= e−rT erT S0 Φ

(
1

σ
√

T
log

erT S0

E
+

σ
√

T

2

)
− Ee−rT Φ

(
1

σ
√

T
log

erT S0

E
− σ

√
T

2

)

= S0 Φ

(
log(S0/E) + (r + 1

2
σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2
σ2)T

σ
√

T

)
= S0 Φ (d1)− Ee−rT Φ (d2)

where

d1 =
log(S0/E) + (r + 1

2
σ2)T

σ
√

T
and d2 =

log(S0/E) + (r − 1
2
σ2)T

σ
√

T
= d1 − σ

√
T .

AWESOME!

Remark. We have now arrived at equation (8.19) on page 80 of Higham [11]. Note that
Higham only states the answer; he never actually goes through the solution of the Black-
Scholes PDE.

Summary. Let’s summarize what we did. We assumed that the asset S followed geometric
Brownian motion given by

dSt = σSt dBt + µSt dt,

and that the risk-free bond D grew at continuously compounded interest rate r so that

dD(t, St) = rD(t, St) dt.

Using Version IV of Itô’s formula on the value of the option V (t, St) combined with the self-
financing portfolio implied by the no arbitrage assumption led to the Black-Scholes partial
differential equation

V̇ (t, x) +
σ2

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0.
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We also made the important observation that this PDE does not depend on µ. We then saw
that it was sufficient to consider r = 0 since we noted that if W (t, x) solved the resulting
PDE

Ẇ (t, x) +
σ2

2
x2W ′′(t, x) = 0,

then V (t, x) = er(t−T )W (t, er(T−t)x) solved the Black-Scholes PDE for r > 0. We then
assumed that µ = 0 and we found the SDE for W (t, St) which had only a dBt term (and
no dt term). Using the fact that Itô integrals are martingales implied that {W (t, St), t ≥ 0}
was a martingale, and so the stable expectation property of martingales led to the equation

W (0, S0) = E(W (T, ST )).

Since we knew that V (T, ST ) = W (T, ST ) = (ST −E)+ for a European call option, we could
compute the resulting expectation. We then translated back to the r > 0 case via

V (0, S0) = e−rT W (0, erT S0).

This previous observation is extremely important since it tells us precisely how to price
European call options with different payoffs. In general, if the payoff function at time T is
Λ(x) so that

V (T, x) = W (T, x) = Λ(x),

then, since {W (t, St), t ≥ 0} is a martingale,

W (0, S0) = E(W (T, ST )) = E(Λ(ST )).

By assuming that µ = 0, we can write ST as

ST = S0 exp

{
σBT −

σ2

2
T

}
= S0 e−

σ2T
2 eσ

√
TZ

with Z ∼ N (0, 1). Therefore, if Λ is sufficiently nice, then E(Λ(ST )) can be calculated
explicitly, and we can use

V (0, S0) = e−rT W (0, erT S0)

to determine the required fair price to pay at time 0.

In particular, we can follow this strategy to answer the following question posed at the end
of Lecture #1.

Example 18.2. In the Black-Scholes world, price a European option with a payoff of
max{S2

T −K, 0} at time T .

Solution. The required time 0 price is V (0, S0) = e−rT W (0, erT S0) where W (0, S0) =
E[ (S2

T −K)+ ]. Since we can write

S2
T = S2

0 e−σ2T e2σ
√

TZ

with Z ∼ N (0, 1), we can use (18.5) with

a = S2
0 e−σ2T , b = 2σ

√
T , c = K

to conclude

V (0, S0) = S2
0 e(σ2+r)T Φ

(
log(S2

0/K) + (2r + 3σ2)T

2σ
√

T

)
−Ke−rT Φ

(
log(S2

0/K) + (2r − σ2)T

2σ
√

T

)
.
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Lecture #19: The Greeks

Recall that if V (0, S0) denotes the fair price (at time 0) of a European call option with strike
price E and expiry date T , then the Black-Scholes option valuation formula is

V (0, S0) = S0 Φ

(
log(S0/E) + (r + 1

2
σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2
σ2)T

σ
√

T

)
= S0 Φ (d1)− Ee−rT Φ (d2)

where

d1 =
log(S0/E) + (r + 1

2
σ2)T

σ
√

T
and d2 =

log(S0/E) + (r − 1
2
σ2)T

σ
√

T
= d1 − σ

√
T .

We see that this formula depends on

• the initial price of the stock S0,

• the expiry date T ,

• the strike price E,

• the risk-free interest rate r, and

• the stock’s volatility σ.

The partial derivatives of V = V (0, S0) with respect to these variables are extremely im-
portant in practice, and we will now compute them; for ease, we will write S = S0. In fact,
some of these partial derivatives are given special names and referred to collectively as “the
Greeks”:

• ∆ =
∂V

∂S
(delta),

• Γ =
∂2V

∂S2
=

∂∆

∂S
(gamma),

• ρ =
∂V

∂r
(rho),

• Θ =
∂V

∂T
(theta),

• vega =
∂V

∂σ
.

Note. Vega is not actually a Greek letter. Sometimes it is written as ν (which is the Greek
letter nu).
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Remark. On page 80 of [11], Higham changes from using V (0, S0) to denote the fair price
at time 0 of a European call option with strike price E and expiry date T to using C(0, S0).
Both notations seem to be widely used in the literature.

The financial use of each of “The Greeks” is as follows.

• Delta measures sensitivity to a small change in the price of the underlying asset.

• Gamma measures the rate of change of delta.

• Rho measures sensitivity to the applicable risk-free interest rate.

• Theta measures sensitivity to the passage of time. Sometimes the financial definition
of Θ is

−∂V

∂T
.

With this definition, if you are “long an option, then you are short theta.”

• Vega measures sensitivity to volatility.

Apparently, there are even more “Greeks.”

• Lambda, the percentage change in the option value per unit change in the underlying
asset price, is given by

λ =
1

V

∂V

∂S
=

∂ log V

∂S
.

• Vega gamma, or volga, measures second-order sensitivity to volatility and is given by

∂2V

∂σ2
.

• Vanna measures cross-sensitivity of the option value with respect to change in the
underlying asset price and the volatility and is given by

∂2V

∂S∂σ
=

∂∆

∂σ
.

It is also the sensitivity of delta to a unit change in volatility.

• Delta decay, or charm, given by

∂2V

∂S∂T
=

∂∆

∂T
,

measures time decay of delta. (This can be important when hedging a position over
the weekend.)
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• Gamma decay, or colour, given by
∂3V

∂S2∂T
,

measures the sensitivity of the charm to the underlying asset price.

• Speed, given by
∂3V

∂S3
,

measures third-order sensitivity to the underlying asset price.

In order to actually perform all of the calculations of the Greeks, we need to recall that

Φ′(x) =
1√
2π

e−x2/2.

Furthermore, we observe that

log

(
SΦ′(d1)

Ee−rT Φ′(d2)

)
= 0 (19.1)

which implies that
SΦ′(d1)− Ee−rT Φ′(d2) = 0. (19.2)

Exercise 19.1. Verify (19.1) and deduce (19.2).

Since

d1 =
log(S/E) + (r + 1

2
σ2)T

σ
√

T

we find

∂d1

∂S
=

1

Sσ
√

T
,

∂d1

∂r
=

√
T

σ
,

∂d1

∂σ
=

σ2T −
[
log(S/E) + (r + 1

2
σ2)T

]
σ2
√

T
= −d2

σ
, and

∂d1

∂T
=
− log(S/E) + (r + 1

2
σ2)T

2σT 3/2
.

Furthermore, since
d2 = d1 − σ

√
T ,

we conclude

∂d2

∂S
=

1

Sσ
√

T
,

∂d2

∂r
=

√
T

σ
,

∂d2

∂σ
=

∂d1

∂σ
−
√

T = −d2

σ
−
√

T , and

∂d2

∂T
=

∂d1

∂T
− σ

2
√

T
=
− log(S/E) + (r + 1

2
σ2)T

2σT 3/2
− σ

2
√

T
=
− log(S/E) + (r − 1

2
σ2)T

2σT 3/2
.
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• Delta. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

∆ =
∂V

∂S
= Φ (d1) + S

∂Φ (d1)

∂S
− Ee−rT ∂Φ (d2)

∂S

= Φ (d1) + S Φ′(d1)
∂d1

∂S
− Ee−rT Φ′(d2)

∂d2

∂S

= Φ (d1) +
Φ′(d1)

σ
√

T
− Ee−rT Φ′(d2)

Sσ
√

T

= Φ (d1) +
1

Sσ
√

T

[
SΦ′(d1)− Ee−rT Φ′(d2)

]
= Φ (d1)

where the last step follows from (19.2).

• Gamma. Since ∆ = Φ(d1), we find

Γ =
∂2V

∂S2
=

∂∆

∂S
= Φ′(d1)

∂d1

∂S
=

Φ′(d1)

Sσ
√

T
.

• Rho. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

ρ =
∂V

∂r
= S

∂Φ (d1)

∂r
+ ETe−rT Φ (d2)− Ee−rT ∂Φ (d2)

∂r

= S Φ′ (d1)
∂d1

∂r
+ ETe−rT Φ (d2)− Ee−rT Φ′ (d2)

∂d2

∂r

=
S
√

T

σ
Φ′ (d1) + ETe−rT Φ (d2)−

Ee−rT
√

T

σ
Φ′ (d2)

=

√
T

σ

[
SΦ′(d1)− Ee−rT Φ′(d2)

]
+ ETe−rT Φ (d2)

= ETe−rT Φ (d2)

where, as before, the last step follows from (19.2).

• Theta. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

Θ =
∂V

∂T
= S

∂Φ (d1)

∂T
+ Ere−rT Φ (d2)− Ee−rT ∂Φ (d2)

∂T

= S Φ′ (d1)
∂d1

∂T
+ Ere−rT Φ (d2)− Ee−rT Φ′ (d2)

∂d2

∂T

= S Φ′ (d1)
∂d1

∂T
+ Ere−rT Φ (d2)− Ee−rT Φ′ (d2)

[
∂d1

∂T
− σ

2
√

T

]
=
[
S Φ′ (d1)− Ee−rT Φ′ (d2)

] ∂d1

∂T
+ Ere−rT Φ (d2) +

σ

2
√

T
Ee−rT Φ′ (d2)

= Ere−rT Φ (d2) +
σ

2
√

T
Ee−rT Φ′ (d2)
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where, as before, the last step follows from (19.2). However, (19.2) also implies that
we can write Θ as

Θ = Ere−rT Φ (d2) +
σS

2
√

T
Φ′ (d1) . (19.3)

• Vega. Since V = S Φ (d1)− Ee−rT Φ (d2), we find

vega =
∂V

∂σ
= S

∂Φ (d1)

∂σ
− Ee−rT ∂Φ (d2)

∂σ

= S Φ′ (d1)
∂d1

∂σ
− Ee−rT Φ′ (d2)

∂d2

∂σ

= −d2

σ
S Φ′ (d1)−

(
−d2

σ
−
√

T

)
E e−rT Φ′ (d2)

= −d2

σ

[
S Φ′ (d1)− Ee−rT Φ′ (d2)

]
+
√

T E e−rT Φ′ (d2)

=
√

T E e−rT Φ′ (d2)

where, as before, the last step follows from (19.2). However, (19.2) also implies that
we can write vega as

vega = S
√

T Φ′ (d1) .

Remark. Our definition of Θ is slightly different than the one in Higham [11]. We are
differentiating V with respect to the expiry date T as opposed to an arbitrary time t with
0 ≤ t ≤ T . This accounts for the discrepancy in the minus signs in (10.5) of [11] and (19.3).

Exercise 19.2. Compute lambda, volga, vanna, charm, colour, and speed for the Black-
Scholes option valuation formula for a European call option with strike price E.

We also recall the put-call parity formula for European call and put options from Lecture #2:

V (0, S0) + Ee−rT = P (0, S0) + S0. (19.4)

Here P = P (0, S0) is the fair price (at time 0) of a European put option with strike price E.

Exercise 19.3. Using the formula (19.4), compute the Greeks for a European put option.
That is, compute

∆ =
∂P

∂S
, Γ =

∂2P

∂S2
, ρ =

∂P

∂r
, Θ =

∂P

∂T
, and vega =

∂P

∂σ
.

Note that gamma and vega for a European put option with strike price E are the same as
gamma and vega for a European call option with strike price E.
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Lecture #20: Implied Volatility

Recall that if V (0, S0) denotes the fair price (at time 0) of a European call option with strike
price E and expiry date T , then the Black-Scholes option valuation formula is

V (0, S0) = S0 Φ

(
log(S0/E) + (r + 1

2
σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2
σ2)T

σ
√

T

)
= S0 Φ (d1)− Ee−rT Φ (d2)

where

d1 =
log(S0/E) + (r + 1

2
σ2)T

σ
√

T
and d2 =

log(S0/E) + (r − 1
2
σ2)T

σ
√

T
= d1 − σ

√
T .

Suppose that at time 0 a first investor buys a European call option on the stock having
initial price S0 with strike price E and expiry date T . Of course, the fair price for the first
investor to pay is V (0, S0).

Suppose that some time later, say at time t, a second investor wants to buy a European call
option on the same stock with the same strike price E and the same expiry date T . What
is the fair price for this second investor to pay at time t?

Since it is now time t, the value of the underlying stock, namely St, is known. The expiry
date T is time T − t away. Thus, we simply re-scale our original Black-Scholes solution so
that t is the new time 0, the new initial price of the stock is St, and T − t is the new expiry
date. This implies that the fair price (at time t) of a European call option with strike price
E and expiry date T is given by the Black-Scholes option valuation formula

V (t, St)

= St Φ

(
log(St/E) + (r + 1

2
σ2)(T − t)

σ
√

T − t

)
− Ee−r(T−t) Φ

(
log(St/E) + (r − 1

2
σ2)(T − t)

σ
√

T − t

)
= St Φ (d1)− Ee−r(T−t) Φ (d2)

where

d1 =
log(St/E) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)
and d2 =

log(St/E) + (r − 1
2
σ2)(T − t)

σ
√

T − t
= d1−σ

√
T − t.

In fact, the rigorous justification for this is exactly the same as in (18.4) except now we view
Mt = W (t, St) as non-random since St, the stock price at time t, is known at time t. Note
that the formula for V (t, St) holds for 0 ≤ t ≤ T . In particular, for t = 0 we recover our
original result.
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Remark. Given the general Black-Scholes formula V (t, St), 0 ≤ t ≤ T , we can define Θ as
the derivative of V with respect to t. (In Lecture #19, we defined Θ as the derivative of V
with respect to the expiry date T .) With this revised definition, we compute

Θ =
∂V

∂t
= −Ere−r(T−t) Φ (d2)−

σSt

2
√

T − t
Φ′ (d1)

as in (10.5) of [11]. Note that there is a sign difference between this result and (19.3). All
of the other Greeks, namely delta, gamma, rho, and vega, are the same as in Lecture #19
except that T is replaced with T − t.

