Statistics 441 (Fall 2014)
November 10, 2014
Prof. Michael Kozdron

Lecture \#28: Calculations with Itô's Formula

Example 17.1 (Assignment \#4, problem \#10). Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion with $B_{0}=0$. Determine an expression for

$$
\int_{0}^{t} \sin \left(B_{s}\right) \mathrm{d} B_{s}
$$

that does not involve Itô integrals.
Solution. Since Version I of Itô's formula tells us that

$$
f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) \mathrm{d} s
$$

if we choose $f^{\prime}(x)=\sin (x)$ so that $f(x)=-\cos (x)$ and $f^{\prime \prime}(x)=\cos (x)$, then

$$
-\cos \left(B_{t}\right)+\cos \left(B_{0}\right)=\int_{0}^{t} \sin \left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} \cos \left(B_{s}\right) \mathrm{d} s
$$

The fact that $B_{0}=0$ implies

$$
\int_{0}^{t} \sin \left(B_{s}\right) \mathrm{d} B_{s}=1-\cos \left(B_{t}\right)-\frac{1}{2} \int_{0}^{t} \cos \left(B_{s}\right) \mathrm{d} s .
$$

Example 17.2 (Assignment \#4, problem \#1). Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a Brownian motion starting at 0 . If the process $\left\{X_{t}, t \geq 0\right\}$ is defined by setting

$$
X_{t}=\exp \left\{B_{t}\right\}
$$

use Itô's formula to compute $\mathrm{d} X_{t}$.
Solution. Version I of Itô's formula tells us that

$$
\mathrm{d} f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) \mathrm{d} t
$$

so that if $f(x)=e^{x}$, then

$$
\mathrm{d} \exp \left\{B_{t}\right\}=\exp \left\{B_{t}\right\} \mathrm{d} B_{t}+\frac{1}{2} \exp \left\{B_{t}\right\} \mathrm{d} t
$$

Equivalently, if $X_{t}=\exp \left\{B_{t}\right\}$, then

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} B_{t}+\frac{X_{t}}{2} \mathrm{~d} t
$$

Example 17.3 (Assignment \#4, problem \#8). Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion with $B_{0}=0$. Consider the process $\left\{Y_{t}, t \geq 0\right\}$ defined by setting $Y_{t}=B_{t}^{k}$ where k is a positive integer. Use Itô's formula to show that Y_{t} satisfies the SDE

$$
\mathrm{d} Y_{t}=k Y_{t}^{1-1 / k} \mathrm{~d} B_{t}+\frac{k(k-1)}{2} Y_{t}^{1-2 / k} \mathrm{~d} t
$$

Solution. Version I of Itô's formula tells us that

$$
\mathrm{d} f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) \mathrm{d} t
$$

so that if $f(x)=x^{k}$, then $f^{\prime}(x)=k x^{k-1}$ and $f^{\prime \prime}(x)=k(k-1) x^{k-2}$ so that

$$
\mathrm{d} B_{t}^{k}=k B_{t}^{k-1} \mathrm{~d} B_{t}+\frac{k(k-1)}{2} B_{t}^{k-2} \mathrm{~d} t
$$

Writing $Y_{t}=B_{t}^{k}$ gives

$$
\mathrm{d} Y_{t}=k Y_{t}^{1-1 / k} \mathrm{~d} B_{t}+\frac{k(k-1)}{2} Y_{t}^{1-2 / k} \mathrm{~d} t
$$

Example 17.4 (Assignment $\# 4$, problem \#5). Consider the Itô process $\left\{Y_{t}, t \geq 0\right\}$ described by the stochastic differential equation

$$
\mathrm{d} Y_{t}=0.4 \mathrm{~d} B_{t}+0.1 \mathrm{~d} t
$$

If the process $\left\{X_{t}, t \geq 0\right\}$ is defined by $X_{t}=e^{0.5 Y_{t}}$, determine $\mathrm{d} X_{t}$.
Solution. Version III of Itô's formula tells us that

$$
\mathrm{d} f\left(Y_{t}\right)=f^{\prime}\left(Y_{t}\right) \mathrm{d} Y_{t}+\frac{1}{2} f^{\prime \prime}\left(Y_{t}\right) \mathrm{d}\langle Y\rangle_{t}
$$

so that if $f(y)=e^{0.5 y}$, then

$$
\mathrm{d} \exp \left\{0.5 Y_{t}\right\}=(0.5) \exp \left\{0.5 Y_{t}\right\} \mathrm{d} Y_{t}+\frac{(0.5)^{2}}{2} \exp \left\{0.5 Y_{t}\right\} \mathrm{d}\langle Y\rangle_{t}
$$

