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Lecture #31, 32: The Ornstein-Uhlenbeck Process as a Model of
Volatility

The Ornstein-Uhlenbeck process is a di↵usion process that was introduced as a model of
the velocity of a particle undergoing Brownian motion. We know from Newtonian physics
that the velocity of a (classical) particle in motion is given by the time derivative of its
position. However, if the position of a particle is described by Brownian motion, then the
time derivative does not exist. The Ornstein-Uhlenbeck process is an attempt to overcome
this di�culty by modelling the velocity directly. Furthermore, just as Brownian motion is
the scaling limit of simple random walk, the Ornstein-Uhlenbeck process is the scaling limit
of the Ehrenfest urn model which describes the di↵usion of particles through a permeable
membrane.

In recent years, however, the Ornstein-Uhlenbeck process has appeared in finance as a model
of the volatility of the underlying asset price process.

Suppose that the price of a stock {S
t

, t � 0} is modelled by geometric Brownian motion with
volatility � and drift µ so that S

t

satisfies the SDE

dS
t

= �S

t

dB
t

+ µS

t

dt.

However, market data indicates that implied volatilities for di↵erent strike prices and expiry
dates of options are not constant. Instead, they appear to be smile shaped (or frown shaped).

Perhaps the most natural approach is to allow for the volatility �(t) to be a deterministic
function of time so that S

t

satisfies the SDE

dS
t

= �(t)S
t

dB
t

+ µS

t

dt.

This was already suggested by Merton in 1973. Although it does explain the di↵erent implied
volatility levels for di↵erent expiry dates, it does not explain the smile shape for di↵erent
strike prices.

Instead, Hull and White in 1987 proposed to use a stochastic volatility model where the
underlying stock price {S

t

, t � 0} satisfies the SDE

dS
t

=
p
v

t

S

t

dB
t

+ µS

t

dt

and the variance process {v
t

, t � 0} is given by geometric Brownian motion

dv
t

= c

1

v

t

dB
t

+ c

2

v

t

dt

with c

1

and c

2

known constants. The problem with this model is that geometric Brownian
motion tends to increase exponentially which is an undesirable property for volatility.

Market data also indicates that volatility exhibits mean-reverting behaviour. This lead Stein
and Stein in 1991 to introduce the mean-reverting Ornstein-Uhlenbeck process satisfying

dv
t

= � dB
t

+ a(b� v

t

) dt

where a, b, and � are known constants. This process, however, allows negative values of v
t

.
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In 1993 Heston overcame this di�culty by considering a more complex stochastic volatility
model. Before investigating the Heston model, however, we will consider the Ornstein-
Uhlenbeck process separately and prove that negative volatilities are allowed thereby verify-
ing that the Stein and Stein stock price model is flawed.

We say that the process {X
t

, t � 0} is an Ornstein-Uhlenbeck process if X
t

satisfies the
Ornstein-Uhlenbeck stochastic di↵erential equation given by

dX
t

= � dB
t

+ aX

t

dt (20.1)

where � and a are constants and {B
t

, t � 0} is a standard Brownian motion.

Remark. Sometimes (20.1) is called the Langevin equation, especially in physics contexts.

Remark. The Ornstein-Uhlenbeck SDE is very similar to the SDE for geometric Brownian
motion; the only di↵erence is the absence of X

t

in the dB
t

term of (20.1). However, this
slight change makes (20.1) more challenging to solve.

The “trick” for solving (20.1) is to multiply both sides by the integrating factor e

�at and to
compare with d(e�at

X

t

). The chain rule tells us that

d(e�at

X

t

) = e

�at dX
t

+X

t

d(e�at) = e

�at dX
t

� ae

�at

X

t

dt (20.2)

and multiplying (20.1) by e

�at gives

e

�atdX
t

= �e

�at dB
t

+ ae

�at

X

t

dt (20.3)

so that substituting (20.3) into (20.2) gives

d(e�at

X

t

) = �e

�at dB
t

+ ae

�at

X

t

dt� ae

�at

X

t

dt = �e

�at dB
t

.

Since d(e�at

X

t

) = �e

�atdB
t

, we can now integrate to conclude that

e

�at

X

t

�X

0

= �

Z

t

0

e

�as dB
s

and so

X

t

= e

at

X

0

+ �

Z

t

0

e

a(t�s) dB
s

. (20.4)

Observe that the integral in (20.4) is a Wiener integral. Definition 8.1 tells us that

Z

t

0

e

a(t�s) dB
s

⇠ N
✓

0,

Z

t

0

e

2a(t�s) ds

◆

= N
✓

0,
e

2at � 1

2a

◆

.

In particular, choosing X

0

= x to be constant implies that

X

t

= e

at

x+ �

Z

t

0

e

a(t�s) dB
s

⇠ N
✓

xe

at

,

�

2(e2at � 1)

2a

◆

.
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Actually, we can generalize this slightly. If we choose X

0

⇠ N (x, ⌧ 2) independently of
{B

t

, t � 0}, then Exercise 3.12 tells us that

X

t

= e

at

X

0

+ �

Z

t

0

e

a(t�s) dB
s

⇠ N
✓

xe

at

, ⌧

2

e

2at +
�

2(e2at � 1)

2a

◆

= N
✓

xe

at

,

✓

⌧

2 +
�

2

2a

◆

e

2at � �

2

2a

◆

.

Exercise 20.1. Suppose that {X
t

, t � 0} is an Ornstein-Uhlenbeck process given by (20.4)
with X

0

= 0. If s < t, compute Cov(X
s

, X

t

).

We say that the process {X
t

, t � 0} is a mean-reverting Ornstein-Uhlenbeck process if X
t

satisfies the SDE
dX

t

= � dB
t

+ (b�X

t

) dt (20.5)

where � and b are constants and {B
t

, t � 0} is a standard Brownian motion.