The practical advantage of the Black-Scholes formula V (t, St) is that it allows for the fast
and easy calculation of option prices. It is worth noting, however, that “exact” calculations
are not actually possible since the formula is given in terms of Φ, the normal cumulative
distribution function. In order to “evaluate” Φ (d1) or Φ (d2) one must resort to using a
computer (or table of normal values). Computationally, it is quite easy to evaluate Φ to
many decimal places accuracy; and so this is the reason that we say the Black-Scholes
formulation gives an exact formula. (In fact, programs like MATLAB or MAPLE can easily
give values of Φ accurate to 10 decimal places.)

However, the limitations of the Black-Scholes model are numerous. Assumptions such as the
asset price process following a geometric Brownian motion (so that an asset price at a fixed
time has a lognormal distribution), or that the asset’s volatility is constant, are not justified
by actual market data.

As such, one of the goals of modern finance is to develop more sophisticated models for
the asset price process, and to then develop the necessary stochastic calculus to produce a
“solution” to the pricing problem. Unfortunately, there is no other model that produces as
compact a solution as Black-Scholes. This means that the “solution” to any other model
involves numerical analysis—and often quite involved analysis at that.

Suppose, for the moment, that we assume that the Black-Scholes model is valid. In particular,
assume that the stock price {St, t ≥ 0} follows geometric Brownian motion. The fair price
V (t, St) to pay at time t depends on the parameters St, E, T − t, r, and σ2. Of these, only
the asset volatility σ cannot be directly observed.

There are two distinct approaches to extracting a value of σ from market data. The first is
known as implied volatility and is obtained by using a quoted option value to recover σ. The
second is known as historical volatility and is essentially maximum likelihood estimation of
the parameter σ.

We will discuss only implied volatility. For ease, we will focus on the time t = 0 case.
Suppose that S0, E, T , and r are all known, and consider V (0, S0). Since we are assuming
that only σ is unknown, we will emphasis this by writing V (σ).

Thus, if we have a quoted value of the option price, say V ∗, then we want to solve the
equation V (σ) = V ∗ for σ.

We will now show there is a unique solution to this equation which will be denoted by σ∗ so
that V (σ∗) = V ∗.

20–2



To begin, note that we are only interested in positive volatilities so that σ ∈ [0,∞). Fur-
thermore, V (σ) is continuous on [0,∞) with

lim
σ→∞

V (σ) = S0 and lim
σ→0+

V (σ) = max{S0 − Ee−rT , 0}. (20.1)

Recall that from Lecture #19 that

vega =
∂V

∂σ
= V ′(σ) = S0

√
T Φ′ (d1) .

Since

Φ′(x) =
1√
2π

e−x2/2

we immediately conclude that V ′(σ) > 0.

The fact that V (σ) is continuous on [0,∞) with V ′(σ) > 0 implies that V (σ) is strictly
increasing on [0,∞). Thus, we see that V (σ) = V ∗ has a solution if and only if

max{S0 − Ee−rT , 0} ≤ V ∗ ≤ S0 (20.2)

and that if a solution exists, then it must be unique. The no arbitrage assumption (i.e., the
put-call parity) implies that the condition (20.2) always holds.

We now calculate

V ′′(σ) =
∂2V

∂σ2
=

d1d2

σ

∂V

∂σ
=

d1d2

σ
V ′(σ) (20.3)

which shows that the only inflection point of V (σ) on [0,∞) is at

σ̂ =

√
2

∣∣∣∣ log(S0/E) + rT

T

∣∣∣∣. (20.4)

Notice that we can write

V ′′(σ) =
T

4σ3
(σ̂4 − σ4)V ′(σ) (20.5)

which implies that V (σ) is convex (i.e., concave up) for σ < σ̂ and concave (i.e., concave
down) for σ > σ̂.

Exercise 20.1. Verify (20.1), (20.2), (20.3), (20.4), and (20.5).

The consequence of all of this is that Newton’s method will be globally convergent for a
suitably chosen initial value. Recall that Newton’s method tells us that in order to solve the
equation F (x) = 0, we consider the sequence of iterates x0, x1, x2, . . . where

xn+1 = xn −
F (xn)

F ′(xn)
.

If we define
x∗ = lim

n→∞
xn,
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then F (x∗) = 0. Of course, there are assumptions needed to ensure that Newton’s method
converges and produces the correct solution.

If we now consider F (σ) = V (σ) − V ∗, then we have already shown that the conditions
needed to guarantee that Newton’s method converges have been satisfied.

It can also be shown that

0 <
σn+1 − σ∗

σn − σ∗
< 1

for all n which implies that the error in the approximation is strictly decreasing as n increases.
Thus, if we choose σ0 = σ̂, then the error must always converge to 0. Moreover, it can
be shown that the convergence is quadratic. Thus, choosing σ0 = σ̂ is a foolproof (and
deterministic) way of starting Newton’s method. We can then stop iterating when our error
is within some pre-specified tolerance, say < 10−8.

Remark. Computing implied volatility using Newton’s method is rather easy to implement
in MATLAB. See, for instance, the program ch14.m from Higham [11].

Consider obtaining data that reports the option price V ∗ for a variety of values of the strike
price E while at the same time holds r, S0, and T fixed. An example of such data is presented
in Section 14.5 of [11]. If the Black-Scholes formula were valid, then the volatility would be
the same for each strike price. That is, the graph of strike price vs. implied volatility would
be a horizontal line passing through σ = σ∗.

However, in this example, and in numerous other examples, the implied volatility curve
appears to bend in the shape of either a smile or a frown.

Remark. More sophisticated analyses of implied volatility involve data that reports the
option price V ∗ for a variety of values of the strike price E and expiry dates T while at
the same time holding r and S0 fixed. This produces a graph of strike price vs. expiry
date vs. implied volatility, and the result is an implied volatility surface. The functional
data analysis needed to in this case requires a number of statistical tools including principal
components analysis. If the Black-Scholes formula were valid, then the resulting implied
volatility surface would be a plane. Market data, however, typically results in bowl-shaped
or hat-shaped surfaces. For details, see [23] which is also freely available online.

This implies, of course, that the Black-Scholes formula is not a perfect description of the
option values that arise in practice. Many attempts have been made to “fix” this by consid-
ering stock price models that do not have constant volatility. We will investigate some such
models next lecture.
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Lecture #21: The Ornstein-Uhlenbeck Process as a Model of
Volatility

The Ornstein-Uhlenbeck process is a diffusion process that was introduced as a model of
the velocity of a particle undergoing Brownian motion. We know from Newtonian physics
that the velocity of a (classical) particle in motion is given by the time derivative of its
position. However, if the position of a particle is described by Brownian motion, then the
time derivative does not exist. The Ornstein-Uhlenbeck process is an attempt to overcome
this difficulty by modelling the velocity directly. Furthermore, just as Brownian motion is
the scaling limit of simple random walk, the Ornstein-Uhlenbeck process is the scaling limit
of the Ehrenfest urn model which describes the diffusion of particles through a permeable
membrane.

In recent years, however, the Ornstein-Uhlenbeck process has appeared in finance as a model
of the volatility of the underlying asset price process.

Suppose that the price of a stock {St, t ≥ 0} is modelled by geometric Brownian motion with
volatility σ and drift µ so that St satisfies the SDE

dSt = σSt dBt + µSt dt.

However, market data indicates that implied volatilities for different strike prices and expiry
dates of options are not constant. Instead, they appear to be smile shaped (or frown shaped).

Perhaps the most natural approach is to allow for the volatility σ(t) to be a deterministic
function of time so that St satisfies the SDE

dSt = σ(t)St dBt + µSt dt.

This was already suggested by Merton in 1973. Although it does explain the different implied
volatility levels for different expiry dates, it does not explain the smile shape for different
strike prices.

Instead, Hull and White in 1987 proposed to use a stochastic volatility model where the
underlying stock price {St, t ≥ 0} satisfies the SDE

dSt =
√

vt St dBt + µSt dt

and the variance process {vt, t ≥ 0} is given by geometric Brownian motion

dvt = c1vt dBt + c2vt dt

with c1 and c2 known constants. The problem with this model is that geometric Brownian
motion tends to increase exponentially which is an undesirable property for volatility.

Market data also indicates that volatility exhibits mean-reverting behaviour. This lead Stein
and Stein in 1991 to introduce the mean-reverting Ornstein-Uhlenbeck process satisfying

dvt = σ dBt + a(b− vt) dt

where a, b, and σ are known constants. This process, however, allows negative values of vt.
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In 1993 Heston overcame this difficulty by considering a more complex stochastic volatility
model. Before investigating the Heston model, however, we will consider the Ornstein-
Uhlenbeck process separately and prove that negative volatilities are allowed thereby verify-
ing that the Stein and Stein stock price model is flawed.

We say that the process {Xt, t ≥ 0} is an Ornstein-Uhlenbeck process if Xt satisfies the
Ornstein-Uhlenbeck stochastic differential equation given by

dXt = σ dBt + aXt dt (21.1)

where σ and a are constants and {Bt, t ≥ 0} is a standard Brownian motion.

Remark. Sometimes (21.1) is called the Langevin equation, especially in physics contexts.

Remark. The Ornstein-Uhlenbeck SDE is very similar to the SDE for geometric Brownian
motion; the only difference is the absence of Xt in the dBt term of (21.1). However, this
slight change makes (21.1) more challenging to solve.

The “trick” for solving (21.1) is to multiply both sides by the integrating factor e−at and to
compare with d(e−atXt). The chain rule tells us that

d(e−atXt) = e−at dXt + Xt d(e−at) = e−at dXt − ae−atXt dt (21.2)

and multiplying (21.1) by e−at gives

e−atdXt = σe−at dBt + ae−atXt dt (21.3)

so that substituting (21.3) into (21.2) gives

d(e−atXt) = σe−at dBt + ae−atXt dt− ae−atXt dt = σe−at dBt.

Since d(e−atXt) = σe−atdBt, we can now integrate to conclude that

e−atXt −X0 = σ

∫ t

0

e−as dBs

and so

Xt = eatX0 + σ

∫ t

0

ea(t−s) dBs. (21.4)

Observe that the integral in (21.4) is a Wiener integral. Definition 10.1 tells us that∫ t

0

ea(t−s) dBs ∼ N
(

0,

∫ t

0

e2a(t−s) ds

)
= N

(
0,

e2at − 1

2a

)
.

In particular, choosing X0 = x to be constant implies that

Xt = eatx + σ

∫ t

0

ea(t−s) dBs ∼ N
(

xeat,
σ2(e2at − 1)

2a

)
.
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Actually, we can generalize this slightly. If we choose X0 ∼ N (x, τ 2) independently of
{Bt, t ≥ 0}, then Exercise 4.12 tells us that

Xt = eatX0 + σ

∫ t

0

ea(t−s) dBs ∼ N
(

xeat, τ 2e2at +
σ2(e2at − 1)

2a

)
= N

(
xeat,

(
τ 2 +

σ2

2a

)
e2at − σ2

2a

)
.

Exercise 21.1. Suppose that {Xt, t ≥ 0} is an Ornstein-Uhlenbeck process given by (21.4)
with X0 = 0. If s < t, compute Cov(Xs, Xt).

We say that the process {Xt, t ≥ 0} is a mean-reverting Ornstein-Uhlenbeck process if Xt

satisfies the SDE
dXt = σ dBt + (b−Xt) dt (21.5)

where σ and b are constants and {Bt, t ≥ 0} is a standard Brownian motion.

The trick for solving the mean-reverting Ornstein-Uhlenbeck process is similar. That is, we
multiply by et and compare with d(et(b−Xt)). The chain rule tells us that

d(et(b−Xt)) = −et dXt + et(b−Xt) dt (21.6)

and multiplying (21.5) by et gives

etdXt = σet dBt + et(b−Xt) dt (21.7)

so that substituting (21.7) into (21.6) gives

d(et(b−Xt)) = −σet dBt − et(b−Xt) dt + et(b−Xt) dt = −σet dBt.

Since d(et(b−Xt)) = −σet dBt, we can now integrate to conclude that

et(b−Xt)− (b−X0) = −σ

∫ t

0

es dBs

and so

Xt = (1− e−t)b + e−tX0 + σ

∫ t

0

es−t dBs. (21.8)

Exercise 21.2. Suppose that X0 ∼ N (x, τ 2) is independent of {Bt, t ≥ 0}. Determine the
distribution of Xt given by (21.8).

Exercise 21.3. Use an appropriate integrating factor to solve the mean-reverting Ornstein-
Uhlenbeck SDE considered by Stein and Stein, namely

dXt = σ dBt + a(b−Xt) dt.

Assuming that X0 = x is constant, determine the distribution of Xt and conclude that
P{Xt < 0} > 0 for every t > 0. Hint: Xt has a normal distribution. This then explains our
earlier claim that the Stein and Stein model is flawed.
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As previous noted, Heston introduced a stochastic volatility model in 1993 that overcame
this difficulty. Assume that the asset price process {St, t ≥ 0} satisfies the SDE

dSt =
√

vt St dB
(1)
t + µSt dt

where the variance process {vt, t ≥ 0} satisfies

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt (21.9)

and the two driving Brownian motions {B(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are correlated with
rate ρ, i.e.,

d〈B(1), B(2)〉t = ρ dt.

The
√

vt term in (21.9) is needed to guarantee positive volatility—when the process touches
zero the stochastic part becomes zero and the non-stochastic part will push it up. The
parameter a measures the speed of the mean-reversion, b is the average level of volatility,
and σ is the volatility of volatility. Market data suggests that the correlation rate ρ is
typically negative. The negative dependence between returns and volatility is sometimes
called the leverage effect.

Heston’s model involves a system of stochastic differential equations. The key tool for ana-
lyzing such a system is the multidimensional version of Itô’s formula.

Theorem 21.4 (Version V). Suppose that {Xt, t ≥ 0} and {Yt, t ≥ 0} are diffusions defined
by the stochastic differential equations

dXt = a1(t,Xt, Yt) dB
(1)
t + b1(t,Xt, Yt) dt

and
dYt = a2(t,Xt, Yt) dB

(2)
t + b2(t,Xt, Yt) dt,

respectively, where {B(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are each standard one-dimensional
Brownian motions. If f ∈ C1([0,∞))× C2(R2), then

df(t,Xt, Yt) = ḟ(t,Xt, Yt) dt + f1(t,Xt, Yt) dXt +
1

2
f11(t,Xt, Yt) d〈X〉t

+ f2(t,Xt, Yt) dYt +
1

2
f22(t,Xt, Yt) d〈Y 〉t + f12(t,Xt, Yt) d〈X, Y 〉t

where the partial derivatives are defined as

ḟ(t, x, y) =
∂

∂t
f(t, x, y), f1(t, x, y) =

∂

∂x
f(t, x, y), f11(t, x, y) =

∂2

∂x2
f(t, x, y)

f2(t, x, y) =
∂

∂y
f(t, x, y), f22(t, x, y) =

∂2

∂y2
f(t, x, y), f12(t, x, y) =

∂2

∂x∂y
f(t, x, y),

and d〈X,Y 〉t is computed according to the rule

d〈X,Y 〉t = (dXt)(dYt) = a1(t,Xt, Yt)a2(t,Xt, Yt) d〈B(1), B(2)〉t.
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Remark. In a typical problem involving the multidimensional version of Itô’s formula, the
quadratic covariation process 〈B(1), B(2)〉t will be specified. However, two particular examples
are worth mentioning. If B(1) = B(2), then d〈B(1), B(2)〉t = dt, whereas if B(1) and B(2) are
independent, then d〈B(1), B(2)〉t = 0.

