Statistics 441 (Fall 2014) November 5, 7, 2014
Prof. Michael Kozdron

Lecture #26, 27: Solving the Black—Scholes Partial Differential
Equation

Our goal for this lecture is to solve the Black-Scholes partial differential equation

. 2

V(t,z) + %sz”(t, ) +raV'(t,x) — rV(t,z) = 0 (16.1)
for V(t,z), 0 <t <T, x € R, subject to the boundary condition
V(T,z)=(z— E)".

The first observation is that it suffices to solve (16.1) when r = 0. That is, if W satisfies

2
W(t,z) + %xQW”(t, ) =0, (16.2)

and V(t,z) = EDW (t,e"THx), then V (¢, z) satisfies (16.1) and V(T,z) = W(T, x).

This can be checked by differentiation. There is, however, an “obvious” reason why it is
true, namely due to the time value of money mentioned in Lecture #2. If money invested
in a cash deposit grows at continuously compounded interest rate r, then $z at time T is
equivalent to $e"*T)z at time t.

Exercise 16.1. Verify (using the multivariate chain rule) that if W (¢, z) satisfies (16.2) and
V(t,z) = e DW(t, e THx), then V (¢, ) satisfies (16.1) and V (T, z) = W (T, x).

Since we have already seen that the Black-Scholes partial differential equation (16.1) does
not depend on p, we can assume that g = 0. We have also just shown that it suffices to
solve (16.1) when r = 0. Therefore, we will use W to denote the Black-Scholes solution in
the r = 0 case, i.e., the solution to (16.2), and we will then use V' as the solution in the
r > 0 case, i.e., the solution to (16.1), where

V(t,z) = e DWW (t, er V). (16.3)
We now note from (15.3) that the SDE for W (¢, S;) is
AW (t, S;) = o S,W'(t, S;) dB, + [W(t, Sy) + puSW'(t, Sy) + %Zsfw”(t, st)} dt.
We are assuming that u = 0 so that

. 2
dW(t, Sy) = aS;W'(t, S;) dB; + {W(t, St) + %SfW”(t, St)] dt.
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We are also assuming that W (¢, x) satisfies the Black-Scholes PDE given by (16.2) which is
exactly what is needed to make the d¢ term equal to 0. Thus, we have reduced the SDE for
W(t,S;) to

dW (t, S;) = oS, W'(t, S;) dB;.

We now have a stochastic differential equation with no d¢ term which means, using The-
orem 12.6, that W (t,S;) is a martingale. Formally, if M, = W (t,S;), then the stochastic
process { My, t > 0} is a martingale with respect to the Brownian filtration {F;, ¢ > 0}.

Next, we use the fact that martingales have stable expectation at fixed times to conclude
that
E(My) = E(Mry).

Since we know the value of the European call option at time T is W(T, Sy) = (Sr — E)™,
we see that
MT - W(T, ST) - (ST - E)+

Furthermore, My = W (0, Sp) is non-random (since Sy, the stock price at time 0, is known),
and so we conclude that My = E(M7) which implies

W(0,Sy) =E[(Sy — E)"]. (16.4)

The final step is to actually calculate the expected value in (16.4). Since we are assuming
w =0, the stock price follows geometric Brownian motion {S;,¢ > 0} where

0.2
St = S() exp {O'Bt - 775} .

Hence, at time 7', we need to consider the random variable

0.2
ST = SO exp {O’BT — ?T} .

We know By ~ N (0,T) so that we can write

_oir
ST = So e 2 ea\/TZ

for Z ~ N(0,1). Thus, we can now use the result of Exercise 3.7, namely if a > 0, b > 0,
¢ > 0 are constants and Z ~ N (0, 1), then

