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Lecture #15: Itô Integration (Part I)

Recall that for bounded, piecewise continuous deterministic L

2([0,1)) functions, we have
defined the Wiener integral

It =

Z t

0

g(s) dBs

which satisfied the following properties:

• I0 = 0,

• for fixed t > 0, the random variable It is normally distributed with mean 0 and variance

Z t

0

g

2(s) ds,

• the stochastic process {It, t � 0} is a martingale with respect to the Brownian filtration
{Ft, t � 0}, and

• the trajectory t 7! It is continuous.

Our goal for the next two lectures is to define the integral

It =

Z t

0

g(s) dBs. (11.1)

for random functions g.

We understand from our work on Wiener integrals that for fixed t > 0 the stochastic in-
tegral It must be a random variable depending on the Brownian sample path. Thus, the
interpretation of (11.1) is as follows. Fix a realization (or sample path) of Brownian motion
{Bt(!), t � 0} and a realization (depending on the Brownian sample path observed) of the
stochastic process {g(t,!), t � 0} so that, for fixed t > 0, the integral (11.1) is really a
random variable, namely

It(!) =

Z t

0

g(s,!) dBs(!).

We begin with the example where g is a Brownian motion. This seemingly simple example
will serve to illustrate more of the subtleties of integration with respect to Brownian motion.

Example 11.1. Suppose that {Bt, t � 0} is a Brownian motion with B0 = 0. We would
like to compute

It =

Z t

0

Bs dBs
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for this particular realization {Bt, t � 0} of Brownian motion. If Riemann integration were
valid, we would expect, using the fundamental theorem of calculus, that

It =

Z t

0

Bs dBs =
1

2
(B2

t � B

2
0) =

1

2
B

2
t . (11.2)

Motivated by our experience with Wiener integration, we expect that It has mean 0. How-
ever, if It is given by (11.2), then

E(It) =
1

2
E(B2

t ) =
t

2
.

We might also expect that the stochastic process {It, t � 0} is a martingale; of course,
{B2

t /2, t � 0} is not a martingale, although,

⇢
1

2
B

2
t �

t

2
, t � 0

�
(11.3)

is a martingale. Is it possible that the value of It is given by (11.3) instead? We will now
show that yes, in fact, Z t

0

Bs dBs =
1

2
B

2
t �

t

2
.

Suppose that ⇡n = {0 = t0 < t1 < t2 < · · · < tn = t} is a partition of [0, t] and let

Ln =
nX

i=1

Bt
i�1(Bt

i

� Bt
i�1) and Rn =

nX

i=1

Bt
i

(Bt
i

� Bt
i�1)

denote the left-hand and right-hand Riemann sums, respectively. Observe that

Rn � Ln =
nX

i=1

Bt
i

(Bt
i

� Bt
i�1)�

nX

i=1

Bt
i�1(Bt

i

� Bt
i�1) =

nX

i=1

(Bt
i

� Bt
i�1)

2
. (11.4)

The next theorem shows that

(Rn � Ln) 6! 0 as mesh(⇡n) = max
iin

(ti � ti�1) ! 0

which implies that the attempted Riemann integration (11.2) is not valid for Brownian
motion.

Theorem 11.2. If {⇡n, n = 1, 2, 3, . . .} is a refinement of [0, t] with mesh(⇡n) ! 0, then

nX

i=1

�
Bt

i

� Bt
i�1

�2 ! t in L

2

as mesh(⇡n) ! 0.
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Proof. To begin, notice that
nX

i=1

(ti � ti�1) = t.

Let

Yn =
nX

i=1

�
Bt

i

� Bt
i�1

�2 � t =
nX

i=1

h�
Bt

i

� Bt
i�1

�2 � (ti � ti�1)
i
=

nX

i=1

Xi

where
Xi =

�
Bt

i

� Bt
i�1

�2 � (ti � ti�1),

and note that

Y

2
n =

nX

i=1

nX

j=1

Xi Xj =
nX

i=1

X

2
i + 2

X

i<j

Xi Xj.

The independence of the Brownian increments implies that E(XiXj) = 0 for i 6= j; hence,

E(Y 2
n ) =

nX

i=1

E(X2
i ).

But

E(X2
i ) = E

⇥
(Bt

i

� Bt
i�1)

4
⇤
� 2(ti � ti�1)E

⇥
(Bt

i

� Bt
i�1)

2
⇤
+ (ti � ti�1)

2

= 3(ti � ti�1)
2 � 2(ti � ti�1)

2 + (ti � ti�1)
2

= 2(ti � ti�1)
2

since the fourth moment of a normal random variable with mean 0 and variance ti � ti�1 is
3(ti � ti�1)2. Therefore,

E(Y 2
n ) =

nX

i=1

E(X2
i ) = 2

nX

i=1

(ti � ti�1)
2  2 mesh(⇡n)

nX

i=1

(ti � ti�1) = 2t mesh(⇡n) ! 0

as mesh(⇡n) ! 0 from which we conclude that E(Y 2
n ) ! 0 as mesh(⇡n) ! 0. However, this

is exactly what it means for Yn ! 0 in L

2 as mesh(⇡n) ! 0, and the proof is complete.

As a result of this theorem, we define the quadratic variation of Brownian motion to be this
limit in L

2.

Definition 11.3. The quadratic variation of a Brownian motion {Bt, t � 0} on the interval
[0, t] is defined to be

Q2(B[0, t]) = t (in L

2).

Since
(Rn � Ln) ! t in L

2 as mesh(⇡n) ! 0

we see that Ln and Rn cannot possibly have the same limits in L

2. This is not necessarily
surprising since Bt

i�1 is independent of Bt
i

� Bt
i�1 from which it follows that E(Ln) = 0

while E(Rn) = t.
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Exercise 11.4. Show that E(Ln) = 0 and E(Rn) = t.

On the other hand,

Rn + Ln =
nX

i=1

Bt
i

(Bt
i

� Bt
i�1) +

nX

i=1

Bt
i�1(Bt

i

� Bt
i�1) =

nX

i=1

(Bt
i

+Bt
i�1)(Bt

i

� Bt
i�1)

=
nX

i=1

(B2
t
i

� B

2
t
i�1

)

= B

2
t
n

� B

2
t0

= B

2
t � B

2
0

= B

2
t . (11.5)

Thus, from (11.4) and (11.5) we conclude that

Ln =
1

2

 
B

2
t �

nX

i=1

(Bt
i

� Bt
i�1)

2

!
and Rn =

1

2

 
B

2
t +

nX

i=1

(Bt
i

� Bt
i�1)

2

!

and so

Ln ! 1

2
(B2

t � t) in L

2 and Rn ! 1

2
(B2

t + t) in L

2
.

Unlike the usual Riemann integral, the limit of these sums does depend on the intermediate
points used (i.e., left– or right-endpoints). However, {B2

t + t, t � 0} is not a martingale,
although {B2

t � t, t � 0} is a martingale. Therefore, while both of these limits are valid
ways to define the integral It, it is reasonable to use as the definition the limit for which a
martingale is produced. And so we make the following definition:

Z t

0

Bs dBs = limLn in L

2

=
1

2
B

2
t �

t

2
. (11.6)
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