Exercise 21.5. Suppose that f(t, x, y) = xy. Using Version V of Itô’s formula (The-
orem 21.4), verify that the product rule for diffusions is given by

d(XtYt) = Xt dYt + Yt dXt + d〈X, Y 〉t.

Thus, our goal in the next few lectures is to price a European call option assuming that
the underlying stock price follows Heston’s model of geometric Brownian motion with a
stochastic volatility, namely

dSt =
√

vt St dB
(1)
t + µSt dt,

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt,

d〈B(1), B(2)〉t = ρ dt.
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Prof. Michael Kozdron

Lecture #22: The Characteristic Function for a Diffusion

Recall that the characteristic function of a random variable X is the function ϕX : R → C
defined by ϕX(θ) = E(eiθX). From Exercise 4.9, if X ∼ N (µ, σ2), then the characteristic
function of X is

ϕX(θ) = exp

{
iµθ − σ2θ2

2

}
.

Suppose that {Xt, t ≥ 0} is a stochastic process. For each T ≥ 0, we know that XT is a
random variable. Thus, we can consider ϕXT

(θ).

In the particular case that {Xt, t ≥ 0} is a diffusion defined by the stochastic differential
equation

dXt = σ(t,Xt) dBt + µ(t,Xt) dt (22.1)

where {Bt, t ≥ 0} is a standard Brownian motion with B0 = 0, if we can solve the SDE,
then we can determine ϕXT

(θ) for any T ≥ 0.

Example 22.1. Consider the case when both coefficients in (22.1) are constant so that

dXt = σ dBt + µ dt

where {Bt, t ≥ 0} is a standard Brownian motion with B0 = 0, In this case, the SDE is
trivial to solve. If X0 = x is constant, then for any T ≥ 0, we have

XT = x + σBT + µT

which is simply arithmetic Brownian motion started at x. Therefore,

XT ∼ N (x + µT, σ2T )

so that

ϕXT
(θ) = exp

{
i(x + µT )θ − σ2Tθ2

2

}
.

Example 22.2. Consider the Ornstein-Uhlenbeck stochastic differential equation given by

dXt = σ dBt + aXt dt

where σ and a are constants. As we saw in Lecture #21, if X0 = x is constant, then for any
T ≥ 0, we have

XT = eaT x + σ

∫ T

0

ea(T−s) dBs ∼ N
(

xeaT ,
σ2(e2aT − 1)

2a

)
.

Therefore,

ϕXT
(θ) = exp

{
ixeaT θ − σ2(e2aT − 1)θ2

4a

}
.
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Now it might seem like the only way to determine the characteristic function ϕXT
(θ) if

{Xt, t ≥ 0} is a diffusion defined by (22.1) is to solve this SDE. Fortunately, this is not true.
In many cases, the characteristic function for a diffusion defined by a SDE can be found
using the Feynman-Kac representation theorem without actually solving the SDE.

Consider the diffusion
dXt = σ(t,Xt) dBt + µ(t,Xt) dt. (22.2)

We know from Version IV of Itô’s formula (Theorem 16.12) that if f ∈ C1([0,∞))×C2(R),
then

df(t,Xt) = f ′(t,Xt) dXt +
1

2
f ′′(t,Xt) d〈X〉t + ḟ(t, x) dt

= σ(t,Xt)f
′(t,Xt) dBt +

[
µ(t,Xt)f

′(t,Xt) +
1

2
σ2(t,Xt)f

′′(t,Xt) + ḟ(t, x)

]
dt.

We also know from Theorem 14.6 that any Itô integral is a martingale. Therefore, if we
can find a particular function f(t, x) such that the dt term is zero, then f(t,Xt) will be
a martingale. We define the differential operator (sometimes called the generator of the
diffusion) to be the operator A given by

(Af)(t, x) = µ(t, x)f ′(t, x) +
1

2
σ2(t, x)f ′′(t, x) + ḟ(t, x).

Note that Version IV of Itô’s formula now takes the form

df(t,Xt) = σ(t,Xt)f
′(t,Xt) dBt + (Af)(t,Xt) dt.

This shows us the first connection between stochastic calculus and differential equations,
namely that if {Xt, t ≥ 0} is a diffusion defined by (22.2) and if f ∈ C1([0,∞)) × C2(R),
then f(t,Xt) is a martingale if and only if f satisfies the partial differential equation

(Af)(t, x) = 0.

The Feynman-Kac representation theorem extends this idea by providing an explicit formula
for the solution of this partial differential equation subject to certain boundary conditions.

Theorem 22.3 (Feynman-Kac Representation Theorem). Suppose that u ∈ C2(R), and let
{Xt, t ≥ 0} be defined by the SDE

dXt = σ(t,Xt) dBt + µ(t,Xt) dt.

The unique bounded function f : [0,∞)× R → R satisfying the partial differential equation

(Af)(t, x) = µ(t, x)f ′(t, x) +
1

2
σ2(t, x)f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R,

subject to the terminal condition

f(T, x) = u(x), x ∈ R,

is given by
f(t, x) = E[u(XT )|Xt = x].
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Example 22.4. We will now use the Feynman-Kac representation theorem to derive the
characteristic function for arithmetic Brownian motion satisfying the SDE

dXt = σ dBt + µ dt

where σ, µ, and X0 = x are constants. Let u(x) = eiθx so that the Feynman-Kac represent-
ation theorem implies

f(t, x) = E[u(XT )|Xt = x] = E[eiθXT |Xt = x]

is the unique bounded solution of the partial differential equation

µf ′(t, x) +
1

2
σ2f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (22.3)

subject to the terminal condition

f(T, x) = eiθx, x ∈ R.

Note that f(0, x) = E[eiθXT |X0 = x] = ϕXT
(θ) is the characteristic function of XT .

In order to solve (22.3) we use separation of variables. That is, we guess that f(t, x) can be
written as a function of x only times a function of t only so that

f(t, x) = χ(x)τ(t), 0 ≤ t ≤ T, x ∈ R. (22.4)

Therefore, we find

f ′(t, x) = χ′(x)τ(t), f ′′(t, x) = χ′′(x)τ(t), ḟ(t, x) = χ(x)τ ′(t)

so that (22.3) implies

µχ′(x)τ(t) +
1

2
σ2χ′′(x)τ(t) + χ(x)τ ′(t) = 0, 0 ≤ t ≤ T, x ∈ R,

or equivalently,
µχ′(x)

χ(x)
+

σ2χ′′(x)

2χ(x)
= −τ ′(t)

τ(t)
.

Since the left side of this equation which is a function of x only equals the right side which
is a function of t only, we conclude that both sides must be constant. For ease, we will write
the constant as −λ2. Thus, we must solve the two ordinary differential equations

µχ′(x)

χ(x)
+

σ2χ′′(x)

2χ(x)
= −λ2 and − τ ′(t)

τ(t)
= −λ2.

The ODE for τ is easy to solve; clearly τ ′(t) = λ2τ(t) implies

τ(t) = C exp{λ2t}

where C is an arbitrary constant. The ODE for χ is

µχ′(x) +
σ2χ′′(x)

2
= −λ2χ(x),
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or equivalently,
σ2χ′′(x) + 2µχ′(x) + 2λ2χ(x) = 0. (22.5)

Although this ODE is reasonably straightforward to solve for χ, it turns out that we do not
need to actually solve it. This is because of our terminal condition. We know that

f(T, x) = eiθx

and we also have assumed that
f(t, x) = χ(x)τ(t).

This implies that
f(T, x) = χ(x)τ(T ) = eiθx

which means that
τ(T ) = 1 and χ(x) = eiθx.

We now realize that we can solve for the arbitrary constant C; that is,

τ(t) = C exp{λ2t} and τ(T ) = 1

implies
C = exp{−λ2T} so that τ(t) = exp{−λ2(T − t)}.

We are also in a position to determine the value of λ2. That is, we know that χ(x) = eiθx

must be a solution to the ODE (22.5). Thus, we simply need to choose λ2 so that this is
true. Since

χ′(x) = iθeiθx and χ′′(x) = −θ2eiθx,

we conclude that
−σ2θ2eiθx + 2iµθeiθx + 2λ2eiθx = 0,

and so factoring out eiθx gives

−σ2θ2 + 2iµθ + 2λ2 = 0.

Thus,

−λ2 = iµθ − σ2θ2

2
so that substituting in for τ(t) gives

τ(t) = exp

{
iµ(T − t)θ − σ2(T − t)θ2

2

}
and so from (22.4) we conclude

f(t, x) = χ(x)τ(t) = eiθx exp

{
iµ(T − t)θ − σ2(T − t)θ2

2

}
= exp

{
i(x + µ(T − t))θ − σ2(T − t)θ2

2

}
.

Taking t = 0 gives

ϕXT
(θ) = f(0, x) = exp

{
i(x + µT )θ − σ2Tθ2

2

}
in agreement with Example 22.1.
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Example 22.5. We will now use the Feynman-Kac representation theorem to derive the
characteristic function for a process satisfying the Ornstein-Uhlenbeck SDE

dXt = σ dBt + aXt dt

where σ, a, and X0 = x are constants. Let u(x) = eiθx so that the Feynman-Kac represent-
ation theorem implies

f(t, x) = E[u(XT )|Xt = x] = E[eiθXT |Xt = x]

is the unique bounded solution of the partial differential equation

axf ′(t, x) +
1

2
σ2f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (22.6)

subject to the terminal condition

f(T, x) = eiθx, x ∈ R.

Note that f(0, x) = E[eiθXT |X0 = x] = ϕXT
(θ) is the characteristic function of XT .

If we try to use separation of variables to solve (22.6), then we soon discover that it does not
produce a solution. Thus, we are forced to conclude that the solution f(t, x) is not separable
and is necessarily more complicated. Guided by the form of the terminal condition, we guess
that f(t, x) can be written as

f(t, x) = exp{iθα(t)x + β(t)}, 0 ≤ t ≤ T, x ∈ R, (22.7)

for some functions α(t) and β(t) of t only satisfying α(T ) = 1 and β(T ) = 0. Differentiating
we find

f ′(t, x) = iθα(t) exp{iθα(t)x + β(t)} = iθα(t)f(t, x),

f ′′(t, x) = −θ2α2(t) exp{iθα(t)x + β(t)} = −θ2α2(t)f(t, x), and

ḟ(t, x) = [iθα′(t)x + β′(t)] exp{iθα(t)x + β(t)} = [iθα′(t)x + β′(t)]f(t, x)

so that (22.6) implies

iθaxα(t)f(t, x)− σ2θ2

2
α2(t)f(t, x) + [iθα′(t)x + β′(t)]f(t, x) = 0, 0 ≤ t ≤ T, x ∈ R.

Factoring out the common f(t, x) reduces the equation to

iθaxα(t)− σ2θ2

2
α2(t) + iθα′(t)x + β′(t) = 0,

or equivalently,

iθ[aα(t) + α′(t)]x + β′(t)− σ2θ2

2
α2(t) = 0.

Since this equation must be true for all 0 ≤ t ≤ T and x ∈ R, the only way that is possible
is if the coefficient of x is zero and the constant term is 0. Thus, we must have

aα(t) + α′(t) = 0 and β′(t)− σ2θ2

2
α2(t) = 0. (22.8)
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This first equation in (22.8) involves only α(t) and is easily solved. That is, α′(t) = −aα(t)
implies α(t) = Ce−at for some arbitrary constant C. The terminal condition α(T ) = 1
implies that C = eaT so that

α(t) = ea(T−t).

Since we have solved for α(t), we can now solve the second equation in (22.8); that is,

β′(t) =
σ2θ2

2
α2(t) =

σ2θ2

2
e2a(T−t).

We simply integrate from 0 to t to find β(t):

β(t)− β(0) =
σ2θ2

2

∫ t

0

e2a(T−s) ds =
σ2θ2

4a
(e2aT − e2a(T−t)).

The terminal condition β(T ) = 0 implies that

β(0) =
σ2θ2

4a
(1− e2aT )

and so

β(t) =
σ2θ2

4a
(1− e2aT ) +

σ2θ2

4a
(e2aT − e2a(T−t)) =

σ2(1− e2a(T−t))θ2

4a
= −σ2(e2a(T−t) − 1)θ2

4a
.

Thus, from (22.7) we are now able to conclude that

f(t, x) = exp{iθα(t)x + β(t)} = exp

{
iθea(T−t)x− σ2(e2a(T−t) − 1)θ2

4a

}
for 0 ≤ t ≤ T and x ∈ R. Taking t = 0 gives

ϕXT
(θ) = f(0, x) = exp

{
iθeaT x− σ2(e2aT − 1)θ2

4a

}
in agreement with Example 22.2.
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Lecture #23: The Characteristic Function for Heston’s Model

As we saw last lecture, it is sometimes possible to determine the characteristic function
of a random variable defined via a stochastic differential equation without actually solving
the SDE. The computation involves the Feynman-Kac representation theorem, but it does
require the solution of a partial differential equation. In certain cases where an explicit
solution does not exist for the SDE, computing the characteristic function might still be
possible as long as the resulting PDE is solvable.

Recall that the Heston model assumes that the asset price process {St, t ≥ 0} satisfies the
SDE

dSt =
√

vt St dB
(1)
t + µSt dt

where the variance process {vt, t ≥ 0} satisfies

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt

and the two driving Brownian motions {B(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are correlated with
rate ρ, i.e.,

d〈B(1), B(2)〉t = ρ dt.

In order to analyze the Heston model, it is easier to work with

Xt = log(St)

instead. Itô’s formula implies that {Xt, t ≥ 0} satisfies the SDE

dXt = d log St =
dSt

St

− d〈S〉t
2S2

t

=
√

vt dB
(1)
t +

(
µ− vt

2

)
dt.

We will now determine the characteristic function of XT for any T ≥ 0. The multidimensional
version of Itô’s formula (Theorem 21.4) implies that

df(t,Xt, vt) = ḟ(t,Xt, vt) dt + f1(t,Xt, vt) dXt +
1

2
f11(t,Xt, vt) d〈X〉t

+ f2(t,Xt, vt) dvt +
1

2
f22(t,Xt, vt) d〈v〉t + f12(t,Xt, vt) d〈X, v〉t

= ḟ(t,Xt, vt) dt + f1(t,Xt, vt)
(√

vt dB
(1)
t +

(
µ− vt

2

)
dt
)

+
1

2
f11(t,Xt, vt)vt dt

+ f2(t,Xt, vt)
(
σ
√

vt dB
(2)
t + a(b− vt) dt

)
+

1

2
f22(t,Xt, vt)σ

2vt dt

+ f12(t,Xt, vt)σρvt dt

= f1(t,Xt, vt)
√

vt dB
(1)
t + f2(t,Xt, vt)σ

√
vt dB

(2)
t + (Af)(t,Xt, vt) dt
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where the differential operator A is defined as

(Af)(t, x, y) = ḟ(t, x, y) +
(
µ− y

2

)
f1(t, x, y) +

y

2
f11(t, x, y) + a(b− y)f2(t, x, y)

+
σ2y

2
f22(t, x, y) + σρyf12(t, x, y).