Since $\mathrm{d} Y_{t}=0.4 \mathrm{~d} B_{t}+0.1 \mathrm{~d} t$, we conclude that $\mathrm{d}\langle Y\rangle_{t}=(0.4)^{2} \mathrm{~d} t=0.16 \mathrm{~d} t$ and so

$$
\mathrm{d} \exp \left\{0.5 Y_{t}\right\}=(0.5) \exp \left\{0.5 Y_{t}\right\}\left(0.4 \mathrm{~d} B_{t}+0.1 \mathrm{~d} t\right)+\frac{(0.5)^{2}}{2} \exp \left\{0.5 Y_{t}\right\}(0.16 \mathrm{~d} t)
$$

Writing $X_{t}=e^{0.5 Y_{t}}$ and collecting like terms gives

$$
\mathrm{d} X_{t}=0.2 X_{t} \mathrm{~d} B_{t}+0.07 X_{t} \mathrm{~d} t
$$

Example 17.5 (Assignment \#4, problem \#11). Suppose that $\left\{B_{t}, t \geq 0\right\}$ is a standard Brownian motion with $B_{0}=0$, and suppose further that the process $\left\{X_{t}, t \geq 0\right\}, X_{0}=a>0$, satisfies the stochastic differential equation

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} B_{t}+\frac{1}{X_{t}} \mathrm{~d} t
$$

(a) If $f(x)=x^{2}$, determine $\mathrm{d} f\left(X_{t}\right)$.
(b) If $f(t, x)=t^{2} x^{2}$, determine $\mathrm{d} f\left(t, X_{t}\right)$.

Solution. Version III of Itô's formula tells us that

$$
\mathrm{d} f\left(X_{t}\right)=f^{\prime}\left(X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right) \mathrm{d}\langle X\rangle_{t}
$$

so that

$$
\mathrm{d}\left(X_{t}^{2}\right)=2 X_{t} \mathrm{~d} X_{t}+\mathrm{d}\langle X\rangle_{t} .
$$

Version IV of Itô's formula tells us that

$$
\mathrm{d} f\left(t, X_{t}\right)=\dot{f}\left(t, X_{t}\right) \mathrm{d} t+f^{\prime}\left(t, X_{t}\right) \mathrm{d} X_{t}+\frac{1}{2} f^{\prime \prime}\left(t, X_{t}\right) \mathrm{d}\langle X\rangle_{t}
$$

so that

$$
\mathrm{d}\left(t^{2} X_{t}^{2}\right)=2 t X_{t}^{2} \mathrm{~d} t+2 t^{2} X_{t} \mathrm{~d} X_{t}+t^{2} \mathrm{~d}\langle X\rangle_{t} .
$$

Since

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} B_{t}+\frac{1}{X_{t}} \mathrm{~d} t
$$

we conclude that

$$
\mathrm{d}\langle X\rangle_{t}=X_{t}^{2} \mathrm{~d} t
$$

Thus,
(a) $\mathrm{d}\left(X_{t}^{2}\right)=2 X_{t}^{2} \mathrm{~d} B_{t}+\left(2+X_{t}^{2}\right) \mathrm{d} t$, and
(b) $\mathrm{d}\left(t^{2} X_{t}^{2}\right)=2 t^{2} X_{t}^{2} \mathrm{~d} B_{t}+\left(2 t X_{t}^{2}+2 t^{2}+t^{2} X_{t}^{2}\right) \mathrm{d} t$.

Example 17.6 (Assignment \#4, problem \#7). Suppose that $g: \mathbb{R} \rightarrow[0, \infty)$ is a bounded, piecewise continuous, deterministic function. Assume further that $g \in L^{2}([0, \infty))$ so that the Wiener integral

$$
I_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s}
$$

is well defined for all $t \geq 0$. Define the continuous-time stochastic process $\left\{M_{t}, t \geq 0\right\}$ by setting

$$
M_{t}=I_{t}^{2}-\int_{0}^{t} g^{2}(s) \mathrm{d} s=\left(\int_{0}^{t} g(s) \mathrm{d} B_{s}\right)^{2}-\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

Use Itô's formula to prove that $\left\{M_{t}, t \geq 0\right\}$ is a continuous-time martingale.