The trick for solving the mean-reverting Ornstein-Uhlenbeck process is similar. That is, we
multiply by e

t and compare with d(et(b�X

t

)). The chain rule tells us that

d(et(b�X

t

)) = �e

t dX
t

+ e

t(b�X

t

) dt (20.6)

and multiplying (20.5) by e

t gives

e

tdX
t

= �e

t dB
t

+ e

t(b�X

t

) dt (20.7)

so that substituting (20.7) into (20.6) gives

d(et(b�X

t

)) = ��e

t dB
t

� e

t(b�X

t

) dt+ e

t(b�X

t

) dt = ��e

t dB
t

.

Since d(et(b�X

t

)) = ��e

t dB
t

, we can now integrate to conclude that

e

t(b�X

t

)� (b�X

0

) = ��

Z

t

0

e

s dB
s

and so

X

t

= (1� e

�t)b+ e

�t

X

0

+ �

Z

t

0

e

s�t dB
s

. (20.8)

Exercise 20.2. Suppose that X
0

⇠ N (x, ⌧ 2) is independent of {B
t

, t � 0}. Determine the
distribution of X

t

given by (20.8).

Exercise 20.3. Use an appropriate integrating factor to solve the mean-reverting Ornstein-
Uhlenbeck SDE considered by Stein and Stein, namely

dX
t

= � dB
t

+ a(b�X

t

) dt.

Assuming that X

0

= x is constant, determine the distribution of X

t

and conclude that
P{X

t

< 0} > 0 for every t > 0. Hint: X

t

has a normal distribution. This then explains our
earlier claim that the Stein and Stein model is flawed.
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As previous noted, Heston introduced a stochastic volatility model in 1993 that overcame
this di�culty. Assume that the asset price process {S

t

, t � 0} satisfies the SDE

dS
t

=
p
v

t

S

t

dB(1)

t

+ µS

t

dt

where the variance process {v
t

, t � 0} satisfies

dv
t

= �

p
v

t

dB(2)

t

+ a(b� v

t

) dt (20.9)

and the two driving Brownian motions {B(1)

t

, t � 0} and {B(2)

t

, t � 0} are correlated with
rate ⇢, i.e.,

dhB(1)

, B

(2)i
t

= ⇢ dt.

The
p
v

t

term in (20.9) is needed to guarantee positive volatility—when the process touches
zero the stochastic part becomes zero and the non-stochastic part will push it up. The
parameter a measures the speed of the mean-reversion, b is the average level of volatility,
and � is the volatility of volatility. Market data suggests that the correlation rate ⇢ is
typically negative. The negative dependence between returns and volatility is sometimes
called the leverage e↵ect.

Heston’s model involves a system of stochastic di↵erential equations. The key tool for ana-
lyzing such a system is the multidimensional version of Itô’s formula.

Theorem 20.4 (Version V). Suppose that {X
t

, t � 0} and {Y
t

, t � 0} are di↵usions defined
by the stochastic di↵erential equations

dX
t

= a

1

(t,X
t

, Y

t

) dB(1)

t

+ b

1

(t,X
t

, Y

t

) dt

and
dY

t

= a

2

(t,X
t

, Y

t

) dB(2)

t

+ b

2

(t,X
t

, Y

t

) dt,

respectively, where {B(1)

t

, t � 0} and {B(2)

t

, t � 0} are each standard one-dimensional Brow-
nian motions. If f 2 C

1([0,1))⇥ C

2(R2), then

df(t,X
t

, Y

t

) = ḟ(t,X
t

, Y

t

) dt+ f

1

(t,X
t

, Y

t

) dX
t

+
1

2
f

11

(t,X
t

, Y

t

) dhXi
t

+ f

2

(t,X
t

, Y

t

) dY
t

+
1

2
f

22

(t,X
t

, Y

t

) dhY i
t

+ f

12

(t,X
t

, Y

t

) dhX, Y i
t

where the partial derivatives are defined as

ḟ(t, x, y) =
@

@t

f(t, x, y), f

1

(t, x, y) =
@

@x

f(t, x, y), f

11

(t, x, y) =
@

2

@x

2

f(t, x, y)

f

2

(t, x, y) =
@

@y

f(t, x, y), f

22

(t, x, y) =
@

2

@y

2

f(t, x, y), f

12

(t, x, y) =
@

2

@x@y

f(t, x, y),

and dhX, Y i
t

is computed according to the rule

dhX, Y i
t

= (dX
t

)(dY
t

) = a

1

(t,X
t

, Y

t

)a
2

(t,X
t

, Y

t

) dhB(1)

, B

(2)i
t

.

20–4



Remark. In a typical problem involving the multidimensional version of Itô’s formula, the
quadratic covariation process hB(1)

, B

(2)i
t

will be specified. However, two particular examples
are worth mentioning. If B(1) = B

(2), then dhB(1)

, B

(2)i
t

= dt, whereas if B(1) and B

(2) are
independent, then dhB(1)

, B

(2)i
t

= 0.

Exercise 20.5. Suppose that f(t, x, y) = xy. Using Version V of Itô’s formula (Theo-
rem 20.4), verify that the product rule for di↵usions is given by

d(X
t

Y

t

) = X

t

dY
t

+ Y

t

dX
t

+ dhX, Y i
t

.

Thus, our goal in the next few lectures is to price a European call option assuming that
the underlying stock price follows Heston’s model of geometric Brownian motion with a
stochastic volatility, namely

8

>

<

>

:

dS
t

=
p
v

t

S

t

dB(1)

t

+ µS

t

dt,

dv
t

= �

p
v

t

dB(2)

t

+ a(b� v

t

) dt,

dhB(1)

, B

(2)i
t

= ⇢ dt.
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