If we now let u(x) = eiθx, then the (multidimensional form of the) Feynman-Kac represent-
ation theorem implies

f(t, x, y) = E[u(XT )|Xt = x, vt = y] = E[eiθXT |Xt = x, vt = y]

is the unique bounded solution of the partial differential equation

(Af)(t, x, y) = 0, 0 ≤ t ≤ T, x ∈ R, y ∈ R, (23.1)

subject to the terminal condition

f(T, x, y) = eiθx, x ∈ R, y ∈ R.

Note that f(0, x, y) = E[eiθXT |X0 = x, v0 = y] = ϕXT
(θ) is the characteristic function of XT .

Guided by the form of the terminal condition and by our experience with the Ornstein-
Uhlenbeck characteristic function, we guess that f(t, x, y) can be written as

f(t, x, y) = exp{α(t)y + β(t)} exp{iθx} (23.2)

for some functions α(t) and β(t) of t only satisfying α(T ) = 0 and β(T ) = 0. Differentiating
we find

ḟ(t, x, y) = [α′(t)y + β′(t)]f(t, x, y), f1(t, x, y) = iθf(t, x, y), f11(t, x, y) = −θ2f(t, x, y),

f2(t, x, y) = α(t)f(t, x, y), f22(t, x, y) = α2(t)f(t, x, y), f12(t, x, y) = iθα(t)f(t, x, y),

so that substituting into the explicit form of (Af)(t, x, y) = 0 and factoring out the common
f(t, x, y) gives

[α′(t)y + β′(t)] + iθ
(
µ− y

2

)
− θ2

2
y + aα(t)(b− y) +

σ2α2(t)

2
y + iσρθα(t)y = 0,

or equivalently,[
α′(t) + (iσρθ − a)α(t) +

σ2α2(t)

2
− iθ

2
− θ2

2

]
y + β′(t) + iθµ + abα(t) = 0.

Since this equation must be true for all 0 ≤ t ≤ T , x ∈ R, and y ∈ R, the only way that is
possible is if the coefficient of y is zero and the constant term is 0. Thus, we must have

α′(t) + (iσρθ − a)α(t) +
σ2α2(t)

2
− iθ

2
− θ2

2
= 0 and β′(t) + iθµ + abα(t) = 0. (23.3)
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The first equation in (23.3) involves α(t) only and is of the form

α′(t) = Aα(t) + Bα2(t) + C

with

A = a− iσρθ, B = −σ2

2
, C =

iθ

2
+

θ2

2
. (23.4)

This ordinary differential equation can be solved by integration; see Exercise 23.1 below.
The solution is given by

α(t) = D + E tan(Ft + G)

where

D = − A

2B
, E =

√
C

B
− A2

4B2
, F = BE = B

√
C

B
− A2

4B2
, (23.5)

and G is an arbitrary constant. The terminal condition α(T ) = 0 implies

0 = D + E tan(FT + G) so that G = arctan

(
−D

E

)
− FT

which gives

α(t) = D + E tan

(
arctan

(
−D

E

)
− F (T − t)

)
. (23.6)

Exercise 23.1. Suppose that a, b, and c are non-zero real constants. Compute∫
dx

ax2 + bx + c
.

Hint: Complete the square in the denominator. The resulting function is an antiderivative
of an arctangent function.

In order to simplify the expression for α(t) given by (23.6) above, we begin by noting that

cos

(
arctan

(
−D

E

))
=

E√
D2 + E2

and sin

(
arctan

(
−D

E

))
= − D√

D2 + E2
. (23.7)

Using the sum of angles identity for cosine therefore gives

cos

(
arctan

(
−D

E

)
− F (T − t)

)
= cos

(
arctan

(
−D

E

))
cos (F (T − t)) + sin

(
arctan

(
−D

E

))
sin (F (T − t))

=
E√

D2 + E2
cos (F (T − t))− D√

D2 + E2
sin (F (T − t))

=
E cos (F (T − t))−D sin (F (T − t))√

D2 + E2
. (23.8)
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Similarly, the sum of angles identity for sine yields

sin

(
arctan

(
−D

E

)
− F (T − t)

)
=
−D cos (F (T − t))− E sin (F (T − t))√

D2 + E2
. (23.9)

Writing tan(z) = sin(z)
cos(z)

and using (23.8) and (23.9) implies

tan

(
arctan

(
−D

E

)
− F (T − t)

)
=
−D cos (F (T − t))− E sin (F (T − t))

E cos (F (T − t))−D sin (F (T − t))

=
−D cot (F (T − t))− E

E cot (F (T − t))−D

so that substituting the above expression into (23.6) for α(t) gives

α(t) = D + E

[
−D cot (F (T − t))− E

E cot (F (T − t))−D

]
=

−(D2 + E2)

E cot (F (T − t))−D
.

The next step is to substitute back for D, E, and F in terms of the original parameters. It
turns out, however, that it is useful to write them in terms of

γ =
√

σ2(θ2 + iθ) + (a− iσρθ)2. (23.10)

Thus, substituting (23.4) into (23.5) gives

D =
a− iσρθ

σ2
, E =

iγ

σ2
, and F = −iγ

2
. (23.11)

Since

D2 + E2 = −iθ + θ2

σ2

we conclude that

α(t) =
iθ + θ2

iγ cot
(
− iγ(T−t)

2

)
− (a− iσρθ)

.

The final simplification is to note that

cos(−iz) = cosh(z) and sin(−iz) = −i sinh(z)

so that

cot(iz) =
cos(iz)

sin(iz)
=

cosh(z)

−i sinh(z)
= i coth(z)

which gives

α(t) =
iθ + θ2

i2γ coth
(

γ(T−t)
2

)
− (a− iσρθ)

= − iθ + θ2

γ coth
(

γ(T−t)
2

)
+ (a− iσρθ)

.

Finally, we find

exp{α(t)y} = exp

− (iθ + θ2)y

γ coth
(

γ(T−t)
2

)
+ (a− iσρθ)

 . (23.12)
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Having determined α(t), we can now consider the second equation in (23.3) involving β′(t).
It is easier, however, to manipulate this expression using α(t) in the form (23.6). Thus, the
expression for β′(t) now becomes

β′(t) = −abD − iθµ− abE tan

(
arctan

(
−D

E

)
− F (T − t)

)
which can be solved by integrating from 0 to t. Recall that∫

tan(z) dz = log(sec(z)) = − log(cos(z))

and so

β(t) = β(0)− abDt− iθµt− abE

∫ t

0

tan

(
arctan

(
−D

E

)
− F (T − s)

)
ds

= β(0)− abDt− iθµt− abE

F
log

(
cos(arctan

(
−D

E

)
− FT )

cos(arctan
(
−D

E

)
− F (T − t))

)
.

The terminal condition β(T ) = 0 implies that

β(0) = abDT + iθµT +
abE

F
log

(√
E2 + D2 cos(arctan

(
−D

E

)
− FT )

E

)

using (23.7), and so we now have

β(t) = abD(T − t) + iθµ(T − t) +
abE

F
log

(√
E2 + D2 cos(arctan

(
−D

E

)
− F (T − t))

E

)
.

As in the calculation of α(t), we can simplify this further using (23.8) so that

β(t) = abD(T − t) + iθµ(T − t) +
abE

F
log

(
cos (F (T − t))− D

E
sin (F (T − t))

)
which implies

exp{β(t)} = exp{abD(T−t)+iθµ(T−t)}
(

cos (F (T − t))− D

E
sin (F (T − t))

)abE
F

. (23.13)

Substituting the expressions given by (23.11) for D, E, and F in terms of the original
parameters into (23.13) gives

exp{β(t)} =
exp

{
ab(a−iσρθ)(T−t)

σ2 + iθµ(T − t)
}

(
cos
(
− iγ

2
(T − t)

)
− a−iσρθ

iγ
sin
(
− iγ

2
(T − t)

)) 2ab
σ2

.
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As in the calculation of α(t), the final simplification is to note that cos(−iz) = cosh(z) and
sin(−iz) = −i sinh(z) so that

exp{β(t)} =
exp

{
ab(a−iσρθ)(T−t)

σ2 + iθµ(T − t)
}

(
cosh

(
γ(T−t)

2

)
+ a−iσρθ

γ
sinh

(
γ(T−t)

2

)) 2ab
σ2

. (23.14)

We can now substitute our expression for exp{α(t)y} given by (23.12) and our expression
for exp{β(t)} given by (23.14) into our guess for f(t, x, y) given by (23.2) to conclude

f(t, x, y) = exp{α(t)y + β(t)} exp{iθx}

=

exp

{
iθx− (iθ+θ2)y

γ coth( γ(T−t)
2 )+(a−iσρθ)

+ ab(a−iσρθ)(T−t)
σ2 + iθµ(T − t)

}
(

cosh
(

γ(T−t)
2

)
+ a−iσρθ

γ
sinh

(
γ(T−t)

2

)) 2ab
σ2

.

Taking t = 0 gives

ϕXT
(θ) = f(0, x, y) =

exp
{

iθx− (iθ+θ2)y

γ coth γT
2

+(a−iσρθ)
+ abT (a−iσρθ)

σ2 + iθµT
}

(
cosh γT

2
+ a−iσρθ

γ
sinh γT

2

) 2ab
σ2

.

and we are done!
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Statistics 441 (Winter 2009) March 6, 2009
Prof. Michael Kozdron

Lecture #24: Review

Today we finished with the characteristic function for Heston’s model (Lecture #23) since
we spent class on March 4, 2009, finishing material from Lecture #22 on partial differential
equations and the Feynman-Kac representation theorem.
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Statistics 441 (Winter 2009) March 9, 2009
Prof. Michael Kozdron

Lecture #25: Review

Example 25.1 (Assignment #6, problem #1). Suppose that {Bt, t ≥ 0} is a standard
Brownian motion with B0 = 0. Determine an expression for∫ t

0

sin(Bs) dBs

that does not involve Itô integrals.

Solution. Since Version I of Itô’s formula tells us that

f(Bt)− f(B0) =

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds,

if we choose f ′(x) = sin(x) so that f(x) = − cos(x) and f ′′(x) = cos(x), then

− cos(Bt) + cos(B0) =

∫ t

0

sin(Bs) dBs +
1

2

∫ t

0

cos(Bs) ds.

The fact that B0 = 0 implies∫ t

0

sin(Bs) dBs = 1− cos(Bt)−
1

2

∫ t

0

cos(Bs) ds.

Example 25.2 (Assignment #5, problem #2). Suppose that {Bt, t ≥ 0} is a Brownian
motion starting at 0. If the process {Xt, t ≥ 0} is defined by setting

Xt = exp{Bt},

use Itô’s formula to compute dXt.

Solution. Version I of Itô’s formula tells us that

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt

so that if f(x) = ex, then

d exp{Bt} = exp{Bt} dBt +
1

2
exp{Bt} dt.

Equivalently, if Xt = exp{Bt}, then

dXt

Xt

= dBt +
dt

2
.
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Example 25.3 (Assignment #5, problem #9). Suppose that {Bt, t ≥ 0} is a standard
Brownian motion with B0 = 0. Consider the process {Yt, t ≥ 0} defined by setting Yt = Bk

t

where k is a positive integer. Use Itô’s formula to show that Yt satisfies the SDE

dYt = kY
1−1/k
t dBt +

k(k − 1)

2
Y

1−2/k
t dt.

Solution. Version I of Itô’s formula tells us that

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt

so that if f(x) = xk, then f ′(x) = kxk−1 and f ′′(x) = k(k − 1)xk−2 so that

dBk
t = kBk−1

t dBt +
k(k − 1)

2
Bk−2

t dt.

Writing Yt = Bk
t gives

dYt = kY
1−1/k
t dBt +

k(k − 1)

2
Y

1−2/k
t dt.

Example 25.4 (Assignment #5, problem #6). Consider the Itô process {Yt, t ≥ 0} de-
scribed by the stochastic differential equation

dYt = 0.4 dBt + 0.1 dt.

If the process {Xt, t ≥ 0} is defined by Xt = e0.5Yt , determine dXt.

Solution. Version III of Itô’s formula tells us that

df(Yt) = f ′(Yt) dYt +
1

2
f ′′(Yt) d〈Y 〉t

so that if f(y) = e0.5y, then

d exp{0.5Yt} = (0.5) exp{0.5Yt} dYt +
(0.5)2

2
exp{0.5Yt} d〈Y 〉t.

Since dYt = 0.4 dBt + 0.1 dt, we conclude that d〈Y 〉t = (0.4)2 dt = 0.16 dt and so

d exp{0.5Yt} = (0.5) exp{0.5Yt}(0.4 dBt + 0.1 dt) +
(0.5)2

2
exp{0.5Yt}(0.16 dt).

Writing Xt = e0.5Yt and collecting like terms gives

dXt

Xt

= 0.2 dBt + 0.07 dt.
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Example 25.5 (Assignment #6, problem #2). Suppose that {Bt, t ≥ 0} is a standard
Brownian motion with B0 = 0, and suppose further that the process {Xt, t ≥ 0}, X0 = a > 0,
satisfies the stochastic differential equation

dXt = Xt dBt +
1

Xt

dt.

(a) If f(x) = x2, determine df(Xt).

(b) If f(t, x) = t2x2, determine df(t,Xt).

Solution. Version III of Itô’s formula tells us that

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d〈X〉t

so that
d(X2

t ) = 2Xt dXt + d〈X〉t.

Version IV of Itô’s formula tells us that

df(t,Xt) = ḟ(t,Xt) dt + f ′(t,Xt) dXt +
1

2
f ′′(t,Xt) d〈X〉t

so that
d(t2X2

t ) = 2tX2
t dt + 2t2Xt dXt + t2 d〈X〉t.

Since

dXt = Xt dBt +
1

Xt

dt,

we conclude that
d〈X〉t = X2

t dt.

Thus,

(a) d(X2
t ) = 2X2

t dBt + (2 + X2
t ) dt, and

(b) d(t2X2
t ) = 2t2X2

t dBt + (2tX2
t + 2t2 + t2X2

t ) dt.

Example 25.6 (Assignment #5, problem #8). Suppose that g : R → [0,∞) is a bounded,
piecewise continuous, deterministic function. Assume further that g ∈ L2([0,∞)) so that
the Wiener integral

It =

∫ t

0

g(s) dBs

is well defined for all t ≥ 0. Define the continuous-time stochastic process {Mt, t ≥ 0} by
setting

Mt = I2
t −

∫ t

0

g2(s) ds =

(∫ t

0

g(s) dBs

)2

−
∫ t

0

g2(s) ds.

Use Itô’s formula to prove that {Mt, t ≥ 0} is a continuous-time martingale.
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Solution. If

It =

∫ t

0

g(s) dBs,

then dIt = g(t) dBt so that d〈I〉t = g2(t) dt. If

Mt = I2
t −

∫ t

0

g2(s) ds,

then written in differential form we have

dMt = d(I2
t )− g2(t) dt.

Version III of Itô’s formula implies

d(I2
t ) = 2It dIt + d〈I〉t.

Substituting back therefore gives

dMt = d(I2
t )− g2(t) dt = 2It dIt + d〈I〉t − g2(t) dt = 2g(t)It dBt + g2(t) dt− g2(t) dt

= 2g(t)It dBt.