Solution. If

$$
I_{t}=\int_{0}^{t} g(s) \mathrm{d} B_{s},
$$

then $\mathrm{d} I_{t}=g(t) \mathrm{d} B_{t}$ so that $\mathrm{d}\langle I\rangle_{t}=g^{2}(t) \mathrm{d} t$. If

$$
M_{t}=I_{t}^{2}-\int_{0}^{t} g^{2}(s) \mathrm{d} s
$$

then written in differential form we have

$$
\mathrm{d} M_{t}=\mathrm{d}\left(I_{t}^{2}\right)-g^{2}(t) \mathrm{d} t .
$$

Version III of Itô's formula implies

$$
\mathrm{d}\left(I_{t}^{2}\right)=2 I_{t} \mathrm{~d} I_{t}+\mathrm{d}\langle I\rangle_{t} .
$$

Substituting back therefore gives

$$
\begin{aligned}
\mathrm{d} M_{t}=\mathrm{d}\left(I_{t}^{2}\right)-g^{2}(t) \mathrm{d} t=2 I_{t} \mathrm{~d} I_{t}+\mathrm{d}\langle I\rangle_{t}-g^{2}(t) \mathrm{d} t & =2 g(t) I_{t} \mathrm{~d} B_{t}+g^{2}(t) \mathrm{d} t-g^{2}(t) \mathrm{d} t \\
& =2 g(t) I_{t} \mathrm{~d} B_{t} .
\end{aligned}
$$

Since Itô integrals are martingales, we conclude that $\left\{M_{t}, t \geq 0\right\}$ is a continuous-time martingale.

Example 17.7 (Assignment \#4, problem \#9). Suppose that $\left\{X_{t}, t \geq 0\right\}$ is a time-inhomogeneous Ornstein-Uhlenbeck-type process defined by the SDE

$$
\mathrm{d} X_{t}=\sigma(t) \mathrm{d} B_{t}-a\left(X_{t}-g(t)\right) \mathrm{d} t
$$

where g and σ are (sufficiently regular) deterministic functions of time. If $Y_{t}=\exp \left\{X_{t}+c t\right\}$, use Itô's formula to compute $\mathrm{d} Y_{t}$.
Solution. If $\mathrm{d} X_{t}=\sigma(t) \mathrm{d} B_{t}-a\left(X_{t}-g(t)\right) \mathrm{d} t$ and $Y_{t}=\exp \left\{X_{t}+c t\right\}$, then Version IV of Itô's formula implies that

$$
\mathrm{d} Y_{t}=c Y_{t} \mathrm{~d} t+Y_{t} \mathrm{~d} X_{t}+\frac{Y_{t}}{2} \mathrm{~d}\langle X\rangle_{t} .
$$

Since

$$
\mathrm{d}\langle X\rangle_{t}=\sigma^{2}(t) d t
$$

we conclude that

$$
\frac{\mathrm{d} Y_{t}}{Y_{t}}=\sigma(t) \mathrm{d} B_{t}+\left[c-a\left(X_{t}-g(t)\right)+\frac{\sigma^{2}(t)}{2}\right] \mathrm{d} t .
$$

Since we want a stochastic differential equation for Y_{t}, we should really substitute back for X_{t} in terms of Y_{t}. Solving $Y_{t}=\exp \left\{X_{t}+c t\right\}$ for X_{t} gives $X_{t}=\log \left(Y_{t}\right)-c t$ so that

$$
\begin{aligned}
\frac{\mathrm{d} Y_{t}}{Y_{t}} & =\sigma(t) \mathrm{d} B_{t}+\left[c-a\left(\log \left(Y_{t}\right)-c t-g(t)\right)+\frac{\sigma^{2}(t)}{2}\right] \mathrm{d} t \\
& =\sigma(t) \mathrm{d} B_{t}+\left[c(1+a t)-a \log \left(Y_{t}\right)+a g(t)+\frac{\sigma^{2}(t)}{2}\right] \mathrm{d} t .
\end{aligned}
$$

Example 17.8 (Assignment \#4, problem \#2). Suppose that the price of a stock $\left\{X_{t}, t \geq 0\right\}$ follows geometric Brownian motion with drift 0.05 and volatility 0.3 so that it satisfies the stochastic differential equation

$$
\mathrm{d} X_{t}=0.3 X_{t} \mathrm{~d} B_{t}+0.05 X_{t} \mathrm{~d} t
$$

If the price of the stock at time 2 is 30 , determine the probability that the price of the stock at time 2.5 is between 30 and 33 .