1 1
E[(ae’? — ¢)t] = ae”/? @ (b + 3 log g) —c® (g log E) , (16.5)
¢ c

with
27

a=Sye 2, b=0oVT, ¢c=E
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to conclude
E[(Sr— E)*]

s2T s2T
02 02 ]. S T2 1 S T2
:Soe‘zTezTCI><0\/T+ log 0 _* )—ECD( log 0 _* )
o

oVT E VT b

=&@<;LJgE+U?>—E¢<MrI:% i?)_

To account for the time value of money, we can use Exercise 16.1 to give the solution for
r > 0. That is, if V(0, Sy) denotes the fair price (at time 0) of a European call option with
strike price E, then using (16.3) we conclude

V(07 SO) == e_TTW(07 eTTSO)
" rT
=S ® : log 5 + ovT —FEe ! log ¢ S _ oV/T
o T E 2 o/ T i3 5
=5, ® (log(SO/E) i %02>T) BT (bg(so/E) (- %U2>T)

oT oVT
=Sy ®(dy) — Ee™"" @ (dy)

where
log(Sy/FE Lo log(Sy/ FE —isT
dlzog( o/ )+(r—|—20) and d2:og( o/E) + r 20) :dl—aﬁ.
oVT oV'T
AWESOME!

Remark. We have now arrived at equation (8.19) on page 80 of Higham [11]. Note that
Higham only states the answer; he never actually goes through the solution of the Black-
Scholes PDE.

Summary. Let’s summarize what we did. We assumed that the asset S followed geometric
Brownian motion given by

dSt = O'St dBt + ,U/St dt,

and that the risk-free bond D grew at continuously compounded interest rate r so that
dD(t, St) = TD(t, St) dt.

Using Version IV of It6’s formula on the value of the option V' (¢, S;) combined with the self-
financing portfolio implied by the no arbitrage assumption led to the Black-Scholes partial
differential equation

2

V(t,z)+ %xQV”(t, x)+razV'(t,x) —rV(t,x) = 0.
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We also made the important observation that this PDE does not depend on p. We then saw
that it was sufficient to consider » = 0 since we noted that if W (¢, z) solved the resulting
PDE

2
W(t, ) + %xQW”(t, ) =0,

then V(t,z) = e DW(t,e"""z) solved the Black-Scholes PDE for » > 0. We then

assumed that p = 0 and we found the SDE for W (¢, S;) which had only a dB; term (and

no dt term). Using the fact that It6 integrals are martingales implied that {W (¢, S;),t > 0}

was a martingale, and so the stable expectation property of martingales led to the equation
W (0,Sy) = E(W(T, Sr)).

Since we knew that V(T, Sr) = W(T, Sy) = (Sr — E)* for a European call option, we could
compute the resulting expectation. We then translated back to the r» > 0 case via

V(0,S) = e "W (0,eSy).

This previous observation is extremely important since it tells us precisely how to price
European call options with different payoffs. In general, if the payoff function at time 7' is
A(z) so that
V(T,z) =W(T,z) = A(z),
then, since {W(t,S;),t > 0} is a martingale,
W(0, So) = E(W(T, 57)) = E(A(ST)).
By assuming that u = 0, we can write St as
2 0‘2
St = Spexp {UBT — %T} =95 e~ 7 VT2

with Z ~ N(0,1). Therefore, if A is sufficiently nice, then E(A(S7)) can be calculated
explicitly, and we can use

V(O, S()) = B_TTW(O, GTTSO)
to determine the required fair price to pay at time 0.

In particular, we can follow this strategy to answer the following question posed at the end
of Lecture #1.

Example 16.2. In the Black-Scholes world, price a European option with a payoff of
max{S? — K,0} at time T

Solution. The required time 0 price is V(0,Sy) = e "W (0,e""Sy) where W(0,S5,) =
E[(S% — K)™]. Since we can write

S% _ Sg 00T 20VTZ
with Z ~ N(0,1), we can use (16.5) with
a:SSe_”QT, b:20\/i c=K
to conclude

2 log(S2/K) + (2r + 30*)T _ log(S3/K) + (2r — o*)T
v075 :SQ (U+7")T(I)( 0 - K rT(I) 0 ]
( 0) 0¢ 20\/T c 20\/T
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