Since Itô integrals are martingales, we conclude that {Mt, t ≥ 0} is a continuous-time mar-
tingale.

Example 25.7 (Assignment #5, problem #10). Suppose that {Xt, t ≥ 0} is a time-
inhomogeneous Ornstein-Uhlenbeck-type process defined by the SDE

dXt = σ(t) dBt − a(Xt − g(t)) dt

where g and σ are (sufficiently regular) deterministic functions of time. If Yt = exp{Xt +ct},
use Itô’s formula to compute dYt.

Solution. If dXt = σ(t) dBt − a(Xt − g(t)) dt and Yt = exp{Xt + ct}, then Version IV of
Itô’s formula implies that

dYt = cYt dt + Yt dXt +
Yt

2
d〈X〉t.

Since
d〈X〉t = σ2(t)dt,

we conclude that
dYt

Yt

= σ(t) dBt +

[
c− a(Xt − g(t)) +

σ2(t)

2

]
dt.

Since we want a stochastic differential equation for Yt, we should really substitute back for
Xt in terms of Yt. Solving Yt = exp{Xt + ct} for Xt gives Xt = log(Yt)− ct so that

dYt

Yt

= σ(t) dBt +

[
c− a(log(Yt)− ct− g(t)) +

σ2(t)

2

]
dt

= σ(t) dBt +

[
c(1 + at)− a log(Yt) + ag(t) +

σ2(t)

2

]
dt.
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Statistics 441 (Winter 2009) March 11, 2009
Prof. Michael Kozdron

Lecture #26: Review

Example 26.1 (Assignment #5, problem #3). Suppose that the price of a stock {Xt, t ≥ 0}
follows geometric Brownian motion with drift 0.05 and volatility 0.3 so that it satisfies the
stochastic differential equation

dXt = 0.3Xt dBt + 0.05Xt dt.

If the price of the stock at time 2 is 30, determine the probability that the price of the stock
at time 2.5 is between 30 and 33.

Solution. Since the price of the stock is given by geometric Brownian motion

dXt = 0.3Xt dBt + 0.05Xt dt,

we can read off the solution, namely

Xt = X0 exp

{
0.3Bt +

(
0.05− 0.32

2

)
t

}
= X0 exp{0.30Bt + 0.005t}.

Therefore,

P{30 ≤ X2.5 ≤ 33|X2 = 30}

= P

 log
(

30
X0

)
− 0.0125

0.30
≤ B2.5 ≤

log
(

33
X0

)
− 0.0125

0.30

∣∣∣∣B2 =
log
(

30
X0

)
− 0.01

0.30


= P

 log
(

30
X0

)
− 0.0125

0.30
−

log
(

30
X0

)
− 0.01

0.30
≤ B0.5 ≤

log
(

33
X0

)
− 0.0125

0.30
−

log
(

30
X0

)
− 0.01

0.30


= P

{
−0.0025

0.30
≤ B0.5 ≤

log
(

33
30

)
− 0.0025

0.30

}

using the stationarity of Brownian increments. If Z ∼ N (0, 1) so that B0.5 ∼
√

0.5 Z, then

P {−0.00833 ≤ B0.5 ≤ 0.3094} = P{−0.0118 ≤ Z ≤ 0.4375} = 0.1587.

Remark. The solution to the previous exercise can be generalized as follows. Suppose that
{Xt, t ≥ 0} is geometric Brownian motion given by

dXt = σXt dBt + µXt dt

so that

Xt = X0 exp

{
σBt +

(
µ− σ2

2

)
t

}
.
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If s ≥ 0, t > 0, then

log

(
Xt+s

Xs

)
= σ(Bt+s −Bs) +

(
µ− σ2

2

)
t.

Using the facts that (i) Bt+s − Bs is independent of Bs, and (ii) Bt+s − Bs ∼ Bt ∼ N (0, t)
implies that (i) log (Xt+s/Xs) is independent of log Xs, and (ii)

log

(
Xt+s

Xs

)
∼
(

Xt

X0

)
∼ N

((
µ− σ2

2

)
t , σ2t

)
.

Therefore, we can conclude that if 0 < a < b and c > 0 are constants, then

P{a ≤ Xt+s ≤ b|Xs = c} = P

{
log
(a

c

)
≤ log

(
Xt+s

Xs

)
≤ log

(
b

c

)}
= P

{
log
(a

c

)
≤ log

(
Xt

X0

)
≤ log

(
b

c

)}

= P

 log
(

a
c

)
−
(
µ− σ2

2

)
t

σ
√

t
≤ Z ≤

log
(

b
c

)
−
(
µ− σ2

2

)
t

σ
√

t


where Z ∼ N (0, 1).

Example 26.2 (Assignment #5, problem #4). Consider the Itô process {Xt, t ≥ 0} de-
scribed by the stochastic differential equation

dXt = 0.10Xt dBt + 0.25Xt dt.

Calculate the probability that Xt is at least 5% higher than X0

(a) at time t = 0.01, and

(b) at time t = 1.

Solution. Since the price of the stock is given by geometric Brownian motion

dXt = 0.25Xt dt + 0.10Xt dBt,

we can read off the solution, namely

Xt = X0 exp

{
0.10Bt +

(
0.25− 0.102

2

)
t

}
= X0 exp{0.10Bt + 0.245t}.

Therefore, if Z ∼ N (0, 1), then

P{Xt ≥ 1.05X0} = P

{
Bt ≥

log(1.05)− 0.245t

0.10

}
= P

{
Z ≥ log(1.05)− 0.245t

0.10
√

t

}
.

(a) If t = 0.01, then P{X0.01 ≥ 1.05X0} = P{Z ≥ 4.634} = 0.000002.

(b) If t = 1, then P{X1 ≥ 1.05X0} = P{Z ≥ −1.962} = 0.9751.
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Example 26.3 (Assignment #5, problem #5). Consider the Itô process {Xt, t ≥ 0} de-
scribed by the stochastic differential equation

dXt = 0.05Xt dBt + 0.1Xt dt, X0 = 35.

Compute P{X5 ≤ 48}.

Solution. Since the price of the stock is given by geometric Brownian motion

dXt = 0.1Xt dt + 0.05Xt dBt, X0 = 35,

we can read off the solution, namely

Xt = 35 exp

{
0.05Bt +

(
0.1− 0.052

2

)
t

}
= 35 exp{0.05Bt + 0.09875t}.

Therefore, if Z ∼ N (0, 1), then

P{X5 ≤ 48} = P{B5 ≤ −3.5579} = P

{
Z ≤ −3.5579√

5

}
= P{Z ≤ −1.5911} = 0.0558.

Example 26.4 (Assignment #5, problem #7; Assignment #7, problem #5). Suppose that
the diffusion {Xt, t ≥ 0} is defined by the SDE

dXt = σ(t)Xt dBt + µ(t)Xt dt

where σ(t) and µ(t) are deterministic functions of time. If we consider log Xt, then Itô’s
formula implies

d log Xt =
1

Xt

dXt −
1

2X2
t

d〈X〉t.

Since d〈X〉t = σ2(t)X2
t dt, we conclude

d log Xt = σ(t) dBt + µ(t) dt− 1

2
σ2(t) dt = σ(t) dBt +

(
µ(t)− 1

2
σ2(t)

)
dt.

We can now integrate from 0 to t to find

log Xt − log X0 =

∫ t

0

σ(s) dBs +

∫ t

0

(
µ(s)− 1

2
σ2(s)

)
ds.

Solving for Xt gives

Xt = X0 exp

{∫ t

0

σ(s) dBs +

∫ t

0

(
µ(s)− σ2(s)

2

)
ds

}
.
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Lecture #27: Risk Neutrality

We will now use the Feynman-Kac representation theorem to derive a general solution to the
Black-Scholes option pricing problem for European call options. This representation of the
solution will be needed next lecture when we explain how to use the characteristic function
of a diffusion to price an option.

Suppose that the asset price process {St, t ≥ 0} satisfies the stochastic differential equation

dSt = σ(t, St)St dB̃t + µ(t, St)St dt, (27.1)

or equivalently,
dSt

St

= σ(t, St) dB̃t + µ(t, St) dt,

where {B̃t, t ≥ 0} is a standard Brownian motion with B̃0 = 0, and that the risk-free
investment D(t, St) evolves according to

dD(t, St) = rD(t, St) dt

where r > 0 is the risk-free interest rate.

Remark. We are writing {B̃t, t ≥ 0} for the Brownian motion that drives the asset price
process since the formula that we are going to derive for the fair price at time t = 0 of a
European call option on this asset involves a one-dimensional Brownian motion distinct from
this one.

Remark. The asset price process given by (27.1) is similar to geometric Brownian motion,
except that the volatility and drift do not necessarily need to be constant. Instead, they can
be stochastic, but the randomness is assumed to come from the asset price itself. In this
general form, there is no explicit form for {St, t ≥ 0} as the solution of the SDE (27.1).

Suppose further that we write V (t, St), 0 ≤ t ≤ T , to denote the price at time t of a European
call option with expiry date T on the asset {St, t ≥ 0}. If the payoff function is given by
Λ(x), x ∈ R, then

V (T, ST ) = Λ(ST ).

(Recall that a European call option can be exercised only on the expiry date T and not
earlier.) Our goal is to determine V (0, S0), the fair price to pay at time t = 0.

Furthermore, assume that there are no arbitrage opportunities so that there exists a replic-
ating portfolio

Π(t, St) = A(t, St)St + D(t, St)

consisting of a cash deposit D and a number A of assets which is self-financing:

dΠ(t, St) = A(t, St) dSt + rD(t, St) dt.
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As in Lecture #17, this implies that the change in V (t, St)−Π(t, St) over any time step is non-
random and must equal the corresponding growth offered by the continuously compounded
risk-free interest rate. That is,

d
[
V (t, St)− Π(t, St)

]
= r
[
V (t, St)− Π(t, St)

]
dt.

By repeating the calculations in Lecture #17 assuming that the asset price movement satis-
fies (27.1) leads to the following conclusion. The function V (t, x), 0 ≤ t ≤ T , x ∈ R, satisfies
the Black-Scholes partial differential equation

V̇ (t, x) +
σ2(t, x)

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (27.2)

subject to the terminal condition
V (T, x) = Λ(x).

Note. The only difference between (27.2) and the Black-Scholes PDE that we derived in
Lecture #17, namely (17.10), is the appearance of the function σ(t, x) instead of the constant
σ. Thus, (27.2) reduces to (17.10) when σ(t, x) = σ is constant.

At this point, we observe that the formulation of the option pricing problem sounds rather
similar to the formulation of the Feynman-Kac representation theorem which we now recall.

Theorem 27.1 (Feynman-Kac Representation Theorem). Suppose that u ∈ C2(R), and let
{Xt, t ≥ 0} be defined by the SDE

dXt = a(t,Xt) dBt + b(t,Xt) dt.

The unique bounded function f : [0,∞)× R → R satisfying the partial differential equation

(Af)(t, x) = b(t, x)f ′(t, x) +
1

2
a2(t, x)f ′′(t, x) + ḟ(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (27.3)

subject to the terminal condition

f(T, x) = u(x), x ∈ R,

is given by
f(t, x) = E[u(XT )|Xt = x].

However, the differential equation (27.2) that we need to solve is of the form

b(t, x)g′(t, x) +
1

2
a2(t, x)g′′(t, x) + ġ(t, x) = rg(t, x), 0 ≤ t ≤ T, x ∈ R, (27.4)

subject to the terminal condition

g(T, x) = u(x), x ∈ R.
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In other words, we need to solve a non-homogeneous partial differential equation. Although
the theory for non-homogeneous PDEs is reasonably well-established, it is not too difficult
to guess what the solution to our particular equation (27.4) must be. If we let

g(t, x) = e−r(T−t)f(t, x), 0 ≤ t ≤ T, x ∈ R,

where f(t, x) satisfies the homogeneous partial differential equation (Af)(t, x) = 0 given
in (27.3), then g(T, x) = f(T, x) = u(x), and

g′(t, x) = e−r(T−t)f ′(t, x), g′′(t, x) = e−r(T−t)f ′′(t, x), and

ġ(t, x) = e−r(T−t)ḟ(t, x) + re−r(T−t)f(t, x)

so that

b(t, x)g′(t, x) +
1

2
a2(t, x)g′′(t, x) + ġ(t, x)

= b(t, x)e−r(T−t)f ′(t, x) +
1

2
a2(t, x)e−r(T−t)f ′′(t, x) + e−r(T−t)ḟ(t, x) + re−r(T−t)f(t, x)

= e−r(T−t)

[
b(t, x)f ′(t, x) +

1

2
a2(t, x)f ′′(t, x) + ḟ(t, x)

]
+ re−r(T−t)f(t, x)

= e−r(T−t)(Af)(t, x) + rg(t, x)

= rg(t, x)

using the assumption that (Af)(t, x) = 0. In other words, we have established the following
extension of the Feynman-Kac representation theorem.

Theorem 27.2 (Feynman-Kac Representation Theorem). Suppose that u ∈ C2(R), and let
{Xt, t ≥ 0} be defined by the SDE

dXt = a(t,Xt) dBt + b(t,Xt) dt.

The unique bounded function g : [0,∞)× R → R satisfying the partial differential equation

b(t, x)g′(t, x) +
1

2
a2(t, x)g′′(t, x) + ġ(t, x)− rg(t, x) = 0, 0 ≤ t ≤ T, x ∈ R,

subject to the terminal condition

g(T, x) = u(x), x ∈ R,

is given by
g(t, x) = e−r(T−t)E[u(XT )|Xt = x].

At this point, let’s recall where we are. We are assuming that the asset price {St, t ≥ 0}
evolves according to

dSt = σ(t, St)St dB̃t + µ(t, St)St dt
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and we want to determine V (0, S0), the fair price at time t = 0 of a European call option
with expiry date T and payoff V (T, ST ) = Λ(ST ) where Λ(x), x ∈ R, is given. We have also
shown that V (t, x) satisfies the PDE

V̇ (t, x) +
σ2(t, x)

2
x2V ′′(t, x) + rxV ′(t, x)− rV (t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (27.5)

subject to the terminal condition
V (T, x) = Λ(x).

The generalized Feynman-Kac representation theorem tells us that the solution to

b(t, x)g′(t, x) +
1

2
a2(t, x)g′′(t, x) + ġ(t, x)− rg(t, x) = 0, 0 ≤ t ≤ T, x ∈ R, (27.6)

subject to the terminal condition g(T, x) = Λ(x) is

g(t, x) = e−r(T−t)E[Λ(XT )|Xt = x], (27.7)

where Xt satisfies the SDE

dXt = a(t,Xt) dBt + b(t,Xt) dt

and {Bt, t ≥ 0} is a standard one-dimensional Brownian motion with B0 = 0. Note that
the expectation in (27.7) is with respect to the process {Xt, t ≥ 0} driven by the Brownian
motion {Bt, t ≥ 0}.
Comparing (27.5) and (27.6) suggests that

b(t, x) = rx and a2(t, x) = σ2(t, x)x2

so that
dXt = σ(t,Xt)Xt dBt + rXt dt, (27.8)

or equivalently,
dXt

Xt

= σ(t,Xt) dBt + r dt,

Hence, we have developed a complete solution to the European call option pricing problem
which we summarize in Theorem 27.3 below.