Solution. Since the price of the stock is given by geometric Brownian motion

$$
\mathrm{d} X_{t}=0.3 X_{t} \mathrm{~d} B_{t}+0.05 X_{t} \mathrm{~d} t
$$

we can read off the solution, namely

$$
X_{t}=X_{0} \exp \left\{0.3 B_{t}+\left(0.05-\frac{0.3^{2}}{2}\right) t\right\}=X_{0} \exp \left\{0.30 B_{t}+0.005 t\right\}
$$

Therefore,

$$
\begin{aligned}
\mathbf{P} & \left\{30 \leq X_{2.5} \leq 33 \mid X_{2}=30\right\} \\
& =\mathbf{P}\left\{\left.\frac{\log \left(\frac{30}{X_{0}}\right)-0.0125}{0.30} \leq B_{2.5} \leq \frac{\log \left(\frac{33}{X_{0}}\right)-0.0125}{0.30} \right\rvert\, B_{2}=\frac{\log \left(\frac{30}{X_{0}}\right)-0.01}{0.30}\right\} \\
& =\mathbf{P}\left\{\frac{\log \left(\frac{30}{X_{0}}\right)-0.0125}{0.30}-\frac{\log \left(\frac{30}{X_{0}}\right)-0.01}{0.30} \leq B_{0.5} \leq \frac{\log \left(\frac{33}{X_{0}}\right)-0.0125}{0.30}-\frac{\log \left(\frac{30}{X_{0}}\right)-0.01}{0.30}\right\} \\
& =\mathbf{P}\left\{-\frac{0.0025}{0.30} \leq B_{0.5} \leq \frac{\log \left(\frac{33}{30}\right)-0.0025}{0.30}\right\}
\end{aligned}
$$

using the stationarity of Brownian increments. If $Z \sim \mathcal{N}(0,1)$ so that $B_{0.5} \sim \sqrt{0.5} Z$, then

$$
\mathbf{P}\left\{-0.00833 \leq B_{0.5} \leq 0.3094\right\}=\mathbf{P}\{-0.0118 \leq Z \leq 0.4375\}=0.1587
$$

Remark. The solution to the previous exercise can be generalized as follows. Suppose that $\left\{X_{t}, t \geq 0\right\}$ is geometric Brownian motion given by

$$
\mathrm{d} X_{t}=\sigma X_{t} \mathrm{~d} B_{t}+\mu X_{t} \mathrm{~d} t
$$

so that

$$
X_{t}=X_{0} \exp \left\{\sigma B_{t}+\left(\mu-\frac{\sigma^{2}}{2}\right) t\right\}
$$

If $s \geq 0, t>0$, then

$$
\log \left(\frac{X_{t+s}}{X_{s}}\right)=\sigma\left(B_{t+s}-B_{s}\right)+\left(\mu-\frac{\sigma^{2}}{2}\right) t
$$

Using the facts that (i) $B_{t+s}-B_{s}$ is independent of B_{s}, and (ii) $B_{t+s}-B_{s} \sim B_{t} \sim \mathcal{N}(0, t)$ implies that (i) $\log \left(X_{t+s} / X_{s}\right)$ is independent of $\log X_{s}$, and (ii)

$$
\log \left(\frac{X_{t+s}}{X_{s}}\right) \sim\left(\frac{X_{t}}{X_{0}}\right) \sim \mathcal{N}\left(\left(\mu-\frac{\sigma^{2}}{2}\right) t, \sigma^{2} t\right)
$$

Therefore, we can conclude that if $0<a<b$ and $c>0$ are constants, then

$$
\begin{aligned}
\mathbf{P}\left\{a \leq X_{t+s} \leq b \mid X_{s}=c\right\} & =\mathbf{P}\left\{\log \left(\frac{a}{c}\right) \leq \log \left(\frac{X_{t+s}}{X_{s}}\right) \leq \log \left(\frac{b}{c}\right)\right\} \\
& =\mathbf{P}\left\{\log \left(\frac{a}{c}\right) \leq \log \left(\frac{X_{t}}{X_{0}}\right) \leq \log \left(\frac{b}{c}\right)\right\} \\
& =\mathbf{P}\left\{\frac{\log \left(\frac{a}{c}\right)-\left(\mu-\frac{\sigma^{2}}{2}\right) t}{\sigma \sqrt{t}} \leq Z \leq \frac{\log \left(\frac{b}{c}\right)-\left(\mu-\frac{\sigma^{2}}{2}\right) t}{\sigma \sqrt{t}}\right\}
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$.
Example 17.9 (Assignment $\# 4$, problem \#3). Consider the Itô process $\left\{X_{t}, t \geq 0\right\}$ described by the stochastic differential equation