Remark. The process {Xt, t ≥ 0} defined by the SDE (27.8) is sometimes called the risk-
neutral process associated with the asset price process {St, t ≥ 0} defined by (27.1). As with
the asset price process, the associated risk-neutral process is similar to geometric Brownian
motion. Note that the function σ(t, x) is the same in both equations. However, {B̃t, t ≥ 0},
the Brownian motion that drives {St, t ≥ 0} is NOT the same as {Bt, t ≥ 0}, the Brownian
motion that drives {Xt, t ≥ 0}.

Remark. The approach we have used to develop the associated risk-neutral process was
via the Feynman-Kac representation theorem. An alternative approach which we do not
discuss is to use the Girsanov-Cameron-Martin theorem to construct an equivalent martingale
measure.
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Theorem 27.3. Let V (t, St), 0 ≤ t ≤ T , denote the fair price to pay at time t of a European
call option having payoff V (T, ST ) = Λ(ST ) on the asset price {St, t ≥ 0} which satisfies the
stochastic differential equation

dSt = σ(t, St)St dB̃t + µ(t, St)St dt

where {B̃t, t ≥ 0} is a standard Brownian motion with B0 = 0. The fair price to pay at time
t = 0 is given by

V (0, S0) = e−rT E[Λ(XT )|X0 = S0]

where the associated risk-neutral process {Xt, t ≥ 0} satisfies the stochastic differential equa-
tion

dXt = σ(t,Xt)Xt dBt + rXt dt

and {Bt, t ≥ 0} is a standard one-dimensional Brownian motion distinct from {B̃t, t ≥ 0}.

Remark. Since S0, the value of the underlying asset at t = 0, is known, in order to calculate
the expectation E[Λ(XT )|X0 = S0], you need to know something about the distribution of
XT . There is no general formula for determining the distribution of XT in terms of the
distribution of ST unless some additional structure is known about σ(t, x). For instance,
assuming that σ(t, x) = σ is constant leads to the Black-Scholes formula from Lecture #18,
while assuming σ(t, x) = σ(t) is a deterministic function of time leads to an explicit formula
which, though similar, is more complicated to write down.

Example 27.4. We now explain how to recover the Black-Scholes formula in the case that
{St, t ≥ 0} is geometric Brownian motion and Λ(x) = (x−E)+. Since the asset price process
SDE is

dSt = σSt dB̃t + µSt dt

we conclude that the risk-neutral process is

dXt = σXt dBt + rXt dt.

The risk-neutral process is also geometric Brownian motion (but with drift r) so that

XT = X0 exp

{
σBT +

(
r − σ2

2

)
T

}
= S0 exp

{
σBT +

(
r − σ2

2

)
T

}
since we are assuming that X0 = S0. Since BT ∼ N (0, T ), we can write

XT = S0 exp

{(
r − σ2

2

)
T

}
exp

{
σ
√

TZ
}

for Z ∼ N (0, 1). Therefore,

V (0, S0) = e−rT E[Λ(XT )|X0 = S0] = e−rT E[(XT − E)+|X0 = S0]

can be evaluated using Exercise 4.7, namely if a > 0, b > 0, c > 0 are constants and
Z ∼ N (0, 1), then

E[ (aebZ − c)+ ] = aeb2/2 Φ

(
b +

1

b
log

a

c

)
− c Φ

(
1

b
log

a

c

)
,
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with

a = S0 e

“
r−σ2

2

”
T
, b = σ

√
T , c = E.

Doing this, and noting that aeb2/2 = S0e
rT , gives

V (0, S0)

= e−rT E[(XT − E)+|X0 = S0]

= e−rT

S0 erT Φ

σ
√

T +
1

σ
√

T
log

S0 e

“
r−σ2

2

”
T

E

− E Φ

 1

σ
√

T
log

S0 e

“
r−σ2

2

”
T

E


= S0 Φ

(
log(S0/E) + (r + 1

2
σ2)T

σ
√

T

)
− Ee−rT Φ

(
log(S0/E) + (r − 1

2
σ2)T

σ
√

T

)
in agreement with Lecture #18.
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Lecture #28: A Numerical Approach to Option Pricing Using
Characteristic Functions

As we discussed in Lectures #22 and #23, it is sometimes possible to determine the charac-
teristic function ϕXT

(θ) for the random variable XT , which is defined via a diffusion. We then
discussed risk-neutrality in Lecture #27, and derived a complete solution to the problem of
pricing European call options.

At this point, it is time to address the following question. How does knowing the character-
istic function help us determine the value of an option?

In order to keep our notation straight, we will write {St, t ≥ 0} for the underlying asset price
process driven by the Brownian motion {B̃t, t ≥ 0}, and we will assume that

dSt

St

= σ(t, St) dB̃t + µ(t, St) dt.

We will then write {Xt, t ≥ 0} for the associated risk-neutral process driven by the Brownian
motion {Bt, t ≥ 0}. Guided by Lecture #27, we will phrase all of our results in terms of the
risk-neutral process {Xt, t ≥ 0}.

Note. The purpose of Example 22.4 with arithmetic Brownian motion and Example 22.5
with the Ornstein-Uhlenbeck process was to illustrate how the characteristic function could
be found without actually solving the SDE. Of course, neither of these is an adequate model of
the asset price movement. Heston’s model, however, is an adequate model for the underlying
asset price, and in Lecture 23 we found the characteristic function without solving the
defining SDE.

Suppose that we are interested in determining the fair price at time t = 0 of a European
call option on the asset price {St, t ≥ 0} with strike price E and expiry date T assuming
a risk-free interest rate r. The payoff function is therefore Λ(x) = (x − E)+. If V (0, S0)
denotes the fair price at time t = 0, then from Theorem 27.3, we can express the solution as

V (0, S0) = e−rT E[(XT − E)+|X0 = S0]

where the expectation is with respect to the associated risk-neutral process {Xt, t ≥ 0}
driven by the Brownian motion {Bt, t ≥ 0}. As we saw in Lecture #27, the associated
risk-neutral process is a geometric-type Brownian motion given by

dXt

Xt

= σ(t,Xt) dBt + r dt.

It turns out that for the following calculations it is more convenient to consider the process
{Zt, t ≥ 0} where

Zt = log Xt.
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Exercise 28.1. Suppose that {Xt, t ≥ 0} satisfies the associated risk-neutral SDE

dXt = σ(t,Xt)Xt dBt + rXt dt.

Use Itô’s formula to determine the SDE satisfied by {Zt, t ≥ 0} where Zt = log Xt.

We will now write the strike price E as ek (so that k = log E) and XT = eZT . Therefore,

V (0, S0) = e−rT E[(XT − E)+|X0 = S0] = e−rT E[(eZT − ek)+]

where Z0 = log X0 = log S0 is known.

Suppose further that we are able to determine the density function of the random variable
ZT which we write as fZT

(z) so that

V (0, S0) = e−rT E[(eZT − ek)+] = e−rT

∫ ∞

−∞
(ez − ek)+fZT

(z) dz = e−rT

∫ ∞

k

(ez − ek)fZT
(z) dz.

We will now view the fair price at time 0 as a function of the logarithm of the strike price k
so that

V (k) = e−rT

∫ ∞

k

(ez − ek)fZT
(z) dz.

As k → −∞ (so that E → 0) we see that V (k) → S0 which implies that V (k) is not
integrable: ∫ ∞

−∞
V (k) dk does not exist.

It necessarily follows that V (k) is not square-integrable:∫ ∞

−∞
V 2(k) dk does not exist.

However, if we consider
W (k) = eckV (k), (28.1)

then W is square-integrable for a suitable c > 0 which may depend on the model for
{St, t ≥ 0}. The Fourier transform of W is the function Ŵ defined by

Ŵ (ξ) =

∫ ∞

−∞
eiξkW (k) dk. (28.2)

Remark. The existence of the Fourier transform requires that the function W (k) be in L2.

Therefore, substituting in for W (k) gives

Ŵ (ξ) = e−rT

∫ ∞

−∞

∫ ∞

k

eiξkeck(ez − ek)fZT
(z) dz dk

= e−rT

∫ ∞

−∞

∫ ∞

k

(
eze(iξ+c)k − e(iξ+c+1)k

)
fZT

(z) dz dk.
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Switching the order of integration, we find

Ŵ (ξ) = e−rT

∫ ∞

−∞
fZT

(z)

∫ z

−∞

(
eze(iξ+c)k − e(iξ+c+1)k

)
dk dz.

Since ∫ z

−∞

(
eze(iξ+c)k − e(iξ+c+1)k

)
dk =

eze(iξ+c)z

iξ + c
− e(iξ+c+1)z

iξ + c + 1
=

e(iξ+c+1)z

(iξ + c)(iξ + c + 1)
,

we conclude that

Ŵ (ξ) = e−rT

∫ ∞

−∞
fZT

(z)
e(iξ+c+1)z

(iξ + c)(iξ + c + 1)
dz

=
e−rT

(iξ + c)(iξ + c + 1)

∫ ∞

−∞
e(iξ+c+1)zfZT

(z) dz

=
e−rT

(iξ + c)(iξ + c + 1)

∫ ∞

−∞
ei(ξ−i(c+1))zfZT

(z) dz

=
e−rT

(iξ + c)(iξ + c + 1)
E[ei(ξ−i(c+1))ZT ]

=
e−rT

(iξ + c)(iξ + c + 1)
ϕZT

(ξ − i(c + 1)). (28.3)

Remark. It can be shown that a sufficient condition for W (k) to be square-integrable is for
Ŵ (0) to be finite. This is equivalent to

E(Sc+1
T ) < ∞.

The choice c = 0.75 can be shown to work for the Heston model.

Given the Fourier transform Ŵ (ξ), one recovers the original function W (k) via the inverse
Fourier transform defined by

W (k) =
1

π

∫ ∞

0

e−iξkŴ (ξ) dξ. (28.4)

Substituting (28.1) and (28.3) into (28.4) implies

eckV (k) =
1

π

∫ ∞

0

e−iξk e−rT

(iξ + c)(iξ + c + 1)
ϕZT

(ξ − i(c + 1)) dξ

so that

V (0, S0) = V (k) =
e−cke−rT

π

∫ ∞

0

e−iξk

(iξ + c)(iξ + c + 1)
ϕZT

(ξ − i(c + 1)) dξ (28.5)

is the fair price at time t = 0 of a European call option with strike price E = ek and expiry
date T assuming the risk-free interest rate is r > 0.
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Remark. Notice that (28.5) expresses the required price of a European call option in terms
of ϕZT

(θ), the characteristic function of ZT = log XT , the logarithm of XT defined via the
risk-neutral SDE. The usefulness of this formula is that it can be approximated numerically
in an extremely efficient manner using the fast Fourier transform (FFT). In fact, it is shown
in [23] that the FFT approach to option pricing for Heston’s model is over 300 times faster
than by pricing options using Monte Carlo simulations. There are, however, a number of
other practical issues to implementation that the FFT approach to option pricing raises; for
further details, see [23].

Example 28.2. The Heston model assumes that the asset price process {St, t ≥ 0} satisfies
the SDE

dSt =
√

vt St dB̃
(1)
t + µSt dt

where the variance process {vt, t ≥ 0} satisfies

dvt = σ
√

vt dB
(2)
t + a(b− vt) dt

and the two driving Brownian motions {B̃(1)
t , t ≥ 0} and {B(2)

t , t ≥ 0} are correlated with
rate ρ, i.e.,

d〈B̃(1), B(2)〉t = ρ dt.

Although this is a two-dimensional example, the risk-neutral process can be worked out in
a similar manner to the one-dimensional case. The result is that

dXt =
√

vt Xt dB
(1)
t + rXt dt.

If we now consider
Zt = log(Xt),

then
dZt =

√
vt dB

(1)
t +

(
r − vt

2

)
dt,

and so

ϕZT
(θ)

exp
{

iθx− (iθ+θ2)y

γ coth γT
2

+(a−iσρθ)
+ abT (a−iσρθ)

σ2 + iθrT
}

(
cosh γT

2
+ a−iσρθ

γ
sinh γT

2

) 2ab
σ2

where x = Z0 = log(X0) and y = v0.
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Lecture #29: An Introduction to Functional Analysis for
Financial Applications

For the remainder of the course, we are going to discuss some approaches to risk analysis.
We will do this, however, with some formality. As such, we need to learn a little bit of
functional analysis.

In calculus, we analyze individual functions and study particular properties of these indi-
vidual functions.

Example 29.1. Consider the function f(x) = x2. We see that the domain of f is all real
numbers, and the range of f is all non-negative real numbers. The graph of f is a parabola
with its vertex at (0, 0) and opening up. We can also compute

f ′(x) =
d

dx
x2 = 2x and

∫
f(x) dx =

∫
x2 dx =

x3

3
+ C.

In functional analysis we study sets of functions with a view to properties possessed by every
function in the set. Actually, you would have seen a glimpse of this in calculus.

Example 29.2. Let X be the set of all differentiable functions with domain R. If f ∈ X ,
then f is necessarily (i) continuous, and (ii) Riemann integrable on every finite interval [a, b].

In order to describe a function acting on a set of functions such as X in the previous example,
we use the word functional (or operator).

Example 29.3. As in the previous example, let X denote the set of differentiable functions
on R. Define the functional D by setting D(f) = f ′ for f ∈ X . That is,

f ∈ X 7→ f ′.

Formally, we define D by
(Df)(x) = f ′(x)

for every x ∈ R, f ∈ X .

Example 29.4. We have already seen a number of differential operators in the context of
the Feynman-Kac representation theorem. If we let X denote the space of all functions f of
two variables, say f(t, x), such that f ∈ C1([0,∞))×C2(R), and a(t, x) and b(t, x) are given
functions, then we can define the functional A by setting

(Af)(t, x) = b(t, x)f ′(t, x) +
1

2
a2(t, x)f ′′(t, x) + ḟ(t, x).

The next definition is of fundamental importance to functional analysis.
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Definition 29.5. Let X be a space. A norm on X is a function(al) ||·|| : X → R satisfying
the following properties:

(a) ||x|| ≥ 0 for every x ∈ X ,

(b) ||x|| = 0 if and only if x = 0,

(c) ||αx|| = |α|||x|| for every α ∈ R and x ∈ X , and

(d) ||x + y|| ≤ ||x||+ ||y|| for every x, y ∈ X .

Remark. We often call (d) the triangle inequality.

Example 29.6. The idea of a norm is that it generalizes the usual absolute value on R.
Indeed, let X = R and for x ∈ X define ||x|| = |x|. Properties of absolute value immediately
imply that

(a) ||x|| = |x| ≥ 0 for every x ∈ X ,

(b) ||x|| = |x| = 0 if and only if x = 0, and

(c) ||αx|| = |αx| = |α||x| = |α|||x|| for every α ∈ R and x ∈ X .

The triangle inequality |x + y| ≤ |x| + |y| is essentially a fact about right-angle triangles.
The proof is straightforward. Observe that xy ≤ |x||y|. Therefore,

x2 + 2xy + y2 ≤ x2 + 2|x||y|+ y2 or, equivalently, (x + y)2 ≤ x2 + 2|x||y|+ y2.

Using the fact that x2 = |x|2 implies

|x + y|2 ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

Taking square roots of both sides yields the result.

Exercise 29.7. Assume that x, y ∈ R. Show that the triangle inequality |x + y| ≤ |x|+ |y|
is equivalent to the following statements:

(i) |x− y| ≤ |x|+ |y|,

(ii) |x + y| ≥ |x| − |y|,

(iii) |x− y| ≥ |x| − |y|, and

(iii) |x− y| ≥ |y| − |x|.

Example 29.8. Let X = R2. If x ∈ R2, we can write x = (x1, x2). If we define

||x|| =
√

x2
1 + x2

2,

then ||·|| is a norm on X .
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Exercise 29.9. Verify that ||x|| =
√

x2
1 + x2

2 is, in fact, a norm on R2.

Example 29.10. More generally, let X = Rn. If x ∈ Rn, we can write x = (x1, . . . , xn). If
we define

||x|| =
√

x2
1 + · · ·+ x2

n,

then ||·|| is a norm on X .

Example 29.11. Let X denote the space of continuous functions on [0, 1]. In calculus, we
would write such a function as f(x), 0 ≤ x ≤ 1. In functional analysis, we prefer to write
such a function as x(t), 0 ≤ t ≤ 1. That is, it is traditional to use a lower case x to denote
an arbitrary point in a space. It so happens that our space X consists of individual points
x which happen themselves to be functions. If we define

||x|| = max
0≤t≤1

|x(t)|,

then ||·|| is a norm on X . Indeed,

(a) |x(t)| ≥ 0 for every 0 ≤ t ≤ 1 and x ∈ X so that ||x|| ≥ 0,

(b) ||x|| = 0 if and only if x(t) = 0 for every 0 ≤ t ≤ 1 (i.e., x = 0), and

(c) ||αx|| = max
0≤t≤1

|αx(t)| = |α| max
0≤t≤1

|x(t)| = |α|||x|| for every α ∈ R and x ∈ X .

As for (d), notice that

||x + y|| = max
0≤t≤1

|x(t) + y(t)| ≤ max
0≤t≤1

(|x(t)|+ |y(t)|)

by the usual triangle inequality. Since

max
0≤t≤1

(|x(t)|+ |y(t)|) ≤ max
0≤t≤1

|x(t)|+ max
0≤t≤1

|y(t)| = ||x||+ ||y||,

we conclude ||x + y|| ≤ ||x|| + ||y|| as required. Note that we sometimes write C[0, 1] for the
space of continuous functions on [0, 1].

Example 29.12. Let X denote the space of all random variables with finite variance. In
keeping with the traditional notation for random variables, we prefer to write X ∈ X instead
of the traditional functional analysis notation x ∈ X . As we will see next lecture, if we define

||X|| =
√

E(X2),

then this defines a norm on X . (Actually, this is not quite precise. We will be more careful
next lecture.) A risk measure will be a functional ρ : X → R satisfying certain natural
properties.
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Lecture #30: A Linear Space of Random Variables

Let X denote the space of all random variables with finite variance. If X ∈ X , define

||X|| =
√

E(X2).

Question. Is ||·|| a norm on X ?

In order to answer this question, we need to verify four properties, namely

(a) ||X|| ≥ 0 for every X ∈ X ,

(b) ||X|| = 0 if and only if X = 0,

(c) ||αX|| = |α|||X|| for every α ∈ R and X ∈ X , and

(d) ||X + Y || ≤ ||X||+ ||Y || for every X, Y ∈ X .

We see that (a) is obviously true since X2 ≥ 0 for any X ∈ X . (Indeed the square of any
real number is non-negative.) As for (c), we see that if α ∈ R, then

||αX|| =
√

E[(αX)2] =
√

α2E(X2) = |α|
√

E(X2) = |α|||X||.

The trouble comes when we try to verify (b). One direction is true, namely that if X = 0,
then E(X2) = 0 so that ||X|| = 0. However, if ||X|| = 0 so that E(X2) = 0, then it need not
be the case that X = 0.

Here is one such counterexample. Suppose that we define the random variable X to be 0 if
a head appears on a toss of a fair coin and to be 0 if a tail appears. If the coin lands on its
side, define X to be 1. It then follows that

E(X2) = 02 ·P{head}+ 02 ·P{tail}+ 12 ·P{side} = 0 · 1

2
+ 0 · 1

2
+ 1 · 0 = 0.

This shows that it is theoretically possible to define a random variable X 6= 0 such that
||X|| = 0. In other words, X = 0 with probability 1, but X is not identically 0. Since (b)
fails, we see that ||·|| is not a norm.

However, it turns out that (d) actually holds. In order to verify that this is so, we need the
following lemma.

Lemma. If a, b ∈ R, then

ab ≤ a2

2
+

b2

2
.

Proof. Clearly (a − b)2 ≥ 0. Expanding gives a2 + b2 − 2ab ≥ 0 so that a2 + b2 ≥ 2ab as
required.
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Let X, Y ∈ X and consider

X̃ =
X

||X||
and Ỹ =

Y

||Y ||
so that

||X̃|| =

√
E(X̃2) =

√
E
(

X2

||X||2

)
=

√
E(X2)

||X||2
=

√
E(X2)

||X||
=
||X||
||X||

= 1

and, similarly, ||Ỹ || = 1. By the lemma,

X̃Ỹ ≤ X̃2

2
+

Ỹ 2

2

so that

E(X̃Ỹ ) ≤ 1

2

[
E(X̃2) + E(Ỹ 2)

]
=

1

2
(1 + 1) = 1

since ||X̃||2 = E(X̃2) = 1 and ||Ỹ ||2 = E(Ỹ 2) = 1. In other words,

E(X̃Ỹ ) = E
[

X

||X||
Y

||Y ||

]
≤ 1

implies
E(XY ) ≤ ||X||||Y ||. (30.1)

We now use the fact that (X + Y )2 = X2 + Y 2 + 2XY so that

E[(X + Y )2] = E(X2) + E(Y 2) + 2E(XY ),

or equivalently,
||X + Y ||2 = ||X||2 + ||Y ||2 + 2E(XY ).

Using (30.1) we find

||X + Y ||2 ≤ ||X||2 + ||Y ||2 + 2||X||||Y || = (||X||+ ||Y ||)2.

Taking square roots of both sides gives

||X + Y || ≤ ||X||+ ||Y ||

which establishes the triangle inequality (d).

Remark. We have shown that ||X|| =
√

E(X2) satisfies properties (a), (c), and (d) only.
As a result, we call ||·|| a seminorm. If we identify random variables X1 and X2 whenever
P{X1 = X2} = 1, then ||·|| also satisfies (b) and is truly a norm.

It is common to write L2 to denote the space of random variables of finite variance. In fact,
if L2 is equipped with the norm ||X|| =

√
E(X2), then it can be shown that L2 is a both a

Banach space and a Hilbert space.
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Lecture #31: Value at Risk

Suppose that Ω denotes the set of all possible financial scenarios up to a given expiry date
T . In other words, if we write {St, t ≥ 0} to denote the underlying asset price process that
we care about, then Ω consists of all possible trajectories on [0, T ]. We will abbreviate such
a trajectory simply by ω.

Therefore, we will let the random variable X denote our financial position at time T . In
other words, X : Ω → R is given by ω 7→ X(ω) where X(ω) describes our financial position
at time T (or our resulting net worth already discounted) assuming the trajectory ω was
realized.

Our goal is to quantify the risk associated with the financial position X. Arbitrarily, we
could use Var(X) to measure risk. Although this is easy to work with, it is symmetric. This
is not desirable in a financial context since upside risk is fine; it is perfectly acceptable to
make more money than expected!

As a first example, we will consider the so-called value at risk at level α. Recall that X
denotes the space of all random variables of finite variance. As we saw in Lecture #30, if
we define ||X|| =

√
E(X2) for X ∈ X , then ||·|| defines a norm on X as long as we identify

random variables which are equal with probability one.

Example 31.1. Let X be a given financial position and suppose that α ∈ (0, 1). We will
say that X is acceptable if and only if

P{X < 0} ≤ α.

We then define VaRα(X), the value at risk of the position X at level α ∈ (0, 1), to be

VaRα(X) = inf{m : P{X + m < 0} ≤ α}.

In other words, if X is not acceptable, then the value at risk is the minimal amount m
of capital that is required to be added to X in order to make it acceptable. For instance,
suppose that we declare X to be acceptable if P{X < 0} ≤ 0.1. If X is known to have a
N (1, 1) distribution, then X is not acceptable since P{X < 0} = 0.1587. However, we find
(accurate to 4 decimal places) that P{X < −0.2816} = 0.1. Therefore, if X ∼ N (1, 1), then

VaR0.1(X) = inf{m : P{X + m < 0} ≤ 0.1} = 0.2816.

Since X was not acceptable, we see that the minimal capital we must add to make it ac-
ceptable is 0.2816. On the other hand, if X ∼ N (3, 1), then X is already acceptable and
so

VaR0.1(X) = inf{m : P{X + m < 0} ≤ 0.1} = −1.7184

since P{X < 1.7184} = 0.1. Since X was already acceptable, our value at risk is negative.
This indicates that we could afford to lower our capital by 1.7184 and our position would
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still be acceptable. We can write VaRα(X) in terms of the distribution function FX of X as
follows. Let c = −m so that P{X + m < 0} = P{X − c < 0}, and so

P{X − c < 0} = P{X < c} = P{X ≤ c} −P{X = c} = FX(c−)

where c− denotes the limit from the left. Therefore,

VaRα(X) = inf{−c : FX(c−) ≤ α} = − sup{c : FX(c−) ≤ α}.

Although value at risk is widely used, it has a number of drawbacks. For instance, it pays
attention only to shortfalls (X < 0), but never to how bad they are. It may also penalize
diversification. Mathematically, value at risk requires a probability measure P to be known
in advance, and it does not behave in a convex manner.

Exercise 31.2. Show that if X ≤ Y , then VaRα(X) ≥ VaRα(Y ).

Exercise 31.3. Show that if r ∈ R, then VaRα(X + r) = VaRα(X)− r.

As we will learn next lecture, any functional satisfying the properties given in the previous
two exercises will be called a monetary risk measure. That is, value at risk is an example of
a monetary risk measure. As we will see in Lecture #35, however, it is not a coherent risk
measure.
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Lecture #32: Monetary Risk Measures

As we saw last lecture, value at risk has a number of drawbacks, including the fact that it
requires a probability measure P to be known in advance.

Instead of using value at risk, we would like to have a measure of risk that does not require
an a priori probability measure. Motivated by the point-of-view of functional analysis, we
will consider a risk measure to be a functional on a space of random variables.

Unfortunately, we cannot work with the space of all random variables of finite variance. This
is because the calculation of the variance of a random variable X requires one to compute
E(X2). However, expectation is computed with respect to a given probability measure, and
so to compute E(X2), one is required to know P in advance.

Thus, we need a more general setup. Suppose that Ω is the set of all possible financial
scenarios, and let X : Ω → R be a function. Denote by X the space of all real-valued
bounded functions on Ω. That is, if we define

||X||∞ = sup
ω∈Ω

|X(ω)|,

then
X = {X : ||X||∞ < ∞}.

It follows from Example 29.11 that ||·||∞ defines a norm on the space of bounded functions
which is sometimes called the sup norm.

Since X with the sup norm does not require a probability to be known, this is the space that
we will work with from now on.

Definition 32.1. We will call a functional ρ : X → R a monetary risk measure if it satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ), and

(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R.

Remark. Notice that ρ(X) ∈ R so that translation invariance implies (with r = ρ(X))

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0.

Furthermore, translation invariance implies (with X = 0)

ρ(r) = ρ(0)− r.

In many situations, there is no loss of generality in assuming that ρ(0) = 0. In fact, we say
that a monetary risk measure is normalized if ρ(0) = 0. Notice that if ρ is normalized, then

ρ(r) = −r

for any r ∈ R.
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Example 32.2. Define the worst-case risk measure ρmax by

ρmax(X) = − inf
ω∈Ω

X(ω)

for all X ∈ X . The value ρmax(X) is the least upper bound for the potential loss that can
occur in any scenario. Clearly

inf
ω∈Ω

X(ω) ≤ X.

If ρ is any monetary risk measure, then monotonicity implies

ρ

(
inf
ω∈Ω

X(ω)

)
≥ ρ(X).

As in the previous remark, translation invariance invariance implies

ρ

(
inf
ω∈Ω

X(ω)

)
= ρ(0)− inf

ω∈Ω
X(ω) = ρ(0) + ρmax(X).

Combined, we see
ρ(X) ≤ ρ(0) + ρmax(X).

Thus, if ρ is a normalized monetary risk measure, then

ρ(X) ≤ ρmax(X).

In this sense, ρmax is the most conservative measure of risk.

Exercise 32.3. Verify that ρmax is a monetary risk measure.

Theorem 32.4. Suppose that ρ : X → R is a monetary risk measure. If X, Y ∈ X , then

|ρ(X)− ρ(Y )| ≤ ||X − Y ||∞.

Proof. Clearly X ≤ Y + |X − Y | so that

X ≤ Y + sup
ω∈Ω

|X(ω)− Y (ω)| = Y + ||X − Y ||∞.

Since ||X − Y ||∞ ∈ R, we can use monotonicity and translation invariance to conclude

ρ(X) ≥ ρ(Y + ||X − Y ||∞) = ρ(Y )− ||X − Y ||∞.

In other words,
ρ(Y )− ρ(X) ≤ ||X − Y ||∞.

Switching X and Y implies ρ(X)− ρ(Y ) ≤ ||X − Y ||∞. from which we conclude

|ρ(X)− ρ(Y )| ≤ ||X − Y ||∞.

as required.
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One of the basic tenets of measuring risk is that diversification should not increase risk. This
is expressed through the idea of convexity.

Definition 32.5. We say that the monetary risk measure ρ is convex if

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) (32.1)

for any 0 < λ ≤ 1.

Remark. If ρ is a normalized, convex risk measure, then choosing Y = 0 in (32.1) implies

ρ(λX) ≤ λρ(X) (32.2)

for any 0 < λ ≤ 1.

Remark. If λ > 1, then λ−1 ∈ (0, 1). This means that (32.2) can be written as

ρ(λ−1X) ≤ λ−1ρ(X) or, equivalently, λρ(λ−1X) ≤ ρ(X) (32.3)

for any λ > 1. If we now replace X in (32.3) by λX, then we obtain

ρ(λX) ≥ λρ(X) (32.4)

for any λ > 1.

If we want to replace the inequalities in (32.2) and (32.4) with equalities, then we need
something more than just convexity.

Definition 32.6. A monetary risk measure ρ : X → R is called positively homogeneous if

ρ(λX) = λρ(X)

for any λ > 0.

Remark. Suppose that ρ is positively homogeneous. It then follows that ρ(0) = 0; in other
words, ρ is normalized. Indeed, let λ > 0 be arbitrary and take X = 0 so that ρ(0) = λρ(0).
The only way that this equality can be true is if either λ = 1 or ρ(0) = 0. Since λ > 0 is
arbitrary, we must have ρ(0) = 0.

We now say that a convex, positively homogeneous monetary risk measure is a coherent risk
measure.