$$
\mathrm{d} X_{t}=0.10 X_{t} \mathrm{~d} B_{t}+0.25 X_{t} \mathrm{~d} t
$$

Calculate the probability that X_{t} is at least 5% higher than X_{0}
(a) at time $t=0.01$, and
(b) at time $t=1$.

Solution. Since the price of the stock is given by geometric Brownian motion

$$
\mathrm{d} X_{t}=0.25 X_{t} \mathrm{~d} t+0.10 X_{t} \mathrm{~d} B_{t}
$$

we can read off the solution, namely

$$
X_{t}=X_{0} \exp \left\{0.10 B_{t}+\left(0.25-\frac{0.10^{2}}{2}\right) t\right\}=X_{0} \exp \left\{0.10 B_{t}+0.245 t\right\}
$$

Therefore, if $Z \sim \mathcal{N}(0,1)$, then

$$
\mathbf{P}\left\{X_{t} \geq 1.05 X_{0}\right\}=\mathbf{P}\left\{B_{t} \geq \frac{\log (1.05)-0.245 t}{0.10}\right\}=\mathbf{P}\left\{Z \geq \frac{\log (1.05)-0.245 t}{0.10 \sqrt{t}}\right\}
$$

(a) If $t=0.01$, then $\mathbf{P}\left\{X_{0.01} \geq 1.05 X_{0}\right\}=\mathbf{P}\{Z \geq 4.634\}=0.000002$.
(b) If $t=1$, then $\mathbf{P}\left\{X_{1} \geq 1.05 X_{0}\right\}=\mathbf{P}\{Z \geq-1.962\}=0.9751$.

Example 17.10 (Assignment \#4, problem \#4). Consider the Itô process $\left\{X_{t}, t \geq 0\right\}$ described by the stochastic differential equation

$$
\mathrm{d} X_{t}=0.05 X_{t} \mathrm{~d} B_{t}+0.1 X_{t} \mathrm{~d} t, \quad X_{0}=35
$$

Compute $\mathbf{P}\left\{X_{5} \leq 48\right\}$.
Solution. Since the price of the stock is given by geometric Brownian motion

$$
\mathrm{d} X_{t}=0.1 X_{t} \mathrm{~d} t+0.05 X_{t} \mathrm{~d} B_{t}, \quad X_{0}=35
$$

we can read off the solution, namely

$$
X_{t}=35 \exp \left\{0.05 B_{t}+\left(0.1-\frac{0.05^{2}}{2}\right) t\right\}=35 \exp \left\{0.05 B_{t}+0.09875 t\right\}
$$

Therefore, if $Z \sim \mathcal{N}(0,1)$, then

$$
\mathbf{P}\left\{X_{5} \leq 48\right\}=\mathbf{P}\left\{B_{5} \leq-3.5579\right\}=\mathbf{P}\left\{Z \leq \frac{-3.5579}{\sqrt{5}}\right\}=\mathbf{P}\{Z \leq-1.5911\}=0.0558
$$

Example 17.11 (Assignment \#4, problem \#12). It follows from Version II of Itô's formula that if $f(t, x)$ satisfies the partial differential equation

$$
\dot{f}(t, x)+\frac{1}{2} f^{\prime \prime}(t, x)=0
$$

then $f\left(t, B_{t}\right)$ is a martingale.

- If $f(t, x)=x^{5}-10 t x^{3}+15 t^{2} x$, then $f\left(t, B_{t}\right)$ is a martingale.
- If $f(t, x)=x^{6}-15 x^{4} t+45 t^{2} x^{2}-15 t^{3}$, then $f\left(t, B_{t}\right)$ is a martingale.
- If $f(t, x)=e^{t / 2} \cos (x)$, then $f\left(t, B_{t}\right)$ is a martingale.
- If $f(t, x)=-e^{-t / 2} \cos (x)$, then $f\left(t, B_{t}\right)$ is a martingale.
- If $f(t, x)=e^{x-t / 2}$, then $f\left(t, B_{t}\right)$ is a martingale.