Definition 32.7. We will call a functional ρ : X → R a coherent risk measure if it satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ),

(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R,

(iii) convexity, namely ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for any 0 < λ ≤ 1, and

(iv) positive homogeneity, namely ρ(λX) = λρ(X) for any λ > 0.
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Remark. It is possible to replace (iii) in the definition of coherent risk measure with the
following:

(iii)′ subadditivity, namely ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Exercise 32.8. Show that a convex, positively homogeneous monetary risk measure is sub-
additive.

Exercise 32.9. Show that a subadditive, positively homogeneous monetary risk measure is
convex.

As a result we have the following equivalent definition of coherent risk measure.

Definition 32.10. We will call a functional ρ : X → R a coherent risk measure if it satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ),

(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R,

(iii)′ subadditivity, namely ρ(X + Y ) ≤ ρ(X) + ρ(Y ), and

(iv) positive homogeneity, namely ρ(λX) = λρ(X) for any λ > 0.
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Lecture #33: Risk Measures and their Acceptance Sets

Recall. We write X to denote the space of all bounded random variables X : Ω → R with
norm

||X|| = sup
ω∈Ω

|X(ω)|.

A monetary risk measure ρ : X → R is a functional which satisfies

(i) monotonicity, namely X ≤ Y implies ρ(X) ≥ ρ(Y ), and

(ii) translation invariance, namely ρ(X + r) = ρ(X)− r for every r ∈ R.

If ρ also satisfies

(iii) convexity, namely ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for any 0 < λ ≤ 1, and

(iv) positive homogeneity, namely ρ(λX) = λρ(X) for any λ > 0,

then we say that ρ is a coherent risk measure.

Given a monetary risk measure ρ, we can define its associated acceptance set Aρ to be

Aρ = {X ∈ X : ρ(X) ≤ 0}.

In other words, Aρ ⊆ X consists of those financial positions X for which no extra capital is
needed to make them acceptable when ρ is used to measure risk.

Theorem 33.1. If ρ is a monetary risk measure with associated acceptance set Aρ, then the
following properties hold:

(i) if X ∈ Aρ and Y ∈ X with Y ≥ X, then Y ∈ Aρ,

(ii) inf{m ∈ R : m ∈ Aρ} > −∞, and

(iii) if X ∈ Aρ and Y ∈ X , then

{λ ∈ [0, 1] : λX + (1− λ)Y ∈ Aρ}

is a closed subset of [0, 1].

Proof. The verification of both (i) and (ii) is straightforward. As for (iii), consider the
function

λ 7→ ρ(λX + (1− λ)Y ).

It follows from Theorem 32.4 that this function is continuous. That is, for λ ∈ [0, 1], let

f(λ) = ρ(λX + (1− λ)Y ),
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and note that if λ1, λ2 ∈ [0, 1], then

|f(λ1)− f(λ2)| = |ρ(λ1X + (1− λ1)Y )− ρ(λ2X + (1− λ2)Y )|
≤ ||(λ1 − λ2)X + (λ2 − λ1)Y ||∞
≤ ||(λ1 − λ2)X||∞ + ||(λ2 − λ1)Y ||∞
= |λ1 − λ2|||X||∞ + |λ2 − λ1|||Y ||∞
= |λ1 − λ2|(||X||∞ + ||Y ||∞)

where the first inequality follows from Theorem 32.4 and the second inequality follows from
the triangle inequality. Since X, Y ∈ X , we have ||X||∞ + ||Y ||∞ < ∞. Therefore, if λ2 is
fixed and λ1 → λ2, then f(λ1) → f(λ2) so that f is indeed continuous. We now note that
the inverse image of a closed set under a continuous function is closed. Hence, the set of
λ ∈ [0, 1] such that ρ(λX + (1− λ)Y ) ≤ 0 is closed.

Remark. The intuition for (ii) is that some negative constants might be acceptable, but we
cannot go arbitrarily far to −∞.

Alternatively, suppose that we are given a set A ⊆ X with the following two properties:

(i) if X ∈ A and Y ∈ X with Y ≥ X, then Y ∈ A, and

(ii) inf{m ∈ R : m ∈ A} > −∞.

If we then define ρA : X → R by setting

ρA(X) = inf{m ∈ R : X + m ∈ A},

then ρA is a monetary risk measure.

Exercise 33.2. Verify that ρA(X) = inf{m ∈ R : X + m ∈ A} is, in fact, a monetary
risk measure. Both monotonicity and translation invariance are relatively straightforward to
verify. The only tricky part is showing that ρA(X) is finite.

Theorem 33.3. If ρ : X → R is a monetary risk measure, then

ρAρ = ρ.

Proof. Suppose that ρ : X → R is given and let Aρ = {X ∈ X : ρ(X) ≤ 0} be its acceptance
set. By definition, if X ∈ X , then

ρAρ(X) = inf{m ∈ R : X + m ∈ Aρ}.

However, by definition again

inf{m ∈ R : X + m ∈ Aρ} = inf{m ∈ R : ρ(X + m) ≤ 0}.

Translation invariance implies ρ(X + m) = ρ(X)−m so that

inf{m ∈ R : ρ(X + m) ≤ 0} = inf{m ∈ R : ρ(X) ≤ m}.
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However, inf{m ∈ R : ρ(X) ≤ m} is precisely equal to ρ(X). In other words,

ρAρ(X) = ρ(X)

for every X ∈ X and the proof is complete.

Theorem 33.4. If A ⊆ X is given, then A ⊆ AρA.

Proof. In order to prove A ⊆ AρA we must show that if X ∈ A, then X ∈ AρA . Therefore,
suppose that X ∈ A so that ρA(X) = inf{m : X + m ∈ A} ≤ 0. By definition

Aρ = {X ∈ X : ρ(X) ≤ 0}

for any monetary risk measure ρ. Thus, we must have X ∈ AρA since ρA(X) ≤ 0.

Remark. It turns out that the converse, however, is not necessarily true. In order to
conclude that A = AρA there must be more structure on A. It turns out that the closure
property (iii) is sufficient.

Theorem 33.5. Suppose A ⊆ X satisfies the following properties:

(i) if X ∈ Aρ and Y ∈ X with Y ≥ X, then Y ∈ Aρ,

(ii) inf{m ∈ R : m ∈ Aρ} > −∞, and

(iii) if X ∈ Aρ and Y ∈ X , then

{λ ∈ [0, 1] : λX + (1− λ)Y ∈ Aρ}

is a closed subset of [0, 1].

It then follows that A = AρA.

Remark. As a consequence of Therorems 33.3 and 33.5, we have a dual view of risk measures
and their acceptance sets. Instead of proving a result directly for a monetary risk measure,
it might be easier to work with the corresponding acceptance set. For instance, it is proved
in [24] that ρA is a coherent risk measure if and only if A is a convex cone. Thus, if one
can find an acceptance set A which is a convex cone, then the resulting risk measure ρA is
coherent.
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Lecture #34: A Representation of Coherent Risk Measures

Recall from Example 32.2 that the worst-case risk measure ρmax was defined by

ρmax(X) = − inf
ω∈Ω

X(ω)

for X ∈ X where

X =

{
X : Ω → R such that ||X||∞ = sup

ω∈Ω
|X(ω)| < ∞

}
.

We then showed that if ρ is any normalized monetary risk measure, then

ρ(X) ≤ ρmax(X).

Fact. It turns out the corresponding acceptance set for ρmax is a convex cone so that ρmax

is actually a coherent risk measure. Since a coherent risk measure is necessarily normalized,
we conclude that if ρ is a coherent risk measure, then

ρ(X) ≤ ρmax(X)

for any X ∈ X .

We also recall that it was necessary to introduce the space X of bounded financial positions
X since we wanted to analyze risk without regard to any underlying distribution for X.

It turns out, however, that we can introduce distributions back into our analysis of risk!
Using two of the most important theorems in functional analysis, namely the Hahn-Banach
theorem and the Riesz-Markov theorem, it can be shown that ρmax(X) can be represented
as

ρmax(X) = sup
P∈P

EP(−X)

where P denotes the class of all probability measures on Ω and EP denotes expectation
assuming that the distribution of X is induced by P.

In other words, the representation of ρmax(X) is

− inf
ω∈Ω

X(ω) = sup
P∈P

EP(−X). (34.1)

In order to motivate this representation, we will assume that X ≤ 0 and show that both
sides of (34.1) actually equal ||X||∞. For the left side, notice that

− inf
ω∈Ω

X(ω) = sup
ω∈Ω

(−X(ω)) = sup
ω∈Ω

|X(ω)| = ||X||∞.
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As for the right side, it is here that we need to use the Hahn-Banach and Riesz-Markov
theorems. The basic idea is the following. Suppose that the distribution P is given and
consider EP(−X). Since X ≤ 0, we see that

−X ≤ sup
ω∈Ω

(−X(ω)) = ||X||∞

as above, and so
EP(−X) ≤ EP(||X||∞) = ||X||∞EP(1) = ||X||∞.

If we now take the supremum over all P ∈ P , then

sup
P∈P

EP(−X) ≤ ||X||∞.

The Hahn-Banach and Riesz-Markov theorems say that the supremum is actually achieved.
That is, there exists some P ∈ P for which EP(−X) = ||X||∞; in other words,

sup
P∈P

EP(−X) = ||X||∞.

The extension to a general bounded function X (as opposed to just X ≤ 0) is similar, but
more technical.

This also motivates the representation theorem that we are about to state. Since any coher-
ent risk measure ρ is bounded above by the coherent risk measure ρmax, and since ρmax(X)
can be represented as the supremum of EP(−X) over all P ∈ P , it seems reasonable that ρ
can be represented as the supremum of EP(−X) over some suitable set of P ∈ P .

Theorem 34.1. A functional ρ : X → R is a coherent risk measure if and only if there
exists a subset Q ⊆ P such that

ρ(X) = sup
P∈Q

EP(−X)

for X ∈ X . Moreover, Q can be chosen as a convex set so that the supremum is attained.

This theorem says that if ρ is a given coherent risk measure, then there exists some subset
Q of P such that

ρ(X) = sup
P∈Q

EP(−X).

Of course, if Q ⊆ P , then
sup
P∈Q

EP(−X) ≤ sup
P∈P

EP(−X)

which just says that ρ(X) ≤ ρmax(X).
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Lecture #35: Further Remarks on Value at Risk

We introduced the concept of value at risk in Lecture #31. One of the problems with
value at risk is that it requires a probability measure to be known in advance. This is the
reason that we studied monetary risk measures in general culminating with Theorem 34.1,
a representation theorem for coherent risk measures.

Assume for the rest of this lecture that a probability measure is known so that we can
compute the probabilities and expectations required for value at risk. Let X denote the
space of random variables of finite variance; that is,

X = {X : Ω → R such that ||X|| =
√

E(X2) < ∞}.

Recall that if X ∈ X , then

VaRα(X) = inf{−c : FX(c−) ≤ α} = − sup{c : FX(c−) ≤ α}.

If X is a continuous random variable, then FX(c−) = FX(c) and FX is strictly increasing so
that there exists a unique c such that FX(c) = α or, equivalently, c = F−1

X (α). Thus,

VaRα(X) = −F−1
X (α).

Example 35.1. If X ∼ N (µ, σ), then it follows from Exercise 4.4 that

FX(x) = Φ

(
x− µ

σ

)
.

Therefore, to determine VaRα(X) we begin by solving

Φ

(
c− µ

σ

)
= α

for c. Doing so gives c = µ + Φ−1(α)σ and so

VaRα(X) = −µ− Φ−1(α)σ.

We can write this in a slightly different way by noting that

−Φ−1(α) = Φ−1(1− α).

Indeed Exercise 4.3 implies that

Φ(−Φ−1(1− α)) = 1− Φ(Φ−1(1− α)) = 1− (1− α) = α

and so −Φ−1(1− α)) = Φ−1(α) as required. That is,

VaRα(X) = −µ + Φ−1(1− α)σ.

Finally, since E(X) = µ and SD(X) = σ we have

VaRα(X) = E(−X) + Φ−1(1− α) SD(X).
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Example 35.2. Suppose that X has a Pareto distribution with scale parameter θ > 0 and
shape parameter p > 1 so that

FX(x) = 1−
(

θ

x + θ

)p

for x > 0. Solving

1−
(

θ

c + θ

)p

= α

for c implies
c = θ(1− α)−1/p − θ

so that
VaRα(X) = θ − θ(1− α)−1/p.

Exercise 35.3. If X has a Raleigh distribution with parameter θ > 0 so that

fX(x) =
2

θ
xe−x2/θ, x > 0,

determine VaRα(X).

Exercise 35.4. If X has a binomial distribution with parameters n = 3 and p = 1/2,
determine VaRα(X) for α = 0.1 and α = 0.3.

If X is a random variable, we define the Sharpe ratio to be

E(X)

SD(X)
.

We will say that X is acceptable at level ` if

E(X)

SD(X)
≥ `

so that the corresponding acceptance set is

A` =

{
X ∈ L2 :

E(X)

SD(X)
≥ `

}
= {X ∈ L2 : E(X) ≥ ` SD(X)}.

As in Lecture #33, the associated risk measure is

ρ`(X) = inf{m ∈ R : X + m ∈ A`} = inf{m ∈ R : E(X + m) ≥ ` SD(X + m)}
= inf{m ∈ R : m ≥ E(−X) + ` SD(X)}
= E(−X) + ` SD(X).

Remark. If X ∼ N (µ, σ2), then VaRα(X) is of the form specified by the Sharpe ratio,
namely

ρ`(X) = E(−X) + ` SD(X)

with ` = Φ−1(1− α).
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We will now show that ρ`(X) is not, in general, a monetary risk measure.

Let X = eZ with Z ∼ N (0, σ2) so that X has a lognormal distribution. Using Exercise 4.25,
we find

ρ`(X) = E(−X) + ` SD(X) = −eσ2/2 + `eσ2/2
√

eσ2 − 1 = −eσ2/2
[
1− `

√
eσ2 − 1

]
.

Monetary risk measures must satisfy monotonicity; in particular, if X ≥ 0, then ρ(X) ≤ 0.
However, with X = eZ we see that X ≥ 0, but we can choose σ sufficiently large to guarantee
ρ`(X) ≥ 0. That is,

1− `
√

eσ2 − 1 ≤ 0

if and only if
σ ≥

√
log(`−2 + 1).

Thus, ρ`(X) is not a monetary risk measure.

Remark. This does not show that value at risk is not a monetary risk measure. As we
saw in the exercises at the end of Lecture #31, value at risk is a monetary risk measure.
However, it can be shown that value at risk is not a coherent risk measure.

Finally, value at risk is the basis for the following coherent risk measure which has been
called tail value at risk, conditional tail expectation, tail conditional expectation, expected
shortfall, conditional value at risk, and average value at risk.

Let X ∈ X be given. For 0 < α ≤ 1, the average value at risk at level α is given by

AVaRα(X) =
1

α

∫ α

0

VaRx(X) dx.

It is shown in [24] that average value at risk is a coherent risk measure.

Exercise 35.5. If X ∼ N (µ, σ2), determine AVaRα(X).
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Lecture #36: Midterm Review

Today we reviewed the questions on the Midterm given on March 18, 2009, as well as some
of the exercises related to risk measures, in preparation for the final exam.
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